Library Subscription: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Published 6 issues per year

ISSN Print: 0743-4863

ISSN Online: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Role of Exosomes for Delivery of Chemotherapeutic Drugs

Volume 38, Issue 5, 2021, pp. 53-97
DOI: 10.1615/CritRevTherDrugCarrierSyst.2021036301
Get accessDownload

ABSTRACT

Exosomes are endogenous extracellular vesicles (30-100 nm) composed with membrane lipid bilayer which carry vesicular proteins, enzymes, mRNA, miRNA and nucleic acids. They act as messengers for intra- and inter-cellular communication. In addition to their physiological roles, exosomes have the potential to encapsulate and deliver small chemotherapeutic drugs and biological molecules such as proteins and nucleic acid-based drugs to the recipient tissue or organs. Due to their biological properties, exosomes have better organotropism, homing capacity, cellular uptake and cargo release ability than other synthetic nano-drug carriers such as liposomes, micelles and nanogels. The secretion of tumor-derived exosomes is increased in the hypoxic and acidic tumor microenvironment, which can be used as a target for nontoxic and nonimmunogenic drug delivery vehicles for various cancers. Moreover, exosomes have the potential to carry both hydrophilic and hydrophobic chemotherapeutic drugs, bypass RES effect and bypass BBB. Exosomes can be isolated from other types of EVs and cell debris based on their size, density and specific surface proteins through ultracentrifugation, density gradient separation, precipitation, immunoaffinity interaction and gel filtration. Drugs can be loaded into exosomes at the biogenesis stage or with the isolated exosomes by incubation, electroporation, extrusion or sonication methods. Finally, exosomal cargo vehicles can be characterized by ultrastructural microscopic analysis. In this review we intend to summarize the inception, structure and function of the exosomes, role of exosomes in immunological regulation and cancer, methods of isolation and characterization of exosomes and products under clinical trials. This review will provide an inclusive insight of exosomes in drug delivery.

REFERENCES
  1. Sriraman S, Aryasomayajula B, Torchilin V. Barriers to drug delivery in solid tumors. Tissue Barriers. 2014;2:e29528.

  2. Lucas AT, Price LS, Schorzman A, Zamboni WC. Complex effects of tumor microenvironment on the tumor disposition of carrier-mediated agents. Nanomedicine. 2017;12(16):2021-42.

  3. Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi-Niaragh F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett. 2017 Oct;190:64-83. PubMed PMID: 28760499. Epub 2017/08/02. eng.

  4. Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol. 2018;46(Suppl 2):295-305.

  5. Hartshorn CM, Bradbury MS, Lanza GM, Nel AE, Rao J, Wang AZ, Wiesner UB, Yang L, Grodzinski P. Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano. 2018;12(1):24-43.

  6. Shegokar R, Athawale R, Kurup N, Yang R, Chougule MB. Lipid-based nanoparticles for targeted drug delivery of anticancer drug. In: Mishra V, Kesharwani P, Amin MCIM, Iyer A, editors. Nanotechnology-based approaches for targeting and delivery of drugs and genes. New York: Elsevier; 2017. p. 287-321.

  7. Patel AR, Chougule MB, Lim E, Francis KP, Safe S, Singh M. Theranostic tumor homing nanocarriers for the treatment of lung cancer. Nanomedicine. 2014 Jul;10(5):1053-63. PubMed PMID: 24355163. PMCID: PMC4061286. Epub 2013/12/21. eng.

  8. Boakye CH, Patel K, Doddapaneni R, Bagde A, Marepally S, Singh M. Novel amphiphilic lipid augments the co-delivery of erlotinib and IL36 siRNA into the skin for psoriasis treatment. J Control Release. 2017;246:120-32.

  9. Ferdous AJ, Stembridge NY, Singh M. Role of monensin PLGA polymer nanoparticles and liposomes as potentiator of ricin A immunotoxins in vitro. J Control Release. 1998;50(1-3):71-8.

  10. Hedrick E, Lee S-O, Doddapaneni R, Singh M, Safe S. Nuclear receptor 4A1 as a drug target for breast cancer chemotherapy. Endocr Relat Cancer. 2015;22(5):831-40.

  11. Kommineni N, Mahira S, Domb AJ, Khan W. Cabazitaxel-loaded nanocarriers for cancer therapy with reduced side effects. Pharmaceutics. 2019;11(3):141.

  12. Patel K, Chowdhury N, Doddapaneni R, Boakye CH, Godugu C, Singh M. Piperlongumine for enhancing oral bioavailability and cytotoxicity of docetaxel in triple-negative breast cancer. J Pharm Sci. 2015;104(12):4417-26.

  13. Kommineni N, Saka R, Bulbake U, Khan W. Cabazitaxel and thymoquinone co-loaded lipospheres as a synergistic combination for breast cancer. Chem Phys Lipids. 2019;224:104707.

  14. Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med. 2017 Aug;14(3):228-41. PubMed PMID: 28884040. PMCID: PMC5570600. Epub 2017/09/09. eng.

  15. Patel K, Doddapaneni R, Chowdhury N, Boakye CH, Behl G, Singh M. Tumor stromal disrupting agent enhances the anticancer efficacy of docetaxel loaded PEGylated liposomes in lung cancer. Nanomedicine. 2016 Jun;11(11):1377-92. PubMed PMID: 27171485. PMCID: PMC4910941. Epub 2016/05/14. eng.

  16. Chowdhury N, Vhora I, Patel K, Doddapaneni R, Mondal A, Singh M. Liposomes co-loaded with 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) shRNA plasmid and docetaxel for the treatment of non-small cell lung cancer. Pharm Res. 2017;34(11):2371-84.

  17. Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev. 2018 May;130:17-38. PubMed PMID: 30009886. PMCID: PMC6130746. Epub 2018/07/17. eng.

  18. Gulati M, Grover M, Singh M, Singh S. Study of azathioprine encapsulation into liposomes. J Microencapsul. 1998 Jul-Aug;15(4):485-94. PubMed PMID: 9651870. Epub 1998/07/04. eng.

  19. Andey T, Sudhakar G, Marepally S, Patel A, Banerjee R, Singh M. Lipid nanocarriers of a lipid-conjugated estrogenic derivative inhibit tumor growth and enhance cisplatin activity against triple-negative breast cancer: Pharmacokinetic and efficacy evaluation. Mol Pharm. 2015 Apr 6;12(4):1105-20. PubMed PMID: 25661724. Epub 2015/02/11. eng.

  20. Patel AR, Chougule MB, I T, Patlolla R, Wang G, Singh M. Efficacy of aerosolized celecoxib encapsulated nanostructured lipid carrier in non-small cell lung cancer in combination with docetaxel. Pharm Res. 2013 May;30(5): 1435-46. PubMed PMID: 23361589. PMCID: PMC3618607. Epub 2013/01/31. eng.

  21. Tekade RK, Maheshwari R, Soni N, Tekade M, Chougule MB. Nanotechnology for the development of nanomedicine. In: Mishra V, Kesharwani P, Amin MCIM, Iyer A, editors. Nanotechnology-based approaches for targeting and delivery of drugs and genes. New York: Elsevier; 2017. p. 3-61.

  22. Boakye CH, Patel K, Singh M. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers. Int J Pharm. 2015;489(1-2):106-16.

  23. Griffin T, Rybak ME, Recht L, Singh M, Salimi A, Raso V. Potentiation of antitumor immunotoxins by liposomal monensin. J Natl Cancer Inst. 1993 Feb 17;85(4):292-8. PubMed PMID: 8426373. Epub 1993/02/17. eng.

  24. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373-87.

  25. Bale S, Khurana A, Reddy AS, Singh M, Godugu C. Overview on therapeutic applications of microparticulate drug delivery systems. Crit Rev Ther Drug Carrier Syst. 2016;33(4):309-61. PubMed PMID: 27910739. Epub 2016/12/03. eng.

  26. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291-309. PubMed PMID: 29042776. PMCID: PMC5634382. Epub 2017/10/19. eng.

  27. Pathade AD, Kommineni N, Bulbake U, Thummar MM, Samanthula G, Khan W. Preparation and comparison of oral bioavailability for different nano-formulations of Olaparib. AAPS PharmSciTech. 2019 Aug 6;20(7):276. PubMed PMID: 31388783. Epub 2019/08/08. eng.

  28. Alphandery E. Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Nanotoxicology. 2019;13(5):573-96.

  29. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016 Apr 1;99(Pt A):28-51. PubMed PMID: 26456916. PMCID: PMC4798869. Epub 2015/10/13. eng.

  30. Doddapaneni R, Patel K, Owaid IH, Singh M. Tumor neovasculature-targeted cationic PEGylated liposomes of gambogic acid for the treatment of triple-negative breast cancer. Drug Deliv. 2016 May;23(4):1232-41. PubMed PMID: 26701717. PMCID: PMC5024788. Epub 2015/12/25. eng.

  31. Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems. New York: Springer; 2016. p. 33-93.

  32. Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm Sin B. 2016 Jul;6(4):287-96. PubMed PMID: 27471669. PMCID: PMC4951582. Epub 2016/07/30. eng.

  33. Conlan RS, Pisano S, Oliveira MI, Ferrari M, Mendes Pinto I. Exosomes as reconfigurable therapeutic systems. Trends Mol Med. 2017 Jul;23(7):636-50. PubMed PMID: 28648185. PMCID: PMC5657340. Epub 2017/06/27. eng.

  34. Singh M, Ghose T, Faulkner G, Kralovec J, Mezei M. Targeting of methotrexate-containing liposomes with a monoclonal antibody against human renal cancer. Cancer Res. 1989;49(14):3976-84.

  35. Ashfaq UA, Riaz M, Yasmeen E, Yousaf MZ. Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit Rev Ther Drug Carrier Syst. 2017;34(4):317-53.

  36. Desai P, Ann D, Wang J, Prabhu S. Pancreatic cancer: Recent advances in nanoformulation-based therapies. Crit Rev Ther Drug Carrier Syst. 2019;36(1):59-91.

  37. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019 Jul 15;8(7):727. PubMed PMID: 31311206. PMCID: PMC6678302. Epub 2019/07/18. eng.

  38. Javeed N, Mukhopadhyay D. Exosomes and their role in the micro-/macro-environment: A comprehensive review. J Biomed Res. 2017 Sep 26;31(5):386-94. PubMed PMID: 28290182. PMCID: PMC5706431. Epub 2017/03/16. eng.

  39. Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics. 2018 Nov 6;10(4):218. PubMed PMID: 30404188. PMCID: PMC6321407. Epub 2018/11/09. eng.

  40. Bobrie A, Colombo M, Raposo G, Thery C. Exosome secretion: Molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659-68.

  41. De Toro J, Herschlik L, Waldner C, Mongini C. Emerging roles of exosomes in normal and pathological conditions: New insights for diagnosis and therapeutic applications. Front Immunol. 2015;6:203.

  42. Vazquez-Rios AJ, Molina-Crespo A, Bouzo BL, Lopez-Lopez R, Moreno-Bueno G, de la Fuente M. Exosome-mimetic nanoplatforms for targeted cancer drug delivery. J Nanobiotechnology. 2019;17(1):85.

  43. Nguyen DB, Ly TBT, Wesseling MC, Hittinger M, Torge A, Devitt A, Perrie Y, Bernhardt I. Characterization of microvesicles released from human red blood cells. Cell Physiol Biochem. 2016;38(3):1085-99.

  44. Sun D, Zhuang X, Zhang S, Deng ZB, Grizzle W, Miller D, Zhang HG. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv Drug Deliv Rev. 2013 Mar;65(3):342-7. PubMed PMID: 22776312. Epub 2012/07/11. eng.

  45. Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iqbal HMN. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules. 2019 Mar 21;24(6):1117. PubMed PMID: 30901827. PMCID: PMC6470858. Epub 2019/03/25. eng.

  46. Akuma P, Okagu OD, Udenigwe CC. Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Front Sustain Food Syst. 2019;3:23.

  47. Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, Daugaard M, Guns E, Hoorfar M, Li ITS. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019 Mar;3(1):011503. PubMed PMID: 31069333. PMCID: PMC6481742. Epub 2019/05/10. eng.

  48. H Rashed M, Bayraktar E, K Helal G, Abd-Ellah MF, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C. Exosomes: From garbage bins to promising therapeutic targets. Int J Mol Sci. 2017;18(3):538.

  49. Dreyer F, Baur A. Biogenesis and functions of exosomes and extracellular vesicles. Methods Mol Biol. 2016;1448:201-16. PubMed PMID: 27317183. Epub 2016/06/19. eng.

  50. McAndrews KM, Kalluri R. Mechanisms associated with biogenesis of exosomes in cancer. Mol Cancer. 2019 Mar 30;18(1):52. PubMed PMID: 30925917. PMCID: PMC6441149. Epub 2019/03/31. eng.

  51. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018 Jan;75(2):193-208. PubMed PMID: 28733901. PMCID: PMC5756260. Epub 2017/07/25. eng.

  52. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193-208.

  53. Tetta C, Ghigo E, Silengo L, Deregibus MC, Camussi G. Extracellular vesicles as an emerging mechanism of cell-to-cell communication. Endocrine. 2013;44(1):11-9.

  54. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19. PubMed PMID: 30815248. PMCID: PMC6377728. Epub 2019/03/01. eng.

  55. Record M. Intercellular communication by exosomes in placenta: A possible role in cell fusion? Placenta. 2014;35(5):297-302.

  56. Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernandez-Delgado I, Torralba D, Moreno-Gonzalo O, Baldanta S, Enrich C, Guerra S, Sanchez-Madrid F. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7(1):1-11.

  57. Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;188:1-11.

  58. Abels ER, Breakefield XO. Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Springer; 2016.

  59. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Thery C, Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(24):5553-65.

  60. Frankel EB, Audhya A. ESCRT-dependent cargo sorting at multivesicular endosomes. Semin Cell Dev Biol. 2018 Feb;74:4-10. PubMed PMID: 28797838. PMCID: PMC5803488. Epub 2017/08/12.eng.

  61. Schmidt O, Teis D. The ESCRT machinery. Curr Biol. 2012 Feb 21;22(4):R116-20. PubMed PMID: 22361144. PMCID: PMC3314914. Epub 2012/03/01. eng.

  62. Mattissek C, Teis D. The role of the endosomal sorting complexes required for transport (ESCRT) in tumorigenesis. Mol Membr Biol. 2014 Jun;31(4): 111-9. PubMed PMID: 24641493. PMCID: PMC4059258. Epub 2014/03/20. eng.

  63. Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol. 2011;23(4):452-7.

  64. Van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G. The tetraspanin CD63 regulates ESCRT-independent and-dependent endosomal sorting during melanogenesis. Dev Cell. 2011;21(4):708-21.

  65. Li S-P, Lin Z-X, Jiang X-Y, Yu X-Y. Exosomal cargo-loading and synthetic exosomemimics as potential therapeutic tools. Acta Pharmacol Sin. 2018;39(4):542-51.

  66. Aung T, Chapuy B, Vogel D, Wenzel D, Oppermann M, Lahmann M, Weinhage T, Menck K, Hupfeld T, Koch R. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci U S A. 2011;108(37):15336-41.

  67. Aung T, Chapuy B, Vogel D, Wenzel D, Oppermann M, Lahmann M, Weinhage T, Menck K, Hupfeld T, Koch R, Trumper L, Wulf GG. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15336-41. PubMed PMID: 21873242. PMCID: PMC3174603. Epub 2011/08/30. eng.

  68. de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M. Lipid raft-associated protein sorting in exosomes. Blood. 2003;102(13):4336-44.

  69. Allen JA, Halverson-Tamboli RA, Rasenick MM. Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci. 2007;8(2):128-40.

  70. Joshi BS, de Beer MA, Giepmans BN, Zuhorn IS. Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS Nano. 2020;14(4):4444-55.

  71. Van Niel G, d'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213.

  72. Koles K, Nunnari J, Korkut C, Barria R, Brewer C, Li Y, Leszyk J, Zhang B, Budnik V. Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J Biol Chem. 2012;287(20):16820-34.

  73. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19-30.

  74. Edgar JR, Manna PT, Nishimura S, Banting G, Robinson MS. Tetherin is an exosomal tether. Elife. 2016;5:e17180.

  75. Verweij FJ, Bebelman MP, Jimenez CR, Garcia-Vallejo JJ, Janssen H, Neefjes J, Knol JC, de Goeijde Haas R, Piersma SR, Baglio SR, Verhage M, Middeldorp JM, Zomer A, van Rheenen J, Coppolino MG, Hurbain I, Raposo G, Smit MJ, Toonen RFG, van Niel G, Pegtel DM. Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J Cell Biol. 2018 Mar 5;217(3):1129-42. PubMed PMID: 29339438. PMCID: PMC5839777. Epub 2018/01/18. eng.

  76. Mobius W, Ohno-Iwashita Y, Donselaar EGv, Oorschot VM, Shimada Y, Fujimoto T, Heijnen HF, Geuze HJ, Slot JW. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J Histochem Cytochem. 2002;50(1):43-55.

  77. Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SE, Vader P. Extracellular vesicles as drug delivery systems: Why and how? Adv Drug Deliv Rev. 2020;159:332-43.

  78. Verdera HC, Gitz-Francois JJ, Schiffelers RM, Vader P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release. 2017;266:100-8.

  79. Escrevente C, Keller S, Altevogt P, Costa J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer. 2011;11(1):108.

  80. Goh WJ, Zou S, Ong WY, Torta F, Alexandra AF, Schiffelers RM, Storm G, Wang J-W, Czarny B, Pastorin G. Bioinspired cell-derived nanovesicles versus exosomes as drug delivery systems: A cost-effective alternative. Sci Rep. 2017;7(1):1-10.

  81. Tian T, Wang Y, Wang H, Zhu Z, Xiao Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem. 2010;111(2):488-96.

  82. Svensson KJ, Christianson HC, Wittrup A, Bourseau-Guilmain E, Lindqvist E, Svensson LM, Morgelin M, Belting M. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem. 2013;288(24):17713-24.

  83. Thery C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569-79.

  84. Reddy VS, Madala SK, Trinath J, Reddy GB. Extracellular small heat shock proteins: Exosomal bio-genesis and function. Cell Stress Chaperones. 2018;23(3):441-54.

  85. Shimaoka M, Kawamoto E, Gaowa A, Okamoto T, Park EJ. Connexins and integrins in exo-somes. Cancers. 2019 Jan 17;11(1):106. PubMed PMID: 30658425. PMCID: PMC6356207. Epub 2019/01/20. eng.

  86. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14(3):195-208.

  87. Hsu C, Morohashi Y, Yoshimura S-I, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Granborg M, Mobius W, Rhee J. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol. 2010;189(2):223-32.

  88. Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases. 2018;9(1-2):95-106.

  89. Skotland T, Hessvik NP, Sandvig K, Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res. 2019;60(1):9-18.

  90. Meckes DG, Shair KH, Marquitz AR, Kung C-P, Edwards RH, Raab-Traub N. Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A. 2010;107(47): 20370-5.

  91. Meckes DG, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci U S A. 2013;110(31):E2925-E33.

  92. Zhang B, Gao L, Ma L, Luo Y, Yang H, Cui Z. 3D Bioprinting: A novel avenue for manufacturing tissues and organs. Engineering. 2019;5:777-94.

  93. Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics. 2018;10(4):218. PubMed PMID: 30404188. eng.

  94. Su S-A, Xie Y, Fu Z, Wang Y, Wang J-A, Xiang M. Emerging role of exosome-mediated intercellular communication in vascular remodeling. Oncotarget. 2017;8(15):25700.

  95. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, Fissell WH, Patton JG, Rome LH, Burnette DT, Coffey RJ. Reassessment of exo-some composition. Cell. 2019;177(2):428-45.e18. PubMed PMID: 30951670. eng.

  96. Bruschi M, Ravera S, Santucci L, Candiano G, Bartolucci M, Calzia D, Lavarello C, Inglese E, Petretto A, Ghiggeri G. The human urinary exosome as a potential metabolic effector cargo. Exp Rev Proteomics. 2015;12(4):425-32.

  97. Beach A, Zhang H-G, Ratajczak MZ, Kakar SS. Exosomes: An overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res. 2014;7(1):14.

  98. Lin J, Li J, Huang B, Liu J, Chen X, Chen X-M, Xu Y-M, Huang L-F, Wang X-Z. Exosomes: Novel biomarkers for clinical diagnosis. Sci World J. 2015;2015.

  99. Mathivanan S, Simpson RJ. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics. 2009;9(21):4997-5000.

  100. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820(7):940-8.

  101. Carayon K, Chaoui K, Ronzier E, Lazar I, Bertrand-Michel J, Roques V, Balor S, Terce F, Lopez A, Salome L. Proteolipidic composition of exosomes changes during reticulocyte maturation. J Biol Chem. 2011;286(39):34426-39.

  102. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9(1):1-18.

  103. Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: From biogenesis and secretion to biological function. Immunol Lett. 2006;107(2):102-8.

  104. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126(4):1208-15.

  105. Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: Current perspectives. Proteomics. 2008 0ct;8(19):4083-99. PubMed PMID: 18780348. Epub 2008/09/10. eng.

  106. Properzi F, Logozzi M, Fais S. Exosomes: The future of biomarkers in medicine. Biomark Med. 2013 Oct;7(5):769-78. PubMed PMID: 24044569. Epub 2013/09/21. eng.

  107. Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin L, Futreal A, Kalluri R. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014 Feb 14;289(7):3869-75. PubMed PMID: 24398677. PMCID: PMC3924256. Epub 2014/01/09. eng.

  108. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654-9. PubMed PMID: 17486113. Epub 2007/05/09. eng.

  109. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: Important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006 Sep;20(9):1487-95. PubMed PMID: 16791265. Epub 2006/06/23. eng.

  110. Ferguson S, Kim S, Lee C, Deci M, Nguyen J. The phenotypic effects of exosomes secreted from distinct cellular sources: A comparative study based on miRNA composition. AAPS J. 2018;20(4):67.

  111. Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE. Bovine milk exosome proteome. J Proteomics. 2012 Feb 16;75(5):1486-92. PubMed PMID: 22129587. Epub 2011/12/02. eng.

  112. Izumi H, Tsuda M, Sato Y, Kosaka N, Ochiya T, Iwamoto H, Namba K, Takeda Y. Bovine milk exo-somes contain microRNA and mRNA and are taken up by human macrophages. J Dairy Sci. 2015 May;98(5):2920-33. PubMed PMID: 25726110. Epub 2015/03/03. eng.

  113. Agrawal AK, Aqil F, Jeyabalan J, Spencer WA, Beck J, Gachuki BW, Alhakeem SS, Oben K, Munagala R, Bondada S. Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine. 2017;13(5):1627-36.

  114. Chen T, Xie M-Y, Sun J-J, Ye R-S, Cheng X, Sun R-P, Wei L-M, Li M, Lin D-L, Jiang Q-Y. Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells. Sci Rep. 2016;6:33862.

  115. Masyuk AI, Huang BQ, Ward CJ, Gradilone SA, Banales JM, Masyuk TV, Radtke B, Splinter PL, LaRusso NF. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol. 2010 Oct;299(4):G990-9. PubMed PMID: 20634433. PMCID: PMC2957333. Epub 2010/07/17. eng.

  116. Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol. 2018;6:18. PubMed PMID: 29515996. PMCID: PMC5826063. Epub 2018/03/09. eng.

  117. Wan Z, Gao X, Dong Y, Zhao Y, Chen X, Yang G, Liu L. Exosome-mediated cell-cell communication in tumor progression. Am J Cancer Res. 2018;8(9):1661-73. PubMed PMID: 30323961. PMCID: PMC6176174. Epub 2018/10/17. eng.

  118. Wang S, Xu M, Li X, Su X, Xiao X, Keating A, Zhao RC. Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties. J Hematol Oncol. 2018 Jun 14;11(1):82. PubMed PMID: 29898759. PMCID: PMC6001126. Epub 2018/06/15. eng.

  119. Campanella C, Rappa F, Sciume C, Marino Gammazza A, Barone R, Bucchieri F, David S, Curcuru G, Caruso Bavisotto C, Pitruzzella A, Geraci G, Modica G, Farina F, Zummo G, Fais S, Conway de Macario E, Macario AJ, Cappello F. Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer. 2015 Sep 15;121(18):3230-9. PubMed PMID: 26060090. Epub 2015/06/11. eng.

  120. Purushothaman A, Bandari SK, Liu J, Mobley JA, Brown EE, Sanderson RD. Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. J Biol Chem. 2016 Jan 22;291(4):1652-63. PubMed PMID: 26601950. PMCID: PMC4722448. Epub 2015/11/26. eng.

  121. Wu C, Du S, Zhang J, Liang A, Liu Y. Exosomes and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Cancer Gene Ther. 2017;24(1):6-12.

  122. van Dommelen SM, Vader P, Lakhal S, Kooijmans SA, van Solinge WW, Wood MJ, Schiffelers RM. Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery. J Control Release. 2012 Jul 20;161(2):635-44. PubMed PMID: 22138068. Epub 2011/12/06. eng.

  123. Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I, Buzas EI, Lotvall J. Distinct RNA profiles in subpopulations of extracellular vesicles: Apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2. PubMed PMID: 24223256. PMCID: PMC3823106. Epub 2013/11/14. eng.

  124. Abels ER, Breakefield XO. Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016 Apr;36(3):301-12. PubMed PMID: 27053351. PMCID: PMC5546313. Epub 2016/04/08. eng.

  125. Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017 Jun;38(6):754-63. PubMed PMID: 28392567. PMCID: PMC5520184. Epub 2017/04/11. eng.

  126. Li S, Li S, Wu S, Chen L. Exosomes modulate the viral replication and host immune responses in HBV infection. Biomed Res Int. 2019;2019.

  127. Behbahani GD, Khani S, Hosseini HM, Abbaszadeh-Goudarzi K, Nazeri S. The role of exosomes contents on genetic and epigenetic alterations of recipient cancer cells. Iran J Basic Med Sci. 2016 Oct;19(10):1031-9. PubMed PMID: 27872698. PMCID: PMC5110650. Epub 2016/11/23. eng.

  128. Liu W, Bai X, Zhang A, Huang J, Xu S, Zhang J. Role of exosomes in central nervous system diseases. Front Mol Neurosci. 2019;12:240. PubMed PMID: 31636538. PMCID: PMC6787718. Epub 2019/10/23. eng.

  129. Desdin-Mico G, Mittelbrunn M. Role of exosomes in the protection of cellular homeostasis. Cell Adh Migr. 2017 Mar 4;11(2):127-34. PubMed PMID: 27875097. PMCID: PMC5351736. Epub 2016/11/23. eng.

  130. Pascual M, Ibanez F, Guerri C. Exosomes as mediators of neuron-glia communication in neuroinflammation. Neural Regen Res. 2020 May;15(5):796-801. PubMed PMID: 31719239. PMCID: PMC6990780. Epub 2019/11/14. eng.

  131. Men Y, Yelick J, Jin S, Tian Y, Chiang MSR, Higashimori H, Brown E, Jarvis R, Yang Y. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat Commun. 2019;10(1):1-18.

  132. Salem ESB, Fan GC. Pathological effects of exosomes in mediating diabetic cardiomyopathy. Adv Exp Med Biol. 2017;998:113-38. PubMed PMID: 28936736. PMCID: PMC6205207. Epub 2017/09/25. eng.

  133. Wang L, Zhang B, Zheng W, Kang M, Chen Q, Qin W, Li C, Zhang Y, Shao Y, Wu Y. Exosomes derived from pancreatic cancer cells induce insulin resistance in C2C12 myotube cells through the PI3K/Akt/FoxO1 pathway. Sci Rep. 2017 Jul 14;7(1):5384. PubMed PMID: 28710412. PMCID: PMC5511275. Epub 2017/07/16. eng.

  134. Ibrahim A, Marban E. Exosomes: Fundamental biology and roles in cardiovascular physiology. Annu Rev Physiol. 2016;78:67-83. PubMed PMID: 26667071. PMCID: PMC5425157. Epub 2015/12/17. eng.

  135. Rodriguez M, Bajo-Santos C, Hessvik NP, Lorenz S, Fromm B, Berge V, Sandvig K, Line A, Llorente A. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer. 2017;16(1):156.

  136. Zhou H, Cheruvanky A, Hu X, Matsumoto T, Hiramatsu N, Cho ME, Berger A, Leelahavanichkul A, Doi K, Chawla LS. Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int. 2008;74(5):613-21.

  137. Jiang Z-Z, Liu Y-M, Niu X, Yin J-Y, Hu B, Guo S-C, Fan Y, Wang Y, Wang N-S. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther. 2016;7(1):24.

  138. Du M, Shi D, Yuan L, Li P, Chu H, Qin C, Yin C, Zhang Z, Wang M. Circulating miR-497 and miR-663b in plasma are potential novel biomarkers for bladder cancer. Sci Rep. 2015;5:10437.

  139. Gracia T, Wang X, Su Y, Norgett EE, Williams TL, Moreno P, Micklem G, Frankl FEK. Urinary exo-somes contain microRNAs capable of paracrine modulation of tubular transporters in kidney. Sci Rep. 2017;7(1):1-11.

  140. Barros ER, Carvajal CA. Urinary exosomes and their cargo: Potential biomarkers for mineralocorticoid arterial hypertension? Front Endocrinol. 2017;8:230.

  141. Salem ES, Fan G-C. Pathological effects of exosomes in mediating diabetic cardiomyopathy. Exosomes in Cardiovascular Diseases: Springer; 2017. p. 113-38.

  142. Yuyama K, Igarashi Y. Physiological and pathological roles of exosomes in the nervous system. Biomol Concepts. 2016;7(1):53-68.

  143. Dang SY, Leng Y, Wang ZX, Xiao X, Zhang X, Wen T, Gong HZ, Hong A, Ma Y. Exosomal transfer of obesity adipose tissue for decreased miR-141-3p mediate insulin resistance of hepatocytes. Int J Biol Sci. 2019;15(2):351-68. PubMed PMID: 30745826. PMCID: PMC6367552. Epub 2019/02/13. eng.

  144. Ge Q, Xie XX, Xiao X, Li X. Exosome-like vesicles as new mediators and therapeutic targets for treating insulin resistance and P-cell mass failure in type 2 diabetes mellitus. J Diabetes Res. 2019:3256060. PubMed PMID: 30993115. PMCID: PMC6434285. Epub 2019/04/18. eng.

  145. Deng Z-B, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, Wang J, Xiang X, Zhang S, Zhuang X. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes. 2009;58(11):2498-505.

  146. Zhang W, Jiang X, Bao J, Wang Y, Liu H, Tang L. Exosomes in pathogen infections: A bridge to deliver molecules and link functions. Front Immunol. 2018;9:90. PubMed PMID: 29483904. PMCID: PMC5816030. Epub 2018/02/28. eng.

  147. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014 Mar;14(3):195-208. PubMed PMID: 24566916. PMCID: PMC4350779. Epub 2014/02/26. eng.

  148. Shenoda BB, Ajit SK. Modulation of immune responses by exosomes derived from antigen-presenting cells. Clin Med Insights Pathol. 2016;9(Suppl 1):1-8. PubMed PMID: 27660518. PMCID: PMC5024790. Epub 2016/09/24. eng.

  149. Shenoda BB, Ajit SK. Modulation of immune responses by exosomes derived from antigen-presenting cells. Clin Med Insights Pathol. 2016;9:CPath. S39925.

  150. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373-83.

  151. Li Q, Wang H, Peng H, Huyan T, Cacalano NA. Exosomes: Versatile nano mediators of immune regulation. Cancers. 2019 Oct 14;11(10). PubMed PMID: 31615107. PMCID: PMC6826959. Epub 2019/10/17. eng.

  152. Han Q, Zhao H, Jiang Y, Yin C, Zhang J. HCC-derived exosomes: Critical player and target for cancer immune escape. Cells. 2019 Jun 8;8(6):558. PubMed PMID: 31181729. PMCID: PMC6627799. Epub 2019/06/12. eng.

  153. Bae S, Brumbaugh J, Bonavida B. Exosomes derived from cancerous and non-cancerous cells regulate the anti-tumor response in the tumor microenvironment. Genes Cancer. 2018 Mar;9(3-4):87-100. PubMed PMID: 30108680. PMCID: PMC6086005. Epub 2018/08/16. eng.

  154. Rao Q, Zuo B, Lu Z, Gao X, You A, Wu C, Du Z, Yin H. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology. 2016;64(2):456-72.

  155. Poggio M, Hu T, Pai C-C, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 2019;177(2):414-27. e13.

  156. Gabrilovich DI, Ciernik IF, Carbone DP. Dendritic cells in antitumor immune responses: I. Defective antigen presentation in tumor-bearing hosts. Cell Immunol. 1996;170(1):101-10.

  157. Andre F, Chaput N, Schartz NE, Flament C, Aubert N, Bernard J, Lemonnier F, Raposo G, Escudier B, Hsu D-H. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol. 2004; 172(4): 2126-36.

  158. Chaput N, Schartz NE, Andre F, Taieb J, Novault S, Bonnaventure P, Aubert N, Bernard J, Lemonnier F, Merad M. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. J Immunol. 2004;172(4):2137-46.

  159. Taieb J, Chaput N, Schartz N, Roux S, Novault S, Menard C, Ghiringhelli F, Terme M, Carpentier AF, Darrasse-Jese G. Chemoimmunotherapy of tumors: Cyclophosphamide synergizes with exosome based vaccines. J Immunol. 2006;176(5):2722-9.

  160. Pitt JM, Andre F, Amigorena S, Soria J-C, Eggermont A, Kroemer G, Zitvogel L. Dendritic cell-derived exosomes for cancer therapy. J Clin Invest. 2016;126(4):1224-32.

  161. Escudier B, Dorval T, Chaput N, Andre F, Caby M-P, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: Results of thefirst phase I clinical trial. J Transl Med. 2005;3(1):10.

  162. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell derived exosomes. Nat Med. 1998;4(5):594-600.

  163. Tian K, Bae J, Bakarich SE, Yang C, Gately RD, Spinks GM, in het Panhuis M, Suo Z, Vlassak JJ. 3D printing of transparent and conductive heterogeneous hydrogel-elastomer systems. Adv Mater. 2017;29(10):1604827.

  164. Lancaster GI, Febbraio MA. Exosome-dependent trafficking of HSP70 a novel secretory pathway for cellular stress proteins. J Biol Chem. 2005;280(24):23349-55.

  165. Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, Takasugi M, Watanabe S, Kanemaki MT, Obuse C, Hara E. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun. 2017 May 16;8:15287. PubMed PMID: 28508895. PMCID: PMC5440838. Epub 2017/05/17. eng.

  166. Rodrigues M, Fan J, Lyon C, Wan M, Hu Y. Role of extracellular vesicles in viral and bacterial infections: Pathogenesis, diagnostics, and therapeutics. Theranostics. 2018;8(10):2709-21. PubMed PMID: 29774070. PMCID: PMC5957004. Epub 2018/05/19. eng.

  167. Oggero S, Austin-Williams S, Norling LV. The contrasting role of extracellular vesicles in vascular inflammation and tissue repair. Front Pharmacol. 2019;10:1479.

  168. Arneth B. Tumor microenvironment. Medicina. 2019 Dec 30;56(1):15. PubMed PMID: 31906017. PMCID: PMC7023392. Epub 2020/01/08. eng.

  169. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018 May;24(5):541-50. PubMed PMID: 29686425. PMCID: PMC5998822. Epub 2018/04/25. eng.

  170. Whiteside TL. Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem. 2016;74:103-41. PubMed PMID: 27117662. PMCID: PMC5382933. Epub 2016/04/28. eng.

  171. Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Rev. 2013;32(3):623-42.

  172. Osaki M, Okada F. Exosomes and their role in cancer progression.YonagoActa Med. 2019;62(2):182-90.

  173. Gluszko A, Mirza SM, Piszczatowska K, Kantor I, Struga M, Szczepanski MJ. The role of tumor-derived exosomes in tumor angiogenesis and tumor progression. Curr Issues Pharm Med Sci. 2019;32(4):193-202.

  174. An T, Qin S, Xu Y, Tang Y, Huang Y, Situ B, Inal JM, Zheng L. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles. 2015;4(1):27522.

  175. Corcoran C, Rani S, O'Brien K, O'Neill A, Prencipe M, Sheikh R, Webb G, McDermott R, Watson W, Crown J, O'Driscoll L. Docetaxel-resistance in prostate cancer: Evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One. 2012;7(12):e50999. PubMed PMID: 23251413. PMCID: PMC3519481. Epub 2012/12/20. eng.

  176. Wu M, Wang G, Hu W, Yao Y, Yu XF. Emerging roles and therapeutic value of exosomes in cancer metastasis. Mol Cancer. 2019 Mar 30;18(1):53. PubMed PMID: 30925925. PMCID: PMC6441156. Epub 2019/03/31. eng.

  177. Fang JH, Zhang ZJ, Shang LR, Luo YW, Lin YF, Yuan Y, Zhuang SM. Hepatoma cell-secreted exo-somal microRNA-103 increases vascular permeability and promotes metastasis by targeting junction proteins. Hepatology. 2018 Oct;68(4):1459-75. PubMed PMID: 29637568. Epub 2018/04/11. eng.

  178. Xie J-Y, Wei J-X, Lv L-H, Han Q-F, Yang W-B, Li G-L, Wang P-X, Wu S-B, Duan J-X, Zhuo W-F. Angiopoietin-2 induces angiogenesis via exosomes in human hepatocellular carcinoma. Cell Commun Signal. 2020;18(1):1-13.

  179. Ko SY, Lee W, Kenny HA, Dang LH, Ellis LM, Jonasch E, Lengyel E, Naora H. Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Commun Biol. 2019;2(1):1-17.

  180. Achreja A, Zhao H, Yang L, Yun TH, Marini J, Nagrath D. Exo-MFA-a 13C metabolic flux analysis framework to dissect tumor microenvironment-secreted exosome contributions towards cancer cell metabolism. Metab Engineer. 2017;43:156-72.

  181. Languino LR, Singh A, Prisco M, Inman GJ, Luginbuhl A, Curry JM, South AP. Exosome-mediated transfer from the tumor microenvironment increases TGFp signaling in squamous cell carcinoma. Am J Transl Res. 2016;8(5):2432.

  182. Wu Q, Zhou L, Lv D, Zhu X, Tang H. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J Hematol Oncol. 2019;12(1):53.

  183. Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife. 2016;5:e10250.

  184. Meng W, Hao Y, He C, Li L, Zhu G. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer. 2019;18(1):57.

  185. Wu Q, Zhou L, Lv D, Zhu X, Tang H. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J Hematol Oncol. 2019 May 29;12(1):53. PubMed PMID: 31142326. PMCID: PMC6542024. Epub 2019/05/31. eng.

  186. Armstrong JP, Stevens MM. Strategic design of extracellular vesicle drug delivery systems. Adv Drug Deliv Rev. 2018;130:12-6.

  187. Bell BM, Kirk ID, Hiltbrunner S, Gabrielsson S, Bultema JJ. Designer exosomes as next-generation cancer immunotherapy. Nanomedicine. 2016;12(1):163-9.

  188. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release. 2015;207:18-30.

  189. Pascucci L, Cocce V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Vigano L, Locatelli A, Sisto F, Doglia SM, Parati E, Bernardo ME, Muraca M, Alessandri G, Bondiolotti G, Pessina A. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J Control Release. 2014 Oct 28;192:262-70. PubMed PMID: 25084218. Epub 2014/08/02. eng.

  190. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010 Sep;18(9):1606-14. PubMed PMID: 20571541. PMCID: PMC2956928. Epub 2010/06/24. eng.

  191. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011 0ct;19(10):1769-79. PubMed PMID: 21915101. PMCID: PMC3188748. Epub 2011/09/15. eng.

  192. Goh WJ, Lee CK, Zou S, Woon EC, Czarny B, Pastorin G. Doxorubicin-loaded cell-derived nanovesicles: An alternative targeted approach for anti-tumor therapy. Int J Nanomedicine. 2017;12:2759-67. PubMed PMID: 28435256. PMCID: PMC5388236. Epub 2017/04/25. eng.

  193. Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release. 2015 May 10;205:35-44. PubMed PMID: 25483424. Epub 2014/12/09. eng.

  194. Didiot MC, Hall LM, Coles AH, Haraszti RA, Godinho BM, Chase K, Sapp E, Ly S, Alterman JF, Hassler MR, Echeverria D, Raj L, Morrissey DV, DiFiglia M, Aronin N, Khvorova A. Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Mol Ther. 2016 Oct;24(10):1836-47. PubMed PMID: 27506293. PMCID: PMC5112038. Epub 2016/08/11. eng.

  195. Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, Hingtgen SD, Kabanov AV, Batrakova EV. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 2016 Apr;12(3):655-64. PubMed PMID: 26586551. PMCID: PMC4809755. Epub 2015/11/21. eng.

  196. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014 Feb;35(7):2383-90. PubMed PMID: 24345736. Epub 2013/12/19. eng.

  197. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011 Apr;29(4):341-5. PubMed PMID: 21423189. Epub 2011/03/23. eng.

  198. Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS, Jay SM. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell Mol Bioeng. 2016 Sep;9(3):315-24. PubMed PMID: 27800035. PMCID: PMC5084850. Epub 2016/11/02. eng.

  199. Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA loading into extracellular vesicles via electro-poration is size-dependent and enables limited gene delivery. Mol Pharm. 2015 Oct 5;12(10):3650-7. PubMed PMID: 26376343. PMCID: PMC4826735. Epub 2015/09/17. eng.

  200. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release. 2015 Jun 10;207:18-30. PubMed PMID: 25836593. PMCID: PMC4430381. Epub 2015/04/04. eng.

  201. Triarico S, Maurizi P, Mastrangelo S, Attina G, Capozza MA, Ruggiero A. Improving the brain delivery of chemotherapeutic drugs in childhood brain tumors. Cancers. 2019 Jun 13;11(6). PubMed PMID: 31200562. PMCID: PMC6627959. Epub 2019/06/16. eng.

  202. Drean A, Goldwirt L, Verreault M, Canney M, Schmitt C, Guehennec J, Delattre J-Y, Carpentier A, Idbaih A. Blood-brain barrier, cytotoxic chemotherapies and glioblastoma. Exp Rev Neurother. 2016;16(11):1285-300.

  203. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, Yin VP, Lockman P, Bai S. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32(6):2003-14.

  204. Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F, de Kleijn DP, Choo A, Lim SK. Proteolytic potential of the MSC exosome proteome: Implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics. 2012;2012:971907. PubMed PMID: 22852084. PMCID: PMC3407643. Epub 2012/08/02. eng.

  205. Andras IE, Toborek M. Extracellular vesicles of the blood-brain barrier. Tissue Barriers. 2016;4(1):e1131804.

  206. Arrighetti N, Corbo C, Evangelopoulos M, Pasto A, Zuco V, Tasciotti E. Exosome-like nanovectors for drug delivery in cancer. Curr Med Chem. 2019;26(33):6132-48. PubMed PMID: 30182846. PMCID: PMC6395517. Epub 2018/09/06. eng.

  207. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341-5.

  208. Chinnappan M, Srivastava A, Amreddy N, Razaq M, Pareek V, Ahmed R, Mehta M, Peterson JE, Munshi A, Ramesh R. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs. Cancer Lett. 2020;486:18-28.

  209. Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016 Feb 1;371(1):48-61. PubMed PMID: 26604130. PMCID: PMC4706492. Epub 2015/11/26. eng.

  210. Schindler C, Collinson A, Matthews C, Pointon A, Jenkinson L, Minter RR, Vaughan TJ, Tigue NJ. Exosomal delivery of doxorubicin enables rapid cell entry and enhanced in vitro potency. PLoS One. 2019;14(3):e0214545. PubMed PMID: 30925190. PMCID: PMC6440694. Epub 2019/03/30. eng.

  211. Gong C, Tian J, Wang Z, Gao Y, Wu X, Ding X, Qiang L, Li G, Han Z, Yuan Y, Gao S. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J Nanobiotechnology. 2019 Sep 3;17(1):93. PubMed PMID: 31481080. PMCID: PMC6721253. Epub 2019/09/05. eng.

  212. Huyan T, Li H, Peng H, Chen J, Yang R, Zhang W, Li Q. Extracellular vesicles-advanced nanocarriers in cancer therapy: Progress and achievements. Int J Nanomed. 2020;15:6485.

  213. Gong C, Tian J, Wang Z, Gao Y, Wu X, Ding X, Qiang L, Li G, Han Z, Yuan Y. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J Nanobiotechnol. 2019;17(1):1-18.

  214. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles-endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. 2014;1846(1):75-87.

  215. Wahlgren J, Karlson TDL, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, Valadi H. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 2012;40(17):e130-e.

  216. Andaloussi SE, Lakhal S, Mager I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev. 2013;65(3):391-7.

  217. Yim N, Ryu S-W, Choi K, Lee KR, Lee S, Choi H, Kim J, Shaker MR, Sun W, Park J-H. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat Commun. 2016;7(1):1-9.

  218. Qiao L, Hu S, Huang K, Su T, Li Z, Vandergriff A, Cores J, Dinh P-U, Allen T, Shen D. Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs. Theranostics. 2020;10(8):3474.

  219. Smyth TJ, Redzic JS, Graner MW, Anchordoquy TJ. Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophys Acta. 2014 Nov;1838(11):2954-65. PubMed PMID: 25102470. PMCID: PMC5657189. Epub 2014/08/08. eng.

  220. Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR. Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 2019 Feb 15;20(4). PubMed PMID: 30781344. PMCID: PMC6413095. Epub 2019/02/20. eng.

  221. Toffoli G, Hadla M, Corona G, Caligiuri I, Palazzolo S, Semeraro S, Gamini A, Canzonieri V, Rizzolio F. Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomedicine. 2015 Oct;10(19):2963-71. PubMed PMID: 26420143. Epub 2015/10/01. eng.

  222. Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Mark MT, Molina H, Kohsaka S, Di Giannatale A, Ceder S. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329-35.

  223. Lu J, Li J, Liu S, Wang T, Ianni A, Bober E, Braun T, Xiang R, Yue S. Exosomal tetraspanins mediate cancer metastasis by altering host microenvironment. Oncotarget. 2017 Sep 22;8(37):62803-15. PubMed PMID: 28977990. PMCID: PMC5617550. Epub 2017/10/06. eng.

  224. Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 2015 Apr;40:41-51. PubMed PMID: 25721812. PMCID: PMC4747631. Epub 2015/02/28. eng.

  225. Andreu Z, Yanez-Mo M. Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014;5:442. PubMed PMID: 25278937. PMCID: PMC4165315. Epub 2014/10/04. eng.

  226. Rana S, Yue S, Stadel D, Zoller M. Toward tailored exosomes: The exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol. 2012;44(9):1574-84.

  227. Hirsch AM. Embryonic Stem cell-derived exosomes increase the antiproliferative activity of doxorubicin in breast cancer [dissertation]. Richmond, VA: Virginia Commonwealth University; 2019.

  228. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383-90.

  229. Kim SM, Yang Y, Oh SJ, Hong Y, Seo M, Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release. 2017;266:8-16.

  230. Conlan RS, Pisano S, Oliveira MI, Ferrari M, Pinto IM. Exosomes as reconfigurable therapeutic systems. Trends Mol Med. 2017;23(7):636-50.

  231. Tran PH, Wang T, Yin W, Tran TT, Barua HT, Zhang Y, Midge SB, Nguyen TN, Lee B-J, Duan W. Development of a nanoamorphous exosomal delivery system as an effective biological platform for improved encapsulation of hydrophobic drugs. Int J Pharm. 2019;566:697-707.

  232. Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38(6):754-63.

  233. Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm Sin B. 2016;6(4):287-96.

  234. Ren J, He W, Zheng L, Duan H. From structures to functions: Insights into exosomes as promising drug delivery vehicles. Biomater Sci. 2016;4(6):910-21.

  235. Saari H, Lazaro-Ibanez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release. 2015 Dec 28;220(Pt B):727-37. PubMed PMID: 26390807. Epub 2015/09/24. eng.

  236. Chopra N, Dutt Arya B, Jain N, Yadav P, Wajid S, Singh SP, Choudhury S. Biophysical characterization and drug delivery potential of exosomes from human Wharton's jelly-derived mesenchymal stem cells. ACS Omega. 2019 Aug 20;4(8):13143-52. PubMed PMID: 31460441. PMCID: PMC6705090. Epub 2019/08/29. eng.

  237. Federici C, Petrucci F, Caimi S, Cesolini A, Logozzi M, Borghi M, D'Ilio S, Lugini L, Violante N, Azzarito T. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One. 2014;9(2):e88193.

  238. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284(49):34211-22.

  239. Ban J-J, Lee M, Im W, Kim M. Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun. 2015;461(1):76-9.

  240. Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 2016;12(3):655-64.

  241. Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, Lee HW, Gopal A, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. A New approach for loading anticancer drugs into mesenchymal stem cell-derived exosome mimetics for cancer therapy. Front Pharmacol. 2018;9:1116. PubMed PMID: 30319428. PMCID: PMC6168623. Epub 2018/10/16. eng.

  242. Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 2017;49(6):e346-e.

  243. Kim MS. Exosome mediated delivery of paclitaxel for the treatment of multi-drug resistant pulmonary metastases [dissertation]. Chapel Hill, NC: University of North Carolina; 2016.

  244. Srivastava A, Amreddy N, Razaq M, Towner R, Zhao YD, Ahmed RA, Munshi A, Ramesh R. Exosomes as theranostics for lung cancer. Adv Cancer Res. 2018;139:1-33. PubMed PMID: 29941101. PMCID: PMC6548197. Epub 2018/06/27. eng.

  245. Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga A-H, Munagala R, Gupta R. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol. 2016;101(1):12-21.

  246. Munagala R, Aqil F, Jeyabalan J, Agrawal AK, Mudd AM, Kyakulaga AH, Singh IP, Vadhanam MV, Gupta RC. Exosomal formulation of anthocyanidins against multiple cancer types. Cancer Lett. 2017 May 1;393:94-102. PubMed PMID: 28202351. PMCID: PMC5837866. Epub 2017/02/17. eng.

  247. Wormann B. Breast cancer: Basics, screening, diagnostics and treatment. Med Monatsschr Pharm. 2017 Feb;40(2):55-64. PubMed PMID: 29952495. Epub 2017/02/01.

  248. Deng X, Wu H, Gao F, Su Y, Li Q, Liu S, Cai J. Brachytherapy in the treatment of breast cancer. Int J Clin Oncol. 2017 Aug;22(4):641-50. PubMed PMID: 28664300. Epub 2017/07/01. eng.

  249. Andey T, Patel A, Jackson T, Safe S, Singh M. 1,1-Bis (3'-indolyl)-1-(p-substitutedphenyl)methane compounds inhibit lung cancer cell and tumor growth in a metastasis model. Eur J Pharm Sci. 2013 Oct 9;50(2):227-41. PubMed PMID: 23892137. PMCID: PMC3838903. Epub 2013/07/31. eng.

  250. Hedrick E, Lee S-O, Doddapaneni R, Singh M, Safe S. NR4A1 antagonists inhibit pi-integrindependent breast cancer cell migration. Mol Cell Biol. 2016;36(9):1383-94.

  251. Syn NL, Wang L, Chow EK-H, Lim CT, Goh B-C. Exosomes in cancer nanomedicine and immuno-therapy: Prospects and challenges. Trends Biotechnol. 2017;35(7):665-76.

  252. Toffoli G, Hadla M, Corona G, Caligiuri I, Palazzolo S, Semeraro S, Gamini A, Canzonieri V, Rizzolio F. Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomedicine. 2015;10(19):2963-71.

  253. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of extracellular vesicles: General methodologies and latest trends. Biomed Res Int. 2018;2018.

  254. Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol. 2015;1295:179-209. PubMed PMID: 25820723. Epub 2015/03/31. eng.

  255. Benedikter BJ, Bouwman FG, Vajen T, Heinzmann AC, Grauls G, Mariman EC, Wouters EF, Savelkoul PH, Lopez-Iglesias C, Koenen RR. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Sci Rep. 2017;7(1):1-13.

  256. Koh YQ, Almughlliq FB, Vaswani K, Peiris HN, Mitchell MD. Exosome enrichment by ultracentrifugation and size exclusion chromatography. Front Biosci. 2018 Jan 1;23:865-74. PubMed PMID: 28930577. Epub 2017/09/21. eng.

  257. Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Proteomic Profiling: Springer; 2015. p. 179-209.

  258. Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. 2015;87:3-10.

  259. Onodi Z, Pelyhe C, Terezia Nagy C, Brenner GB, Almasi L, Kittel A, Mancek-Keber M, Ferdinandy P, Buzas EI, Giricz Z. Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front Physiol. 2018;9:1479.

  260. Li K, Wong DK, Hong KY, Raffai RL. Cushioned-density gradient ultracentrifugation (C-DGUC): A refined and high performance method for the isolation, characterization, and use of exosomes. Extracellular RNA: Springer; 2018. p. 69-83.

  261. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255-89.

  262. Carnino JM, Lee H, Jin Y. Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: A review and comparison of different methods. Respir Res. 2019;20(1):240.

  263. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thery C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113(8):E968-E77.

  264. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of extracellular vesicles: General methodologies and latest trends. Biomed Res Int. 2018;2018:8545347. PubMed PMID: 29662902. PMCID: PMC5831698. Epub 2018/04/18. eng.

  265. Szatanek R, Baran J, Siedlar M, Baj-Krzyworzeka M. Isolation of extracellular vesicles: Determining the correct approach. Int J Mol Med. 2015;36(1):11-7.

  266. Souness A, Zamboni F, Walker GM, Collins MN. Influence of scaffold design on 3D printed cell constructs. J Biomed Mater Res B Appl Biomater. 2018;106(2):533-45.

  267. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, Bracke M, De Wever O, Hendrix A. The impact of disparate isolation methods for extracellular vesicles on down-stream RNA profiling. J Extracell Vesicles. 2014;3(1):24858.

  268. Yamashita T, Takahashi Y, Nishikawa M, Takakura Y. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. Eur J Pharm Biopharm. 2016;98:1-8.

  269. Tataruch-Weinert D, Musante L, Kretz O, Holthofer H. Urinary extracellular vesicles for RNA extraction: Optimization of a protocol devoid of prokaryote contamination. J Extracell Vesicles. 2016;5(1):30281.

  270. Tan X, Rodrigue D. A review on porous polymeric membrane preparation. Part I: Production techniques with polysulfone and poly(vinylidene fluoride). Polymers. 2019;11(7):1160.

  271. Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, Wang G. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol. 2018;16(1):1-13.

  272. Xu R, Greening DW, Zhu H-J, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: Toward clinical application. J Clin Invest. 2016;126(4):1152-62.

  273. Alvarez ML, Khosroheidari M, Ravi RK, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82(9):1024-32.

  274. Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, Larcher LM, Chen S, Liu N, Zhao Q, Tran PHL, Chen C, Veedu RN, Wang T. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics. 2020;10(8):3684-707. PubMed PMID: 32206116. PMCID: PMC7069071. Epub 2020/03/25. eng.

  275. Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, Larcher LM, Chen S, Liu N, Zhao Q. Progress, opportunity, and perspective on exosome isolation-efforts for efficient exosome-based theranostics. Theranostics. 2020;10(8):3684.

  276. Busatto S, Vilanilam G, Ticer T, Lin W-L, Dickson DW, Shapiro S, Bergese P, Wolfram J. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells. 2018;7(12):273.

  277. Haraszti RA, Miller R, Stoppato M, Sere YY, Coles A, Didiot M-C, Wollacott R, Sapp E, Dubuke ML, Li X. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol Ther. 2018;26(12):2838-47.

  278. Heinemann ML, Ilmer M, Silva LP, Hawke DH, Recio A, Vorontsova MA, Alt E, Vykoukal J. Benchtop isolation and characterization of functional exosomes by sequential filtration. J Chromatogr A. 2014;1371:125-35.

  279. Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, Nolte't Hoen EN, Piper MG, Sivaraman S, Skog J. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2(1):20360.

  280. Musante L, Tataruch DE, Holthofer H. Use and isolation of urinary exosomes as biomarkers for diabetic nephropathy. Front Endocrinol. 2014;5:149.

  281. Musante L, Tataruch D, Gu D, Benito-Martin A, Calzaferri G, Aherne S, Holthofer H. A simplified method to recover urinary vesicles for clinical applications, and sample banking. Sci Rep. 2014;4:7532.

  282. Musante L, Tataruch D, Gu D, Benito-Martin A, Calzaferri G, Aherne S, Holthofer H. A simplified method to recover urinary vesicles for clinical applications, and sample banking. Sci Rep. 2014 Dec 23;4:7532. PubMed PMID: 25532487. PMCID: PMC4274508. Epub 2014/12/24. eng.

  283. Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789-804. PubMed PMID: 28255367. PMCID: PMC5327650. Epub 2017/03/04. eng.

  284. Gamez-Valero A, Monguio-Tortajada M, Carreras-Planella L, Beyer K, Borras FE. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles' characteristics compared to precipitating agents. Sci Rep. 2016;6:33641.

  285. Boing AN, Van Der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2014;3(1): 23430.

  286. Rider MA, Hurwitz SN, Meckes DG Jr. ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles. Sci Rep. 2016;6:23978.

  287. Deregibus MC, Figliolini F, D'Antico S, Manzini PM, Pasquino C, De Lena M, Tetta C, Brizzi MF, Camussi G. Charge-based precipitation of extracellular vesicles. Int J Mol Med. 2016 Nov;38(5):1359-66. PubMed PMID: 28025988. PMCID: PMC5065305. Epub 2016/12/28. eng.

  288. Kanchi Ravi R, Khosroheidari M, DiStefano JK. A modified precipitation method to isolate urinary exosomes. J Vis Exp. 2015 Jan 16(95):51158. PubMed PMID: 25651044. PMCID: PMC4354538. Epub 2015/02/05. eng.

  289. Contreras-Naranjo JC, Wu HJ, Ugaz VM. Microfluidics for exosome isolation and analysis: Enabling liquid biopsy for personalized medicine. Lab Chip. 2017 Oct 25;17(21):3558-77. PubMed PMID: 28832692. PMCID: PMC5656537. Epub 2017/08/24. eng.

  290. Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):307.

  291. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2012 Feb;56(2):293-304. PubMed PMID: 22285593. Epub 2012/01/31. eng.

  292. Zarovni N, Corrado A, Guazzi P, Zocco D, Lari E, Radano G, Muhhina J, Fondelli C, Gavrilova J, Chiesi A. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods. 2015;87:46-58.

  293. Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip. 2014;14(11):1891-900.

  294. Davies RT, Kim J, Jang SC, Choi E-J, Gho YS, Park J. Microfluidic filtration system to isolate extra-cellular vesicles from blood. Lab Chip. 2012;12(24):5202-10.

  295. Liga A, Vliegenthart A, Oosthuyzen W, Dear J, Kersaudy-Kerhoas M. Exosome isolation: A microfluidic road-map. Lab Chip. 2015;15(11):2388-94.

  296. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang H-G. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606-14.

  297. Pascucci L, Cocce V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Vigano L, Locatelli A, Sisto F, Doglia SM. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J Control Release. 2014;192:262-70.

  298. Chen T, Guo J, Yang M, Zhu X, Cao X. Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine. J Immunol. 2011;186(4):2219-28.

  299. King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12(1):421.

  300. Li J, Lee Y, Johansson HJ, Mager I, Vader P, Nordin JZ, Wiklander OP, Lehtio J, Wood MJ, Andaloussi SE. Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles. J Extracell Vesicles. 2015;4(1):26883.

  301. Wang L-Y, Shi X-Y, Yang C-S, Huang D-M. Versatile RBC-derived vesicles as nanoparticle vector of photosensitizers for photodynamic therapy. Nanoscale. 2013;5(1):416-21.

  302. Podolak I, Galanty A, Sobolewska D. Saponins as cytotoxic agents: A review. Phytochem Rev. 2010 Sep;9(3):425-74. PubMed PMID: 20835386. PMCID: PMC2928447. Epub 2010/09/14. eng.

  303. Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS, Jay SM. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell Mol Bioeng. 2016;9(3):315-24.

  304. Bhardwaj U, Burgess DJ. Physicochemical properties of extruded and non-extruded liposomes containing the hydrophobic drug dexamethasone. Int J Pharm. 2010;388(1-2):181-9.

  305. Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release. 2015;205:35-44.

  306. Lamichhane TN, Jay SM. Production of extracellular vesicles loaded with therapeutic cargo. Methods Mol Biol. 2018;1831:37-47. PubMed PMID: 30051423. PMCID: PMC6387584. Epub 2018/07/28. eng.

  307. Pomatto MAC, Bussolati B, D'Antico S, Ghiotto S, Tetta C, Brizzi MF, Camussi G. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs. Mol Ther Methods Clin Dev. 2019;13:133-44.

  308. Ma H, Shieh K-J, Qiao TX. Study of transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Nat Sci. 2006;4(3):14-22.

  309. Jung MK, Mun JY. Sample preparation and imaging of exosomes by transmission electron microscopy. J Vis Exp. 2018;131:e56482.

  310. Wu Y, Deng W, Klinke II DJ. Exosomes: Improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst. 2015;140(19):6631-42.

  311. Araujo CL. Prostatic acid phosphatase as a regulator of endo/exocytosis and lysosomal degradation [dissertation]. Helsinki, Finland: University of Helsinki; 2016.

  312. Zhang L, Wu X, Luo C, Chen X, Yang L, Tao J, Shi J. The 786-0 renal cancer cell-derived exosomes promote angiogenesis by downregulating the expression of hepatocyte cell adhesion molecule. Mol Med Rep. 2013;8(1):272-6.

  313. Goldstein JI, Newbury DE, Michael JR, Ritchie NW, Scott JHJ, Joy DC. Scanning electron microscopy and X-ray microanalysis. New York: Springer; 2017.

  314. Nguyen JNT, Harbison AM. Scanning electron microscopy sample preparation and imaging. Molecular Profiling: Springer; 2017. p. 71-84.

  315. Sokolova V, Ludwig A-K, Hornung S, Rotan O, Horn PA, Epple M, Giebel B. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces. 2011;87(1):146-50.

  316. Brinton LT, Sloane HS, Kester M, Kelly KA. Formation and role of exosomes in cancer. Cell Mol Life Sci. 2015;72(4):659-71.

  317. Yuana Y, Koning RI, Kuil ME, Rensen PC, Koster AJ, Bertina RM, Osanto S. Cryo-electron microscopy of extracellular vesicles in fresh plasma. J Extracell Vesicles. 2013;2(1):21494.

  318. Tatischeff I, Larquet E, Falcon-Perez JM, Turpin P-Y, Kruglik SG. Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. J Extracell Vesicles. 2012;1(1):19179.

  319. Hoog JL, Lotvall J. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J Extracell Vesicles. 2015;4(1):28680.

  320. Paolini L, Zendrini A, Di Noto G, Busatto S, Lottini E, Radeghieri A, Dossi A, Caneschi A, Ricotta D, Bergese P. Residual matrix from different separation techniques impacts exosome biological activity. Sci Rep. 2016;6:23550.

  321. Parisse P, Rago I, Severino LU, Perissinotto F, Ambrosetti E, Paoletti P, Ricci M, Beltrami A, Cesselli D, Casalis L. Atomic force microscopy analysis of extracellular vesicles. Eur Biophys J. 2017;46(8):813-20.

  322. Sharma S, Rasool HI, Palanisamy V, Mathisen C, Schmidt M, Wong DT, Gimzewski JK. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano. 2010;4(4):1921-6.

  323. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, Carr B, Redman CW, Harris AL, Dobson PJ. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011;7(6):780-8.

  324. Chia BS, Low YP, Wang Q, Li P, Gao Z. Advances in exosome quantification techniques. Trends Anal Chem. 2017;86:93-106.

  325. Gast M, Sobek H, Mizaikoff B. Nanoparticle tracking of adenovirus by light scattering and fluorescence detection. Hum Gene Ther Methods. 2019;30(6):235-44.

  326. Hagendorfer H, Kaegi R, Parlinska M, Sinnet B, Ludwig C, Ulrich A. Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach-a comparison to transmission electron microscopy and batch dynamic light scattering. Anal Chem. 2012;84(6):2678-85.

  327. Zhang H, Lyden D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat Protoc. 2019;14(4):1027-53.

  328. Somerville JA, Willmott GR, Eldridge J, Griffiths M, McGrath KM. Size and charge characterisation of a submicrometre oil-in-water emulsion using resistive pulse sensing with tunable pores. J Colloid Interface Sci. 2013;394:243-51.

  329. Grabarek AD, Weinbuch D, Jiskoot W, Hawe A. Critical evaluation of microfluidic resistive pulse sensing for quantification and sizing of nanometer-and micrometer-sized particles in biopharmaceutical products. J Pharm Sci. 2019;108(1):563-73.

  330. Suarez H, Gamez-Valero A, Reyes R, Lopez-Martin S, Rodriguez MJ, Carrascosa JL, Cabanas C, Borras FE, Yanez-Mo M. A bead-assisted flow cytometry method for the semi-quantitative analysis of Extracellular Vesicles. Sci Rep. 2017;7(1):11271.

  331. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523(7559):177-82.

  332. Daaboul GG, Gagni P, Benussi L, Bettotti P, Ciani M, Cretich M, Freedman DS, Ghidoni R, Ozkumur AY, Piotto C. Digital detection of exosomes by interferometric imaging. Sci Rep. 2016;6:37246.

  333. Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T, Takakura Y. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 2013;165(2):77-84.

  334. Hoffman RM. Application of GFP imaging in cancer. Lab Invest. 2015;95(4):432-52.

  335. Ratajczak MZ, Ratajczak J. Extracellular microvesicles/exosomes: Discovery, disbelief, acceptance, and the future? Leukemia. 2020:1-10.

CITED BY
  1. Butreddy Arun, Kommineni Nagavendra, Dudhipala Narendar, Exosomes as Naturally Occurring Vehicles for Delivery of Biopharmaceuticals: Insights from Drug Delivery to Clinical Perspectives, Nanomaterials, 11, 6, 2021. Crossref

  2. Saha Priyanka, Datta Suchisnigdha, Ghosh Sukanya, Samanta Anurima, Ghosh Paramita, Sinha Dona, Bioengineering of Extracellular Vesicles: Exosome-Based Next-Generation Therapeutic Strategy in Cancer, Bioengineering, 8, 10, 2021. Crossref

  3. Allegretta Caterina, D’Amico Emanuele, Manuti Virginia, Avolio Carlo, Conese Massimo, Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Use in Central Nervous System Demyelinating Disorders, International Journal of Molecular Sciences, 23, 7, 2022. Crossref

  4. Jiang Chunyang, Li Xu, Sun Bingsheng, Zhang Na, Li Jing, Yue Shijing, Hu Xiaoli, Extracellular vesicles promotes liver metastasis of lung cancer by ALAHM increasing hepatocellular secretion of HGF, iScience, 25, 3, 2022. Crossref

  5. Slivinschi Bianca, Manai Federico, Martinelli Carolina, Carriero Francesca, D’Amato Camilla, Massarotti Martina, Bresciani Giorgia, Casali Claudio, Milanesi Gloria, Artal Laura, Zanoletti Lisa, Milella Federica, Arfini Davide, Azzalin Alberto, Demartis Sara, Gavini Elisabetta, Comincini Sergio, Enhanced Delivery of Rose Bengal by Amino Acids Starvation and Exosomes Inhibition in Human Astrocytoma Cells to Potentiate Anticancer Photodynamic Therapy Effects, Cells, 11, 16, 2022. Crossref

  6. Du Rong, Wang Chen, Zhu Ling, Yang Yanlian, Extracellular Vesicles as Delivery Vehicles for Therapeutic Nucleic Acids in Cancer Gene Therapy: Progress and Challenges, Pharmaceutics, 14, 10, 2022. Crossref

  7. Shahriar S. M. Shatil, Andrabi Syed Muntazir, Islam Farhana, An Jeong Man, Schindler Samantha J., Matis Mitchell P., Lee Dong Yun, Lee Yong-kyu, Next-Generation 3D Scaffolds for Nano-Based Chemotherapeutics Delivery and Cancer Treatment, Pharmaceutics, 14, 12, 2022. Crossref

  8. Matsuzaka Yasunari, Yashiro Ryu, Advances in Purification, Modification, and Application of Extracellular Vesicles for Novel Clinical Treatments, Membranes, 12, 12, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain