
ISSN Print: 2572-4258
ISSN Online: 2572-4266
Indexed in
INTERNAL LENGTH GRADIENT APPROACH TO PYRAMIDAL/SPHERICAL NANOINDENTATION EXPERIMENTS
Get access
ABSTRACT
The well-established indentation size effect is modeled herein within the framework of the internal length gradient approach. The internal length (IL) parameter multiplying the Laplacian of stress term introduced in classical type flow stress expressions to account for local heterogeneity (nonlocality) is assumed to obey a power-law dependence on strain, in order to describe the effect of deformation-induced micro/nanostructure evolving during the indentation process. The model is calibrated to fit experimental pyramidal and spherical indentation measurements for different metals and the corresponding IL parameters are estimated in each case. A sphero-pyramidal analysis is also presented, accounting for the bluntness of the Berkovich tips, for the case of thin films and small volumes, where indentation depths are usually up to a few nm.
-
Abu Al-Rub, R.K., Prediction of Micro and Nanoindentation Size Effect from Conical or Pyramidal Indentation, Mech. Mater., vol. 39, no. 8, pp. 787-802, 2007.
-
Abu Al-Rub, R.K. and Faruk, A.N., Prediction of Micro and Nano Indentation Size Effects from Spherical Indenters,Mech. Adv. Mater. Struct., vol. 19, nos. 1-3, pp. 119-128, 2012.
-
Abu Al-Rub, R.K. and Voyiadjis G.Z., Analytical and Experimental Determination of the Material Intrinsic Length Scale of Strain Gradient Plasticity Theory from Micro- and Nano-Indentation Experiments, Int. J. Plast., vol. 20, pp. 1139-1182, 2004.
-
Aifantis, E.C., On the Microstructural Origin of Certain Inelastic Models, Trans. ASME J. Engng. Mat. Tech, vol. 106, pp. 326-330, 1984.
-
Aifantis, E.C., On the Gradient Approach - Relation to Eringen's Nonlocal Theory, Int. J. Eng. Sci., vol. 49, pp. 1367-1377, 2011.
-
Aifantis, E.C., Hardness ISE Measurements for Very Shallow Indentations, Unpublished Work-Available at Request, 2022.
-
Aifantis, E.C., On the Role of Gradients in the Localization of Deformation and Fracture, Int. J. Eng. Sci., vol. 30, pp. 1279-1299, 1992.
-
Backes, B., Durst, K., and Goeken, M., Determination of Plastic Properties of Polycrystalline Metallic Materials by Nanoindentation: Experiments and Finite Element Simulations, Phil. Mag., vol. 86, nos. 33-35, pp. 5541-5551, 2006.
-
Brown, L.M., Slip Circle Constructions for Inhomogeneous Rotational Flow,Mater. Sci. Forum, vol. 550, pp. 105-117, 2007.
-
Brown, L.M., Indentation Size Effect and the Hall-Petch 'Law,' Mater. Sci. Forum, vol. 662, pp. 13-26, 2011.
-
Danas, K., Deshpande, V.S., and Fleck, N.A., Size Effects in the Conical Indentation of an Elasto-Plastic Solid, J. Mech. Phys. Solids, vol. 60, no. 9, pp. 1605-1625, 2012.
-
Durst, K., Goken, M., and Pharr, G.M., Indentation Size Effect in Spherical and Pyramidal Indentations, J. Phys. D: Appl. Phys., vol. 41, no. 7, Article No. 074005, 2008.
-
Gerberich, W.W., Tymiak, N.I., Grunlan, J.C., Horstemeyer, M.F., and Baskes, M.I., Interpretations of Indentation Size Effects, J. Appl. Mech., vol. 69, no. 4, pp. 433-442, 2002.
-
Gill, S.P. and Campbell, C.J., A Model for the Indentation Size Effect in Polycrystalline Alloys Coupling Intrinsic and Extrinsic Length Scales, J. Mater. Res., vol. 34, no. 10, pp. 1645-1653, 2019.
-
Greer, J.R. and De Hosson, J.T.M., Plasticity in Small-Sized Metallic Systems: Intrinsic versus Extrinsic Size Effect, Progr. Mater. Sci., vol. 56, no. 6, pp. 654-724, 2011.
-
Hackney, S.A., Bradley, J.R., Wood, T.D., and Miskioglu, I., Microstructure Correlation in High-Strength Steels with Continuous Stiffness Mode Nanoindentation Results. High-Resolution vs. Low-Resolution Nanoindentation, J. Mech. Behav. Mater., vol. 21, nos. 5-6, pp. 169-174, 2013.
-
Johnson, K.L., The Correlation of Indentation Experiments, J. Mech. Phys. Solids, vol. 18, pp. 115-126, 1970.
-
Johnson, K.L., Contact Mechanics, Cambridge University Press, 1985.
-
Kampouris, A.K. and Konstantinidis, A. A., On the Interpretation of the Indentation Size Effect (ISE) through Gradient Theory for Vickers and Berkovich Indenters, J. Mechan. Behav. Mater., vol. 25, pp. 161-164, 2016.
-
Kim, Y.C., Gwak, E.J., Ahn, S.M., Jang, J.I., Han, H.N., and Kim, J.Y., Indentation Size Effect in Nanoporous Gold, Acta Mater., vol. 138, pp. 52-60, 2017.
-
Kim, Y.C., Gwak, E.J., Ahn, S.M., Kang, N.R., Han, H.N., Jang, J.I., and Kim, J.Y., Indentation Size Effect for Spherical Nanoindentation on Nanoporous Gold, ScriptaMater., vol. 143, pp. 10-14, 2018.
-
Lim, Y.Y., Bushby, A.J., and Chaudhri, M.M., Nano and Macro Indentation Studies of Polycrystalline Copper Using Spherical Indenters, MRS Online Proc. Library Archive, vol. 522, pp. 145-150, 1998.
-
Lim, Y.Y. and Chaudhri, M.M., The Effect of the Indenter Load on the Nanohardness of Ductile Metals: An Experimental Study on Polycrystalline Work-Hardened and Annealed Oxygen-Free Copper, Phil. Mag. A, vol. 79, no. 12, pp. 2979-3000, 1999.
-
Ma, Q. and Clarke, D.R., Size Dependent Hardness of Silver Single Crystals, J. Mater. Res., vol. 10, no. 4, pp. 853-863, 1995.
-
Maughan, M.R., Leonard, A.A., Stauffer, D.D., and Bahr, D.F., The Effects of Intrinsic Properties and Defect Structures on the Indentation Size Effect in Metals, Phil. Mag., vol. 97, no. 22, pp. 1902-1920, 2017.
-
McElhaney, K.W., Vlassak, J.J., and Nix, W.D., Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-Sensing Indentation Experiments, J. Mater. Res., vol. 13, no. 5, pp. 1300-1306, 1998.
-
Mokios, G. and Aifantis, E.C., Gradient Effects on Micro-/Nanoindentation, Mater. Sci.Technol., vol. 28, nos. 9-10, pp. 1072-1078, 2012.
-
Nix, W.D. and Gao, H., Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity, J. Mech. Phys. Solids, vol. 46, no. 3, pp. 411-425, 1998.
-
Oliver, W.C. and Pharr, G.M., An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., vol. 7, no. 6, pp. 1564-1583, 1992.
-
Oliver, W.C. and Pharr, G.M., Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., vol. 19, no. 1, pp. 3-20, 2004.
-
Qu, S., Huang, Y., Pharr, G.M., and Hwang, K.C., The Indentation Size Effect in the Spherical Indentation of Iridium: A Study via the Conventional Theory of Mechanism-Based Strain Gradient Plasticity, Int. J. Plasticity, vol. 22, pp. 1265-1286, 2006.
-
Ruzin, A., Response to Comment on "Simulation of Schottky and Ohmic Contacts on CdTe," J. Appl. Phys., vol. 111, no. 2, Article No. 026102, 2012.
-
Stelmashenko, N.A., Walls, M.G., Brown, L.M., and Milman, Y. V., Microindentations on W and Mo Oriented Single Crystals: An STM Study, Acta Metal. Mater, vol. 41, no. 10, pp. 2855-2865, 1993.
-
Swadener, J.G., George, E.P., and Pharr, G.M., The Correlation of the Indentation Size Effect Measured with Indenters of Various Shapes, J. Mech. Phys. Solids, vol. 50, no. 4, pp. 681-694, 2002.
-
Tabor, D., The Hardness of Metals, Oxford University Press, 1951.
-
Takayama, Y., Kasada, R., Sakamoto, Y., Yabuuchi, K., Kimura, A., Ando, M., Hamaguchi, D., and Tanigawa, H., Nanoindentation Hardness and its Extrapolation to Bulk-Equivalent Hardness of F82H Steels after Single-and Dual-Ion Beam Irradiation, J. Nuclear Mater., vol. 442, nos. 1-3, pp. S23-S27, 2013.
-
Tsagrakis, I. and Aifantis, E.C., On Certain Numerical Aspects of Gradient Theory, Proc. Int. Conf. Comput. Exp. Engin. Sci. (ICCES '03), Corfu Island, Greece, CD-ROM proceedings paper 346, 2003.
-
Tsagrakis, I., Konstantinidis, A., and Aifantis, E.C., Strain Gradient and Wavelet Interpretation of Size Effects in Yield and Strength,Mech. Mater., vol. 35, no. 8, pp. 733-745, 2003.
-
Udalov, A.A., Udalov, A.V., and Parshin, S.V., Indentation Size Effect during Measuring the Hardness of Materials by Spherical Indenter, Solid State Phen., Proc. 5th Int. Conf. Indust. Engin./ICIE 2019, Sochi, Russian Federation, vol. 299, pp. 1172-1177, 2020.
-
Voyiadjis, G.Z. and Zhang, C., The Mechanical Behavior during Nanoindentation Near the Grain Boundary in a Bicrystal FCC Metal, Mater. Sci. Engng. A, vol. 621, pp. 218-228, 2015.
-
Xiao, X., Chen, Q., Yang, H., Duan, H., and Qu, J., A Mechanistic Model for Depth-Dependent Hardness of Ion Irradiated Metals, J. Nuclear Mater, vol. 485, pp. 80-89, 2017.
-
Xiao, G., Yang, X., Qiu, J., Chang, C., Liu, E., Duan, Q., and Wang, Z., Determination of Power Hardening Elastoplastic Constitutive Relation of Metals through Indentation Tests with Plural Indenters, Mech. Mater, vol. 138, no. 103173, 2019.
-
Xue, Z., Huang, Y., Hwang, K.C., and Li, M., The Influence of Indenter Tip Radius on the Micro-Indentation Hardness, J. Engng. Mater. Technol., vol. 124, pp. 371-379, 2002.
-
Yabuuchi, K., Kuribayashi, Y., Nogami, S., Kasada, R. and Hasegawa, A., Evaluation of Irradiation Hardening of Proton Irradiated Stainless Steels by Nanoindentation, J. Nuclear Mater., vol. 446, nos. 1-3, pp. 142-147, 2014.
-
Yang, R., Zhang, Q., Xiao, P., Wang, J., and Bai, Y., Two Opposite Size Effects of Hardness at Real Nano-scale and Their Distinct Origins, Sci.. Rep., vol. 7, Article No. 16053, 2017.
-
Zaafarani, N., Raabe, D., Singh, R.N., Roters, F., and Zaefferer, S., Three-Dimensional Investigation of the Texture and Microstructure below a Nanoindent in a Cu Single Crystal Using 3D EBSD and Crystal Plasticity Finite Element Simulations, Acta Mater., vol. 54, no. 7, pp. 1863-1876, 2006.
-
Zhu, Y., Qin, Q., Xu, F., Fan, F., Ding, Y., Zhang, T., Wiley, B.J., and Wang, Z.L., Size Effects on Elasticity, Yielding, and Fracture of Silver Nanowires: In situ Experiments, Phys. Rev. B, vol. 85, no. 4, Article No. 045443, 2012.