Library Subscription: Guest
Journal of Environmental Pathology, Toxicology and Oncology

Published 4 issues per year

ISSN Print: 0731-8898

ISSN Online: 2162-6537

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00049 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.59 SJR: 0.429 SNIP: 0.507 CiteScore™:: 3.9 H-Index: 49

Indexed in

Detection of Circulating Tumor Cells and Epithelial Progenitor Cells: A Comprehensive Study

Volume 42, Issue 3, 2023, pp. 1-29
DOI: 10.1615/JEnvironPatholToxicolOncol.2022044456
Get accessGet access

ABSTRACT

Technological advancement to enhance tumor cells (TC) has allowed discovery of various cellular bio-markers: cancer stem cells (CSC), circulating tumor cells (CTC), and endothelial progenitor cells (EPC). These are responsible for resistance, metastasis, and premetastatic conditions of cancer. Detection of CSC, CTC, and EPC assists in early diagnosis, recurrence prediction, and treatment efficacy. This review describes various methods to detect TC subpopulations such as in vivo assays (sphere-forming, serial dilution, and serial transplantation), in vitro assays (colony-forming cells, microsphere, side-population, surface antigen staining, aldehyde dehydrogenase activity, and Paul Karl Horan label-retaining cells, surface markers, nonenriched and enriched detection), reporter systems, and other analytical methods (flow cytometry, fluorescence microscopy/spectroscopy, etc.). The detailed information on methods to detect CSC, CTC, and EPC in this review will assist investigators in successful prognosis, diagnosis, and cancer treatment with greater ease.

REFERENCES
  1. Glantz L, Hansen K, Caldamone A, Medeiros LJ. Cystic dysplasia of the testis. Human Pathol. 1993;24(10):1142-45.

  2. Saggini A, Held L, Kempter W. Dendritic cell neurofibroma with pseudorosettes: A variant of neurofibroma? Am J Dermatopathol. 2021;43(2):158-60.

  3. Grantham JJ. 1992 Homer Smith Award. Fluid secretion, cellular proliferation, and the pathogenesis of renal epithelial cysts. J Am Soc Nephrol. 1993;3(12):1841-57.

  4. Gratzinger D, Salama ME, Poh CF, Rouse RV. Amelo-blastoma, calcifying epithelial odontogenic tumor, and glandular odontogenic cyst show a distinctive immuno-phenotype with some myoepithelial antigen expression. J Oral Pathol Med. 2008;37(3):177-84.

  5. Grimm DH, Karihaloo A, Cai Y, Somlo S, Cantley LG, Caplan MJ. Polycystin-2 regulates proliferation and branching morphogenesis in kidney epithelial cells. J Biol Chem. 2006;281(1):137-44.

  6. Gunhan O, Yildiz E, Karslioglu Y, Aydintug Y, Dogan N, Celasun B. Nuclear morphometric features of epithelial cells lining keratocysts. Analytic Quant Cytol Histol. 2003;25(2):85-9.

  7. Jamal I, Bhadani PP. Dendritic cell neurofibroma with pseudorosettes: A case report with review of literature. Indian J Pathol Microbiol. 2021;64(4):868-70.

  8. Hattori H. Vacuolated cells in neurofibroma: An immunohistochemical study. J Cutaneous Pathol. 2005;32(2): 158-61.

  9. He J, Tang K. A Mullerian cyst in a male adolescent: A case report and literature review. J Int Med Res. 2021;49(5):3000605211016663.

  10. Henwood AF. Comment on "Digital mucous cyst: Altered epidermal mucin as a clue to diagnosis". J Cutaneous Pathol. 2021;48(4):603-04.

  11. Ingle SB, Hinge Ingle CR, Patrike S. Epithelial cysts of the spleen: A minireview. World J Gastroenterol. 2014;20(38):13899-903.

  12. Iwata E, Orosz Z, Teh J, Reynolds J, Whitwell D, Tanaka Y. Neuroendocrine tumor arising in a tailgut cyst: A rare presacral tumor. Int J Surg Pathol. 2019;27(3):336-42.

  13. Jouhilahti EM, Peltonen S, Callens T, Jokinen E, Heape AM, Messiaen L. The development of cutaneous neurofibromas. Am J Pathol. 2011;178(2):500-5.

  14. Karmody CS, Gallagher JC. Nasoalveolar cysts. Ann Otol Rhinol Laryngol. 1972;81(2):278-83.

  15. Keelawat S, Bychkov A. Compact buds with biphasic differentiation and calcitonin-expressing neuroendocrine cells-previously unrecognized structures of thyroglossal duct unveiled by immunohistochemistry. Virchows Arch: Int J Pathol. 2019;474(5):609-17.

  16. Kenmochi T, Inokuchi S, Kise Y, Tanaka M, Kidokoro M, Makuuchi H. Effect of dermal fibroblasts on long-term maintenance of regenerating xenotransplanted human esophageal epithelial cells in immunodeficient mice. Tokai J Exper Clin Med. 2007;32(4):103-08.

  17. Kraus A, Grampp S, Goppelt-Struebe M, Schreiber R, Kunzelmann K, Peters DJ. P2Y2R is a direct target of HIF-1a and mediates secretion-dependent cyst growth of renal cystforming epithelial cells. Purinerg Signal. 2016;12(4):687-95.

  18. Kubota R, Nishida H, Kodo Y, Oyama Y, Kusaba T, Kadowaki H. A Case of dendritic cell neurofibroma with pseudorosettes. Am J Dermatopathol. 2020;42(8):604-07.

  19. Kwong J, Chan FL, Wong KK, Birrer MJ, Archibald KM, Balkwill FR. Inflammatory cytokine tumor necrosis factor alpha confers precancerous phenotype in an organoid model of normal human ovarian surface epithelial cells. Neoplasia. 2009;11(6):529-41.

  20. Legan SK, Lee DD, Schwarz MA. a5pi integrin mediates pulmonary epithelial cyst formation. Develop Dyn. 2017;246(6):475-84.

  21. Li Q, Wang Y, Deng W, Liu Y, Geng J, Yan Z. Heterogeneity of cell composition and origin identified by single-cell transcriptomics in renal cysts of patients with autosomal dominant polycystic kidney disease. Theranostics. 2021;11(20):10064-73.

  22. Lin LM, Huang GT, Rosenberg PA. Proliferation of epithelial cell rests, formation of apical cysts, and regression of apical cysts after periapical wound healing. J Endodont. 2007;33(8):908-16.

  23. Lowe AW, Moseley RH. Circulating epithelial cells in patients with pancreatic cystic lesions. Gastroenterology. 2014;146(3):595.

  24. Loyola AM, Cardoso SV, Lisa GS, Oliveira LJ, Mesquita RA, Carmo MA. Apoptosis in epithelial cells of apical radicular cysts. Int Endodont J. 2005;38(7):465-9.

  25. Masyuk TV, Masyuk AI, LaRusso NF. TGR5 in the cholangiociliopathies. Digest Dis. 2015;33(3):420-05.

  26. Maurizio P, Fabrizio Z. Cystic lesions. Monog Clin Cytol. 2018;24:33-40.

  27. Mege D, Gregoire E, Barbier L, Del Grande J, Le Treut YP. Lymphoepithelial cyst of the pancreas: An analysis of 117 patients. Pancreas. 2014;43(7):987-95.

  28. Mesquita RA, Lotufo MA, Sugaya NN, De Araujo NS, De Araujo VC. Peripheral clear cell variant of calcifying epithelial odontogenic tumor: Report of a case and immunohistochemical investigation. Oral Surg Oral Med Oral Pathol Oral Radiol Endodont. 2003;95(2):198-204.

  29. Mitsuhata Y, Abe T, Misaki K, Nakajima Y, Kiriya K, Kawasaki M. Cyst formation in proximal renal tubules caused by dysfunction of the microtubule minusend regulator CAMSAP3. Sci Rep. 2021;11(1):5857.

  30. Miyagami M, Kasahara E, Miyazaki S, Tsubokawa T, Kagawa Y. Ultrastructural findings of arachnoid cysts and epithelial cysts. No to Shinkei [Brain Nerve]. 1991;43(6):545-53 (in Japanese).

  31. Monroy EAC, de Andrade Santos PP, de Sousa Lopes MLD, Mosqueda-Taylor A, Pinto LP, de Souza LB. Oct-4 and CD44 in epithelial stem cells like of benign odontogenic lesions. Histochem Cell Biol. 2018;150(4):371-7.

  32. Nagasaka T, Lai R, Sone M, Nakashima T, Nakashima N. Glandular malignant peripheral nerve sheath tumor: An unusual case showing histologically malignant glands. Arch Pathol Lab Med. 2000;124(9):1364-68.

  33. Nakauchi A, Shintani S, Kokubu E, Nakajima K, Matsuzaka K, Inoue T. Expression of cytokeratin in experimentally created inflammatory cyst in vivo and in vitro. Bull Tokyo Dental College. 2019;60(4):267-77.

  34. Ng WK, Kong JH. Significance of squamous cells in fine needle aspiration cytology of the breast. A review of cases in a seven-year period. Acta Cytol. 2003;47(1):27-35.

  35. Nishida N, Hata Y, Nomoto K. Intramyocardial bronchogenic cyst: Histological appearance and a review of the literature. Cardiovasc Pathol. 2017;28:64-7.

  36. Onori P, Franchitto A, Mancinelli R, Carpino G, Alvaro D, Francis H. Polycystic liver diseases. Digest Liver Dis. 2010;42(4):261-71.

  37. Ozcan A, Yavan 1, Gunhan O. Immunohistochemical characteristics of cystic odontogenic lesions: A comparative study. Turk Patoloji Dergisi. 2015;31(2):104-10.

  38. Pan S, Li TJ. In vitro cultivation and identification of ep-ithelial cells of keratocystic odontogenic tumor. Beijing da xue xue bao Yi xue ban [J Peking Univ Health Sci]. 2009;41(1):28-31 (in Chinese).

  39. Pathomthongtaweechai N, Soodvilai S, Chatsudthipong V, Muanprasat C. Pranlukast inhibits renal epithelial cyst progression via activation of AMP-activated protein kinase. Eur J Pharmacol. 2014;724:67-76.

  40. Phull K, Metgud R, Patel S. A study of the distribution of B-cell lymphoma/leukemia-2 in odontogenic cyst and tumors: Histochemical study. J Cancer Res Therapeut. 2017;13(3):570-75.

  41. Pitman MB, Genevay M, Yaeger K, Chebib I, Turner BG, Mino-Kenudson M. High-grade atypical epithelial cells in pancreatic mucinous cysts are a more accurate predictor of malignancy than "positive" cytology. Cancer Cytopathol. 2010;118(6):434-40.

  42. Pitman MB, Yaeger KA, Brugge WR, Mino-Kenudson M. Prospective analysis of atypical epithelial cells as a high-risk cytologic feature for malignancy in pancreatic cysts. Cancer Cytopathol. 2013;121(1):29-36.

  43. Poomsawat S, Punyasingh J. Calcifying epithelial odontogenic tumor: An immunohistochemical case study. J Mol Histol. 2007;38(1):103-09.

  44. Rhim AD, Thege FI, Santana SM, Lannin TB, Saha TN, Tsai S. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology. 2014;146(3):647-51.

  45. Richter M, Fiore-Donno G, Kuffer R. Odontogenic keratocysts. Schweizerische Monatsschrift fur Zahnheilkunde [Revue mensuelle suisse d'odonto-stomatologie]. 1975;85(5):487-506 (in German).

  46. Rubini C, Artese L, Zizzi A, Fioroni M, Ascani G, Goteri G. Immunohistochemical expression of vascular endothelial growth factor (VEGF) in different types of odontogenic cysts. Clin Oral Invest. 2011;15(5):757-61.

  47. Serrati S, Panzardi I, Margheri F, Chilla A, Torre E, Fibbi G. Urokinase and its receptor in follicular and inflammatory cysts of the jaws. Oral Dis. 2010;16(8):753-59.

  48. Strazzabosco M, Somlo S. Polycystic liver diseases: Congenital disorders of cholangiocyte signaling. Gastroenterology. 2011;140(7):1855-59, 9.e1.

  49. Sullivan LP, Wallace DP, Grantham JJ. Epithelial transport in polycystic kidney disease. Physiol Rev. 1998;78(4):1165-91.

  50. Sun L, Hu C, Zhang X. TRAF3 delays cyst formation induced by NF-KB signaling. IUBMB life. 2017;69(3): 170-78.

  51. Suyama Y, Kubota Y, Yamashiro T, Ninomiya T, Koji T, Shirasuna K. Expression of keratinocyte growth factor and its receptor in odontogenic keratocysts. J Oral Pathol Med. 2009;38(5):476-80.

  52. Takahashi K, Sato Y, Yamamura M, Nakada S, Tamano Y, Sasaki M. Notch-Hes1 signaling activation in Caroli disease and polycystic liver disease. Pathol Int. 2021;71(8):521-29.

  53. Takeda Y, Oikawa Y, Furuya I, Satoh M, Yamamoto H. Mucous and ciliated cell metaplasia in epithelial linings of odontogenic inflammatory and developmental cysts. J Oral Sci. 2005;47(2):77-81.

  54. Terada T, Nakanuma Y, Ohta T, Nagakawa T, Motoo Y, Harada A. Mucin-histochemical and immunohistochemical profiles of epithelial cells of several types of hepatic cysts. Virchows Archiv A Pathol Anat Histopathol. 1991;419(6):499-504.

  55. Tsuneki M, Cheng J, Maruyama S, Ida-Yonemochi H, Nakajima M, Saku T. Perlecan-rich epithelial linings as a background of proliferative potentials of keratocystic odontogenic tumor. J Oral Pathol Med. 2008;37(5):287-93.

  56. Vaughan AE, Brumwell AN, Xi Y, Gotts JE, Brownfield DG, Treutlein B. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature. 2015;517(7536):621-25.

  57. Voronova AD, Stepanova OV, Valikhov MP, Chadin AV, Semkina AS, Karsuntseva EK. Combined Preparation of human olfactory ensheathing cells in the therapy of post-traumatic cysts of the spinal cord. Bull Exper Biol Med. 2020;169(4):539-43.

  58. Vroegindeweij E, Crobach S, Itoi M, Satoh R, Zuklys S, Happe C. Thymic cysts originate from Foxn1 positive thymic medullary epithelium. Mol Immunol. 2010;47(5):1106-13.

  59. Yamamoto H, Awada C, Matsumoto S, Kaneiwa T, Sugimoto T, Takao T. Basolateral secretion of Wnt5a in polarized epithelial cells is required for apical lumen formation. J Cell Sci. 2015;128(5):1051-63.

  60. Zhang RZ, Yu JK, Peng J, Wang FH, Liu HY, Lui VC. Role of CD56-expressing immature biliary epithelial cells in biliary atresia. World J Gastroenterol. 2016;22(8):2545-57.

  61. Bai KH, He SY, Shu LL, Wang WD, Lin SY, Zhang QY. Identification of cancer stem cell characteristics in liver hepatocellular carcinoma by WGCNA analysis of transcriptome stemness index. Cancer Med. 2020;9(12):4290-98.

  62. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756-60.

  63. Bareche Y, Buisseret L, Gruosso T, Girard E, Venet D, Dupont F. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: Towards an optimized treatment approach. J Nat Cancer Inst. 2020;112(7):708-19.

  64. Burr R, Edd JF, Chirn B, Mishra A, Haber DA, Toner M. Negative-selection enrichment of circulating tumor cells from peripheral blood using the microfluidic CTC-iChip. Methods Mol Biol. 2022;2471:309-21.

  65. Chu CH, Liu R, Ozkaya-Ahmadov T, Boya M, Swain BE, Owens JM. Hybrid negative enrichment of circulating tumor cells from whole blood in a 3D-printed monolithic device. Lab Chip. 2019;19(20):3427-37.

  66. Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front Immunol. 2018;9:398.

  67. Chu CH, Liu R, Ozkaya-Ahmadov T, Swain BE, Boya M, El-Rayes B. Negative enrichment of circulating tumor cells from unmanipulated whole blood with a 3D printed device. Sci Rep. 2021;11(1):20583.

  68. Gupta G, Chellappan DK, Kikuchi IS, Pinto TdJA, Pabreja K, Agrawal M. Nephrotoxicity in rats exposed to paracetamol: The protective role of moralbosteroid, a steroidal glycoside. J Environ Pathol Toxicol Oncol. 2017;36(2):113-9.

  69. Jadhav SP, Singh H, Gilhotra RM, Mishra A, Singh Y, Krishnan A. Medicinal plants used in the treatment of influenza a virus infections. In: Dua K, Nammi S, Chang D, Chellappan DK, Gupta G, Collet T, editors. Medicinal plants for lung diseases. Springer; 2021. p. 399-416.

  70. Cognart HA, Chang CP. Negative enrichment of circulating tumor cells in blood using a microfluidic chip. Methods Mol Biol. 2017;1547:167-74.

  71. Conteduca V, Zamarchi R, Rossi E, Condelli V, Troiani L, Aieta M. Circulating tumor cells: Utopia or reality? Future Oncol. 2013;9(9):1337-52.

  72. Gruosso T, Gigoux M, Manem VSK, Bertos N, Zuo D, Perlitch I. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J Clin Invest. 2019;129(4):1785-800.

  73. Gupta G, Dahiya R, Singh Y, Mishra A, Verma A, Gothwal SK. Monotherapy of RAAS blockers and mobilization of aldosterone: A mechanistic perspective study in kidney disease. Chemico-Biol Interact. 2020;317:108975.

  74. Jha NK, Chen W-C, Kumar S, Dubey R, Tsai L-W, Kar R. Molecular mechanisms of developmental pathways in neurological disorders: A pharmacological and therapeutic review. Open Biol. 2022;12(3):210289.

  75. Hyun KA, Lee TY, Jung HI. Negative enrichment of circulating tumor cells using a geometrically activated surface interaction chip. Analy Chem. 2013;85(9):4439-45.

  76. Gupta G, Kazmi I, Afzal M, Rahman M, Saleem S, Ashraf MS. Sedative, antiepileptic and antipsychotic effects of Viscum album L. (Loranthaceae) in mice and rats. J Ethnopharmacol. 2012;141(3):810-16.

  77. K Chellappan D, Ganasen S, Batumalai S, Candasamy M, Krishnappa P, Dua K. The protective action of the aqueous extract of Auricularia polytricha in paracetamol induced hepatotoxicity in rats. Recent Patents Drug Deliv Formul. 2016;10(1):72-6.

  78. Jiang X, Wong KHK, Khankhel AH, Zeinali M, Reategui E, Phillips MJ. Microfluidic isolation of platelet-covered circulating tumor cells. Lab Chip. 2017;17(20):3498-503.

  79. Kanwar N, Done SJ. Negative enrichment and isolation of circulating tumor cells for whole genome amplification. Methods Mol Biol. 2017;1634:143-52.

  80. Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell. 2018;174(6):1373-87.e19.

  81. Lampignano R, Schneck H, Neumann M, Fehm T, Neubauer H. Enrichment, isolation and molecular characterization of EpCAM-negative circulating tumor cells. Adv Exper Med Biol. 2017;994:181-203.

  82. Li Y, Ma G, Zhao P, Fu R, Gao L, Jiang X. Improvement of sensitive and specific detection of circulating tumor cells using negative enrichment and immunostaining-FISH. Clin Chim Acta Int J Clin Chem. 2018;485:95-102.

  83. Rawat S, Pathak S, Gupta G, Singh SK, Singh H, Mishra A. Recent updates on daidzein against oxidative stress and cancer. EXCLI J. 2019;18:950.

  84. Singh Y, Gupta G, Shrivastava B, Dahiya R, Tiwari J, Ashwathanarayana M. Calcitonin gene-related peptide (CGRP): A novel target for Alzheimer's disease. CNS Neurosci Therapeut. 2017;23(6):457-61.

  85. Liu XS, Zhou LM, Yuan LL, Gao Y, Kui XY, Liu XY. NPM1 Is a prognostic biomarker involved in immune infiltration of lung adenocarcinoma and associated with m6A modification and glycolysis. Front Immunol. 2021;12:724741.

  86. Long H, Jia Q, Wang L, Fang W, Wang Z, Jiang T. Tumor-induced erythroid precursor-differentiated myeloid cells mediate immunosuppression and curtail anti-PD-1/PD-L1 treatment efficacy. Cancer Cell. 2022;40(6):674-93.e7.

  87. Luoma AM, Suo S, Wang Y, Gunasti L, Porter CBM, Nabilsi N. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell. 2022;185(16):2918-35.e29.

  88. Meng J, Zhou Y, Lu X, Bian Z, Chen Y, Zhou J. Immune response drives outcomes in prostate cancer: Implications for immunotherapy. Mol Oncol. 2021;15(5):1358-75.

  89. Gupta G, Al-Malki WH, Kazmi I, Thangavelu L, Gupta PK, Jha NK. The role of HGF/MET in liver cancer. Future Med Chem. 2021;13(21):1829-32.

  90. Gupta G, Bebawy M, Pinto TdJA, Chellappan DK, Mishra A, Dua K. Role of the tristetraprolin (zinc finger protein 36 homolog) gene in cancer. Crit Rev Eukary Gene Express. 2018;28(3).

  91. O'Conor CJ, Chen T, Gonzalez I, Cao D, Peng Y. Cancer stem cells in triple-negative breast cancer: A potential target and prognostic marker. Biomark Med. 2018;12(7):813-20.

  92. Adams DL, Zhu P, Makarova OV, Martin SS, Charpentier M, Chumsri S. The systematic study of circulating tumor cell isolation using lithographic microfilters. RSC Adv. 2014;9:4334-42.

  93. Allelein S, Medina-Perez P, Lopes ALH, Rau S, Hause G, Kolsch A. Potential and challenges of specifically isolating extracellular vesicles from heterogeneous populations. Sci Rep. 2021;11(1):11585.

  94. Davies RT, Kim J, Jang SC, Choi EJ, Gho YS, Park J. Microfluidic filtration system to isolate extracellular vesicles from blood. Lab Chip. 2012;12(24):5202-10.

  95. Dong L, Zieren RC, Horie K, Kim CJ, Mallick E, Jing Y. Comprehensive evaluation of methods for small extracellular vesicles separation from human plasma, urine and cell culture medium. J Extracell Vesicles. 2020;10(2):e12044.

  96. Dong X, Chi J, Zheng L, Ma B, Li Z, Wang S. Efficient isolation and sensitive quantification of extracellular vesicles based on an integrated ExoID-Chip using photonic crystals. Lab Chip. 2019;19(17):2897-904.

  97. Chellappan DK, Ning QLS, Min SKS, Bin SY, Chem PJ, Shi TP. Interactions between microbiome and lungs: Paving new paths for microbiome based bio-engineered drug delivery systems in chronic respiratory diseases. Chemico-Biol Interact. 2019;310:108732.

  98. Dua K, Chellappan DK, Singhvi G, de Jesus Andreoli Pinto T, Gupta G, Hansbro PM. Targeting microRNAs using nanotechnology in pulmonary diseases. Panminerva Medica. 2018.

  99. Du B, Fu Y, Wang X, Jiang H, Lv Q, Du R. Isolation, purification, structural analysis and biological activities of water-soluble polysaccharide from Glehniae radix. Int J Biol Macromol. 2019;128:724-31.

  100. Gazaille C, Sicot M, Akiki M, Lautram N, Dupont A, Saulnier P. Characterization of biological material adsorption to the surface of nanoparticles without a prior separation step: A case study of glioblastoma-targeting peptide and lipid nanocapsules. Pharm Res. 2021;38(4):681-91.

  101. Guerreiro EM, Vestad B, Steffensen LA, Aass HCD, Saeed M, 0vsteb0 R. Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoS One. 2018;13(9):e0204276.

  102. Hasan J, Shnyder SD, Clamp AR, McGown AT, Bicknell R, Presta M. Heparin octasaccharides inhibit angiogenesis in vivo. Clin Cancer Res. 2005;11(22):8172-9.

  103. Kolostova K, Zhang Y, Hoffman RM, Bobek V. In vitro culture and characterization of human lung cancer circulating tumor cells isolated by size exclusion from an orthotopic nude-mouse model expressing fluorescent protein. J Fluor. 2014;24(5):1531-6.

  104. Dahiya M, Awasthi R, Gupta G, Singh SK, Gulati M, Jha NK. Optimization studies on imatinib mesylate loaded nanoliposomes using Box-Behnken design. Nano Biomed Eng. 2022;14(1):23-37.

  105. Gautam RK, Gupta G, Sharma S, Hatware K, Patil K, Sharma K. Rosmarinic acid attenuates inflammation in experimentally induced arthritis in Wistar rats, using Freund's complete adjuvant. Int J Rheum Dis. 2019;22(7):1247-54.

  106. Nawaz S, Mullen GED, Blower PJ, Ballinger JR. A 99mTc-labelled scFv antibody fragment that binds to prostate-specific membrane antigen. Nuclear Med Comm. 2017;38(8):666-71.

  107. Nazeam JA, El-Hefnawy HM, Singab AB. Structural characterization and in vitro cytokines modulation effect of new acetylated galactomannans from Aloe arborescens. J Med Food. 2020;23(10):1093-101.

  108. Bao Z, Zhang Y, Tan Z, Yin X, Di W, Ye J. Gapenhanced Raman tags for high-contrast sentinel lymph node imaging. Biomaterials. 2018;163:105-15.

  109. Xu Y, Jiang Y, Xia C, Wang Y, Zhao Z, Li T. Stem cell therapy for osteonecrosis of femoral head: Opportunities and challenges. Regen Ther. 2020;15:295-304. doi: 10.1016/j.reth.2020.11.003.

  110. Chen M, Bi S, Jia X, He P. Aptamer-conjugated bio-barcode Au-Fe3O4 nanoparticles as amplification station for electrochemiluminescence detection of tumor cells. Anal Chim Acta. 2014;837:44-51.

  111. Cornils K, Thielecke L, Huser S, Forgber M, Thomaschewski M, Kleist N. Multiplexing clonality: Combining RGB marking and genetic barcoding. Nucl Acids Res. 2014;42(7):e56.

  112. Gupta G, Almalki WH, Kazmi I, Fuloria NK, Fuloria S, Subramaniyan V. Current update on the protective effect of naringin in inflammatory lung diseases. EXCLI J. 2022;21:573-79.

  113. Maurya H, Dhiman S, Dua K, Gupta G. Pharmacological effect of berberine chloride in propyl thiouracil induced thyroidal dysfunction-a time bound study in female rats. Recent Pat Drug Deliv Formul. 2016;10(2):165-73.

  114. Bakshi SF, Guz N, Zakharchenko A, Deng H, Tumanov AV, Woodworth CD. Magnetic field-activated sensing of mRNA in living cells. J Am Chem Soc. 2017;139(35):12117-20.

  115. Bharathiraja C, Sukirtha R, Krishnan M, Achiraman S. Interaction of Wharton's jelly derived fetal mesenchymal cells with tumor cells. Curr Stem Cell Res Ther. 2014;9(6):504-7.

  116. Chang ZM, Zhang R, Yang C, Shao D, Tang Y, Dong WF. Cancer-leukocyte hybrid membrane-cloaked magnetic beads for the ultrasensitive isolation, purification, and non-destructive release of circulating tumor cells. Nanoscale. 2020;12(37):19121-28.

  117. Haukanes BI, Kvam C. Application of magnetic beads in bioassays. Nature Biotechnol. 1993;11(1):60-3.

  118. Algarni A, Greenman J, Madden LA. Procoagulant tumor microvesicles attach to endothelial cells on biochips under microfluidic flow. Biomicrofluidics. 2019;13(6):064124.

  119. Bhusal A, Dogan E, Nguyen HA, Labutina O, Nieto D, Khademhosseini A. Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips. Biofabrication. 2021;14(1).

  120. Chen D, Wen J, Zeng S, Ma H. DNA fragment-assisted microfluidic chip for capture and release of circulating tumor cells. Electrophoresis. 2019;40(21):2845-52.

  121. Chen H. Capturing and clinical applications of circulating tumor cells with wave microfluidic chip. Appl Biochem Biotechnol. 2020;190(4):1470-83.

  122. Chen H, Cao B, Sun B, Cao Y, Yang K, Lin YS. Highly-sensitive capture of circulating tumor cells using micro-ellipse filters. Sci Rep. 2017;7(1):610.

  123. Gupta M, Sharma V, Sharma K, Kumar A, Sharma A, Kazmi I. A kNGR peptide-tethered lipid-polymer hybrid nanocarrier-based synergistic approach for effective tumor therapy: Development, characterization, ex-vivo, and in-vivo assessment. Pharmaceutics. 2022;14(7):1401.

  124. Hemrajani C, Negi P, Parashar A, Gupta G, Jha NK, Singh SK. Overcoming drug delivery barriers and challenges in topical therapy of atopic dermatitis: A nanotechnological perspective. Biomed Pharmacother. 2022;147:112633.

  125. Chen H, Li Y, Zhang Z, Wang S. Immunomagnetic separation of circulating tumor cells with microfluidic chips and their clinical applications. Biomicrofluidics. 2020;14(4):041502.

  126. Dogan E, Kisim A, Bati-Ayaz G, Kubicek GJ, Pesen-Okvur D, Miri AK. Cancer stem cells in tumor modeling: Challenges and future directions. Adv Nanobiomed Res. 2021;1(11).

  127. Chen H, Wang Y, Wang T, Shi D, Sun Z, Xia C. Application prospective of nanoprobes with MRI and FI dual-modality imaging on breast cancer stem cells in tumor. J Nanobiotechnol. 2016;14(1):52.

  128. Khan TA, Azad AK, Fuloria S, Nawaz A, Subramaniyan V, Akhlaq M. Chitosan-coated 5-fluorouracil incorporated emulsions as transdermal drug delivery matrices. Polymers. 2021;13(19).

  129. Malviya R, Fuloria S, Verma S, Subramaniyan V, Sathasivam KV, Kumarasamy V. Commercial utilities and future perspective of nanomeds. PeerJ. 2021;9:e12392.

  130. Dong C, Yang S, Shi J, Zhao H, Zhong L, Liu Z. SPECT/ NIRF dual modality imaging for detection of intraperitoneal colon tumor with an avidin/biotin pretargeting system. Sci Rep. 2016;6:18905.

  131. Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 2013;73(12):3591-603.

  132. Ahn JB, Rha SY, Shin SJ, Jeung HC, Kim TS, Zhang X. Circulating endothelial progenitor cells (EPC) for tumor vasculogenesis in gastric cancer patients. Cancer Lett. 2010;288(1):124-32.

  133. Armani G, Pozzi E, Pagani A, Porta C, Rizzo M, Cicognini D. The heterogeneity of cancer endothelium: The relevance of angiogenesis and endothelial progenitor cells in cancer microenvironment. Microvasc Res. 2021;138:104189.

  134. Dahiya R, Rampersad S, Ramnanansingh TG, Kaur K, Kaur R, Mourya R. Synthesis and bioactivity of a cyclopolypeptide from Caribbean marine sponge. Iran J Pharmaceut Res. 2020;19(3):156-70.

  135. Fuloria S, Subramaniyan V, Dahiya R, Dahiya S, Sudhakar K, Kumari U. Mesenchymal stem cell-derived extracellular vesicles: Regenerative potential and challenges. Biology. 2021;10(3).

  136. Chen C, Dai P, Nan L, Lu R, Wang X, Tian Y. Isolation and characterization of endothelial progenitor cells from canine bone marrow. Biotech Histochem. 2021;96(2):85-93.

  137. Cho HC, Kim JH, Cha RR, Kim WS, Lee JM, Lee SS. Clinical significance of endothelial progenitor cells in patients with liver cirrhosis with or without hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2020;32(1):87-94.

  138. de la Puente P, Muz B, Azab F, Azab AK. Cell trafficking of endothelial progenitor cells in tumor progression. Clin Cancer Res. 2013;19(13):3360-68.

  139. Debatin KM, Wei J, Beltinger C. Endothelial progenitor cells for cancer gene therapy. Gene Ther. 2008;15(10):780-86.

  140. Dong F, Ha XQ. Effect of endothelial progenitor cells in neovascularization and their application in tumor therapy. Chinese Med J. 2010;123(17):2454-60.

  141. Fang S, Salven P. Stem cells in tumor angiogenesis. J Mol Cell Cardiol. 2011;50(2):290-5.

  142. Dahiya R, Dahiya S, Fuloria NK, Kumar S, Mourya R, Chennupati SV. Natural bioactive thiazole-based peptides from marine resources: Structural and pharmacological aspects. Marine Drugs. 2020;18(6).

  143. Dahiya R, Dahiya S, Shrivastava J, Fuloria NK, Gautam H, Mourya R. Natural cyclic polypeptides as vital phytochemical constituents from seeds of selected medicinal plants. Archiv Pharmaz. 2021;354(4):e2000446.

  144. Fujisawa T, Tura-Ceide O, Hunter A, Mitchell A, Vesey A, Medine C. Endothelial progenitor cells do not originate from the bone marrow. Circulation. 2019;140(18): 1524-26.

  145. Gao D, Nolan D, McDonnell K, Vahdat L, Benezra R, Altorki N. Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta. 2009;1796(1):33-40.

  146. Garmy-Susini B, Varner JA. Circulating endothelial progenitor cells. Br J Cancer. 2005;93(8):855-58.

  147. Goon PK, Lip GY, Boos CJ, Stonelake PS, Blann AD. Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia. 2006;8(2):79-88.

  148. Bajaj S, Wakode S, Kaur A, Fuloria S, Fuloria N. Anti-inflammatory and ulcerogenic activity of newer phytoisolates of swertia alata C.B. Clarke. Nat Prod Res. 2021;35(23):5055-65.

  149. Dahiya R, Dahiya S, Fuloria NK, Jankie S, Agarwal A, Davis V. Natural Thiazoline-based cyclodepsipeptides from marine cyanobacteria: Chemistry, bioefficiency and clinical aspects. Curr Med Chem. 2021;28(38): 7887-909.

  150. Horiguchi K, Fujiwara K, Yoshida S, Tsukada T, Hasegawa R, Takigami S. CX3CL1/CX3CR1-signalling in the CD9/S100p/SOX2-positive adult pituitary stem/progenitor cells modulates differentiation into endothelial cells. Histochem Cell Biol. 2020;153(6):385-96.

  151. Liu Y, Carpenter AB, Pirozzi CJ, Yuan H, Waitkus MS, Zhou Z. Non-invasive sensitive brain tumor detection using dual-modality bioimaging nanoprobe. Nanotechnology. 2019;30(27):275101.

  152. Pan LH, Pang ST, Fang PY, Chuang CK, Yang HW. Label-free biochips for accurate detection of prostate cancer in the clinic: Dual biomarkers and circulating tumor cells. Theranostics. 2017;7(17):4289-300.

  153. Saha D, Rabkin SD. Immunohistochemistry for Tumor-infiltrating immune cells after oncolytic virotherapy. Methods Mol Biol. 2020;2058:179-90.

  154. Alharbi KS, Fuloria NK, Fuloria S, Rahman SB, Al-Malki WH, Javed Shaikh MA. Nuclear factor-kappa B and its role in inflammatory lung disease. Chem Biol Interact. 2021;345:109568.

  155. Bajaj S, Fuloria S, Subramaniyan V, Meenakshi DU, Wakode S, Kaur A. Chemical characterization and anti-inflammatory activity of phytoconstituents from Swertia alata. Plants. 2021;10(6).

  156. AghaAmiri S, Simien J, Thompson AM, Voss J, Ghosh SC, Hernandez Vargas S. Comparison of HER2-targeted antibodies for fluorescence-guided surgery in breast cancer. Mol Imag. 2021;2021:5540569.

  157. Chen X, Zhou J, Yue X, Wang S, Yu B, Luo Y. Selective bio-labeling and induced apoptosis of hematopoietic cancer cells using dual-functional polyethylenimine-caged platinum nanoclusters. Biochem BiophysRes Comm. 2018;503(3):1465-70.

  158. Gao H, Xiong Y, Zhang S, Yang Z, Cao S, Jiang X. RGD and interleukin-13 peptide functionalized nanoparticles for enhanced glioblastoma cells and neovasculature dual targeting delivery and elevated tumor penetration. Mol Pharmaceut. 2014;11(3):1042-52.

  159. Liu X, Mao D, Deng G, Song Y, Zhang F, Yang S. Nondestructive analysis of tumor-associated membrane protein MUC1 in living cells based on dual-terminal amplification of a DNA ternary complex. Theranostics. 2020;10(10):4410-21.

  160. Sun D, Chen Z, Wu M, Zhang Y. Nanomaterial-based microfluidic chips for the capture and detection of circulating tumor cells. Nanotheranostics. 2017;1(4):389-402.

  161. Wu Y, Zhou Y, Qin X, Liu Y. From cell spheroids to vascularized cancer organoids: Microfluidic tumor-on-a-chip models for preclinical drug evaluations. Biomicrofluidics. 2021;15(6):061503.

  162. Young EW. Cells, tissues, and organs on chips: Challenges and opportunities for the cancer tumor microenvironment. Integr Biol. 2013;5(9):1096-109.

  163. Ren K, Dai W, Zhou J, Su J, Wu H. Whole-teflon microfluidic chips. Proc Natl Acad Sci USA. 2011;108(20):8162-66.

  164. Shi J, Zhao C, Shen M, Chen Z, Liu J, Zhang S. Combination of microfluidic chips and biosensing for the enrichment of circulating tumor cells. Biosens Bioelectr. 2022;202:114025.

  165. Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer. 2019;19(2):65-81.

  166. Pei H, Li L, Han Z, Wang Y, Tang B. Recent advances in microfluidic technologies for circulating tumor cells: Enrichment, single-cell analysis, and liquid biopsy for clinical applications. Lab Chip. 2020;20(21):3854-75.

  167. Perez-Toralla K, Mottet G, Tulukcuoglu-Guneri E, Champ J, Bidard FC, Pierga JY. FISH-in-CHIPS: A microfluidic platform for molecular typing of cancer cells. Methods Mol Biol. 2017;1547:211-20.

  168. Du J, Liu X, Xu X. Advances in isolation and enrichment of circulating tumor cells in microfluidic chips. Se pu [Chin J Chromatogr. 2014;32(1):7-12 (in Chinese).

  169. Jan YJ, Chen JF, Zhu Y, Lu YT, Chen SH, Chung H. NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells. Adv Drug Deliv Rev. 2018;125:78-93.

  170. Lin FY, Lin JY, Lo KY, Sun YS. Use of microfluidic chips to study the phototaxis of lung cancer cells. Int J Mol Sci. 2019;20(18).

  171. Liu HY, Koch C, Haller A, Joosse SA, Kumar R, Vellekoop MJ. Evaluation of microfluidic ceiling designs for the capture of circulating tumor cells on a microarray platform. Adv Biosys. 2020;4(2):e1900162.

  172. Schulze K, Gasch C, Staufer K, Nashan B, Lohse AW, Pantel K. Presence of EpCAM-positive circulating tumor cells as biomarker for systemic disease strongly correlates to survival in patients with hepatocellular carcinoma. Int J Cancer. 2013;133(9):2165-71.

  173. Agarwal A, Balic M, El-Ashry D, Cote RJ. Circulating tumor cells: Strategies for capture, analyses, and propagation. Cancer J. 2018;24(2):70-77.

  174. Balakrishnan A, George IA, Kumar P. Circulating tumor cells as an emerging tool in cancer therapy. Front Biosci. 2020;25(4):606-31.

  175. Bao-Caamano A, Rodriguez-Casanova A, Diaz-Lagares A. Epigenetics of circulating tumor cells in breast cancer. Adv Exper Med Biol. 2020;1220:117-34.

  176. Castro-Giner F, Aceto N. Tracking cancer progression: From circulating tumor cells to metastasis. Genome Med. 2020;12(1):31.

  177. Diamantopoulou Z, Castro-Giner F, Aceto N. Circulating tumor cells: Ready for translation? J Exper Med. 2020;217(8).

  178. Guan Y, Xu F, Tian J, Chen H, Yang C, Huang S. Pathology of circulating tumor cells and the available capture tools (Review). Oncol Rep. 2020;43(5):1355-64.

  179. Heymann D, Tellez-Gabriel M. Circulating tumor cells: The importance of single cell analysis. Adv Exper Med Biol. 2018;1068:45-58.

  180. Keomanee-Dizon K, Shishido SN, Kuhn P. Circulating tumor cells: High-throughput imaging of ctcs and bioinformatic analysis. Recent Results Cancer Res. 2020;215: 89-104.

  181. Liang DH, Hall C, LucciA. Circulating tumor cells in breast cancer. Recent Results Cancer Res. 2020;215:127-45.

  182. Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q. Circulating tumor cells: Biology and clinical significance. Signal Transduct Target Ther. 2021;6(1):404.

  183. Lin E, Cao T, Nagrath S, King MR. Circulating tumor cells: Diagnostic and therapeutic applications. Annu Rev Biomed Eng. 2018;20:329-52.

  184. Lowe AC. Circulating tumor cells: Applications in cytopathol. Surg Pathol Clin. 2018;11(3):679-86.

  185. Nicolazzo C, Gradilone A, Loreni F, Raimondi C, Gazzaniga P. EpCAM(low) circulating tumor cells: Gold in the waste. Dis Markers. 2019;2019:1718920.

  186. Rzhevskiy A, Kapitannikova A, Malinina P, Volovetsky A, Aboulkheyr EH, Kulasinghe A. Emerging role of circulating tumor cells in immunotherapy. Theranostics. 2021;11(16):8057-75.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain