Library Subscription: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Published 6 issues per year

ISSN Print: 0743-4863

ISSN Online: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Recent Advances in Lipid-Based Nanovesicular Delivery Systems for Melanoma Therapy

Volume 38, Issue 4, 2021, pp. 1-38
DOI: 10.1615/CritRevTherDrugCarrierSyst.2021034903
Get accessDownload

ABSTRACT

Melanoma is one of the most aggressive forms of cancer with limited treatment options available. Successful treatment involves a combination of surgical resection of the tumor; chemotherapy and immunotherapy. Given their complex nature, the rapid development of drug resistance and metastatic spread, nanotechnology-based therapeutics are an attractive option for effective melanoma treatment. Nano-vesicular-based delivery systems hold the promise of aiding in the diagnosis and treatment of melanoma. These formulations can improve targeted delivery, deliver insoluble drugs belonging to class II, biopharmaceutical classification system, and alter drug pharmacokinetics and exposure profiles. These nanometer-sized carriers predominantly bypass the reticuloendothelial system and, thereby, improve blood circulation time and enhance tumor cell uptake with reduced toxicity. In this review, various lipid-based nano-formulations used in the diagnosis, treatment, or both for melanoma are discussed. Utilization of these na-no-formulations with a single drug or a combination of drugs, nucleic acid-based compounds (small interfering RNA, DNA) and targeting antibodies as other possibilities for melanoma are reviewed. We also present a state-of-the-art overview of alternative therapeutic approaches for the treatment of melanoma, such as photodynamic, immune, and gene therapies.

REFERENCES
  1. Prausnitz MR. Reversible skin permeabilization for transdermal delivery of macromolecules. Crit Rev Ther Drug Carrier Syst. 1997;14(4):455-83.

  2. Kumar MG, Lin S. Transdermal iontophoresis: Impact on skin integrity as evaluated by various methods. Crit Rev Ther Drug Carrier Syst. 2008;25(4):384-401.

  3. Eigentler TK, Mugge LO, BembenekA, Garbe C. Cutaneous melanoma. Hautarzt. 2007;58(10):885-97.

  4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34.

  5. Dika E, Veronesi G, Altimari A, Riefolo M, Ravaioli GM, Piraccini BM, Lambertini M, Campione E, Gruppioni E, Fiorentino M, Melotti B. BRAF, KIT, and NRAS mutations of Acral melanoma in white patients. Am J Clin Pathol. 2020;153(5):664-71.

  6. Gibney GT,Atkins MB. Choice offirst-line therapy in metastatic melanoma. Cancer. 2019;125(5):666-9.

  7. Mukaiya M, Hirata K, Tarumi K, Takashima T, Hata F, Denno R, Koito K, Takahashi S, Satoh M. Surgical treatment for recurrent tumors of primary malignant melanoma of the esophagus: A case report and review of the literature. Hepatogastroenterology. 1999;46(25):295-8.

  8. Nolan GS, Wormald JC, Kiely AL, Totty JP, Jain A. Global incidence of incomplete surgical excision in adult patients with non-melanoma skin cancer: Study protocol for a systematic review and meta-analysis of observational studies. System Rev. 2020;9(1):1-7.

  9. Tracey EH, Vij A. Updates in melanoma. Dermatol Clin. 2019;37(1):73-82.

  10. Matos AM, Francisco AP. Targets, structures, and recent approaches in malignant melanoma chemo-therapy. ChemMedChem. 2013;8(11):1751-65.

  11. Hao MZ, Zhou WY, Du XL, Chen KX, Wang GW, Yang Y, Yang JL. Novel anti-melanoma treatment: Focus on immunotherapy. China J Cancer. 2014;33(9):458.

  12. Yushak M, Kluger HM, Sznol M. Advances in the systemic treatment of metastatic melanoma. Oncology. 2013;27(5):374.

  13. Queirolo P, Acquati M. Targeted therapies in melanoma. Cancer Treat Rev. 2006;32(7):524-31.

  14. Anderson CM, Buzaid AC, Legha SS. Systemic treatments for advanced cutaneous melanoma. Oncology. 1995;9(11):1149-58.

  15. Khunger A, Khunger M, Velcheti V. Dabrafenib in combination with trametinib in the treatment of patients with BRAF V600-positive advanced or metastatic non-small cell lung cancer: Clinical evidence and experience. Ther Adv Respir Dis. 2018;12:1753466618767611.

  16. Sarkisian S, Davar D. MEK inhibitors for the treatment of NRAS mutant melanoma. Drug Des Devel Ther. 2018;12:2553.

  17. Brugnara S, Sicher M, Bonandini EM, Donner D, Chierichetti F, Barbareschi M, Girardelli CR, Caffo O. Treatment with combined dabrafenib and trametinib in BRAFV600E-mutated metastatic malignant melanoma: A case of long-term complete response after treatment cessation. Drugs Context. 2018;7:212515.

  18. Evans MS, Madhunapantula SV, Robertson GP, Drabick JJ. Current and future trials of targeted therapies in cutaneous melanoma. Adv Exp Med Biol. 2013;779:223-55.

  19. Cao Z, Liao Q, Su M, Huang K, Jin J, Cao D. AKT and ERK dual inhibitors: The way forward? Cancer Lett. 2019;459:30-40.

  20. Tran MA, Gowda R, Sharma A, Park EJ, Adair J, Kester M, Smith NB, Robertson GP. Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res. 2008;68(18):7638-49.

  21. Burgeiro A, Mollinedo F, Oliveira PJ. Ipilimumab and vemurafenib: Two different routes for targeting melanoma. Curr Cancer Drug Targets. 2013;13(8):879-94.

  22. Agostinelli E, Condello M, Tempera G, Macone A, Bozzuto G, Ohkubo S, Calcabrini A, Arancia G, Molinari A. The combined treatment with chloroquine and the enzymatic oxidation products of spermine overcomes multidrug resistance of melanoma M14 ADR2 cells: A new therapeutic approach. Int J Oncol. 2014;45(3):1109-22.

  23. Kanwar JR, Singh N, Kanwar RK. Role of nanomedicine in reversing drug resistance mediated by ATP binding cassette transporters and P-glycoprotein in melanoma. Nanomedicine. 2011;6(4):701-14.

  24. Recchia F, Candeloro G, Necozione S, Fumagalli L, Bratta M, Rea S. Multicenter phase II study of chemoimmunotherapy in the treatment of metastatic melanoma. Anticancer Drugs. 2008;19(2):201-7.

  25. Kirkwood JM. Studies of interferons in the therapy of melanoma. Semin Oncol. 1991;18(5 Suppl 7):83-90.

  26. Yao H, Ng SS, Huo LF, Chow BK, Shen Z, Yang M, Sze J, Ko O, Li M, Yue A, Lu LW. Effective melanoma immunotherapy with interleukin-2 delivered by a novel polymeric nanoparticle. Mol Cancer Ther. 2011;10(6):1082-92.

  27. Berger W, Hauptmann E, Elbling L, Vetterlein M, Kokoschka EM, Micksche M. Possible role of the multidrug resistance-associated protein (MRP) in chemoresistance of human melanoma cells. Int J Cancer. 1997;71(1):108-15.

  28. La CP. Mechanism of drug sensitivity and resistance in melanoma. Curr Cancer Drug Targets. 2009;9(3):391-7.

  29. Berger W, Elbling L, Micksche M. Chemoresistance of human malignant melanoma: Cellular and molecular aspects. Onkologie. 1998;21(2):105-10.

  30. Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol Rev. 2016;68(3):701-87.

  31. Atkins MB. The treatment of metastatic melanoma with chemotherapy and biologics. Curr Opin Oncol. 1997;9(2):205-13.

  32. Medina-Reyes EI, Garcia-Viacobo D, Carrero-Martinez FA, Chirino YI. Applications and risks of nanomaterials used in regenerative medicine, delivery systems, theranostics, and therapy. Crit Rev Ther Drug Carrier Syst. 2017;34(1)35-61.

  33. Jain A, Tiwari A, Verma A, Saraf S, Jain SK. Combination cancer therapy using multifunctional liposomes. Crit Rev Ther Drug Carrier Syst. 2020;37(2):105-34.

  34. Zamboni WC, Gervais AC, Egorin MJ, Schellens JH, Zuhowski EG, Pluim D, Joseph E, Hamburger DR, Working PK, Colbern G, Tonda ME. Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumor model of melanoma. Cancer Chemother Pharmacol. 2004;53(4):329-36.

  35. Yu KF, Zhang WQ, Luo LM, Song P, Li D, Du R, Ren W, Huang D, Lu WL, Zhang X, Zhang Q. The antitumor activity of a doxorubicin loaded, iRGD-modified sterically-stabilized liposome on B16-F10 melanoma cells: In vitro and in vivo evaluation. Int J Nanomed. 2013;8:2473.

  36. Zhu S, Hong M, Tang G, Qian L, Lin J, Jiang Y, Pei Y. Partly PEGylated polyamidoamine dendrimer for tumor-selective targeting of doxorubicin: The effects of PEGylation degree and drug conjugation style. Biomaterials. 2010;31(6):1360-71.

  37. Kurakula M, Naveen NR. In situ gel loaded with chitosan-coated simvastatin nanoparticles: Promising delivery for effective anti-proliferative activity against tongue carcinoma. Mar Drugs. 2020;18(4):201.

  38. Cline EN, Li MH, Choi SK, Herbstman JF, Kaul N, Meyhofer E, Skiniotis G, Baker JR, Larson RG, Walter NG. Paclitaxel-conjugated PAMAM dendrimers adversely affect microtubule structure through two independent modes of action. Biomacromolecules. 2013;14(3):654-64.

  39. Alhakamy NA, Ahmed OA, Kurakula M, Caruso G, Caraci F, Asfour HZ, Alfarsi A, Eid BG, Mohamed AI, Alruwaili NK, Abdulaal WH. Chitosan-based microparticles enhance ellagic acid's colon targeting and proapoptotic activity. Pharmaceutics. 2020;12(7):652.

  40. Li S, Byrne B, Welsh J, Palmer AF. Self-assembled poly (butadiene)-b-poly (ethylene oxide) polymer-somes as paclitaxel carriers. Biotechnol Prog. 2007;23(1):278-85.

  41. Chaudhuri P, Soni S, Sengupta S. Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology. 2009;21(2):025102.

  42. Park S, Lee WJ, Park S, Choi D, Kim S, Park N. Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy. Sci Rep. 2019;9(1):1-9.

  43. Naveen NR, Kurakula M, Gowthami B. Process optimization by response surface methodology for preparation and evaluation of methotrexate loaded chitosan nanoparticles. Mater Today: Proc. 2020;3(Part 7):2716-24.

  44. Mehnert W, Mader K. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83-101.

  45. Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):491-504.

  46. Kurakula M, Ahmed OA, Fahmy UA, Ahmed TA. Solid lipid nanoparticles for transdermal delivery of avanafil: Optimization, formulation, in-vitro and ex-vivo studies. J Liposome Res. 2016;26(4):288-96.

  47. Kakumanu S, Tagne JB, Wilson TA, Nicolosi RJ. A nanoemulsion formulation of dacarbazine reduces tumor size in a xenograft mouse epidermoid carcinoma model compared with dacarbazine suspension. Nanomedicine. 2011;7(3):277-83.

  48. Kretzer IF, Maria DA, Maranhao RC. Drug-targeting in combined cancer chemotherapy: Tumor growth inhibition in mice by association of paclitaxel and etoposide with a cholesterol-rich nanoemulsion. Cell Oncol. 2012;35(6):451-60.

  49. Ahmed OA, Kurakula M, Banjar ZM, Afouna MI, Zidan AS. Quality by design coupled with near infrared in formulation of transdermal glimepiride liposomal films. J Pharm Sci. 2015;104(6):2062-75.

  50. Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm. 2008;353(1-2):233-42.

  51. Hussein WM, Liu TY, Skwarczynski M, Toth I. Toll-like receptor agonists: A patent review (2011-2013). Exp Opin Ther Pat. 2014;24(4):453-70.

  52. Belli F, Arienti F, Sule-Suso J, Clemente C, Mascheroni L, Cattelan A, Santantonio C, Gallino GF, Melani C, Rao S, Colombo MP. Active immunization of metastatic melanoma patients with interleukin-2-transduced allogeneic melanoma cells: Evaluation of efficacy and tolerability. Cancer Immunol Immunother. 1997;44(4):197-203.

  53. Sabitha M, Rejinold NS, Nair A, Lakshmanan VK, Nair SV, Jayakumar R. Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer. Carbohydr Polym. 2013;91(1):48-57.

  54. Beiu C, Giurcaneanu C, Grumezescu AM, Holban AM, Popa LG, Mihai MM. Nanosystems for improved targeted therapies in melanoma. J Clin Med. 2020;9(2):318.

  55. Zhu C, Zhu Y, Pan H, Chen Z, Zhu Q. Current progresses of functional nanomaterials for imaging diagnosis and treatment of melanoma. Curr Top Med Chem. 2019;19(27):2494-506.

  56. Ravikumar P, Tatke P. Advances in encapsulated dermal formulations in chemoprevention of melanoma: An overview. J Cosmet Dermatol. 2019;18(6):1606-12.

  57. Lazar LF, Olteanu ED, Iuga R, Burz C, Achim M, Clichici S, Tefas LR, Nenu I, Tudor D, Baldea I, Filip GA. Solid lipid nanoparticles: Vital characteristics and prospective applications in cancer treatment. Crit Rev Ther Drug Carrier Syst. 2019;36(6):537-81.

  58. Liu D, Zhang N. Cancer chemotherapy with lipid-based nanocarriers. Crit Rev Ther Drug Carrier Syst. 2010;27(5):371-417.

  59. Pawar KR, Babu RJ. Polymeric and lipid-based materials for topical nanoparticle delivery systems. Crit Rev Ther Drug Carrier Syst. 2010;27(5):419-59.

  60. Sharma G, Thakur K, Raza K, Singh B, Katare OP. Nanostructured lipid carriers: A new paradigm in topical delivery for dermal and transdermal applications. Crit Rev Ther Drug Carrier Syst. 2017;34(4):355-86.

  61. Mosallaei N, Jaafari MR, Hanafi-Bojd MY, Golmohammadzadeh S, Malaekeh-Nikouei B. Docetaxel-loaded solid lipid nanoparticles: Preparation, characterization, in vitro, and in vivo evaluations. J Pharm Sci. 2013;102(6):1994-2004.

  62. Dianzani C, Cavalli R, Zara GP, Gallicchio M, Lombardi G, Gasco MR, Panzanelli P, Fantozzi R. Cholesteryl butyrate solid lipid nanoparticles inhibit adhesion of human neutrophils to endothelial cells. Br J Pharmacol. 2006;148(5):648-56.

  63. Huang ZR, Hua SC, Yang YL, Fang JY. Development and evaluation of lipid nanoparticles for camptothecin delivery: A comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol Sin. 2008;29(9):1094-102.

  64. Athawale RB, Jain DS, Singh KK, Gude RP. Etoposide loaded solid lipid nanoparticles for curtailing B16F10 melanoma colonization in lung. Biomed Pharmacother. 2014;68(2):231-40.

  65. Taveira SF, De Santana DC, Araujo LM, Marquele-Oliveira F, Nomizo A, Lopez RF. Effect of ionto-phoresis on topical delivery of doxorubicin-loaded solid lipid nanoparticles. J Biomed Nanotechnol. 2014;10(7):1382-90.

  66. Shenoy VS, Gude RP, Murthy RS. In vitro anticancer evaluation of 5-fluorouracil lipid nanoparticles using B16F10 melanoma cell lines. Int Nano Lett. 2013;3(1):36.

  67. Shi S, Han L, Deng L, Zhang Y, Shen H, Gong T, Zhang Z, Sun X. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J Control Release. 2014;194:228-37.

  68. Chen Y, Zhou L, Yuan L, Zhang ZH, Liu X, Wu Q. Formulation, characterization, and evaluation of in vitro skin permeation and in vivo pharmacodynamics of surface-charged tripterine-loaded nanostructured lipid carriers. Int J Nanomed. 2012;7:3023.

  69. Dwivedi A, Mazumder A, Du Plessis L, Du Preez JL, Haynes RK, Du Plessis J. In vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells. Nanomedicine. 2015;11(8):2041-50.

  70. Shen H, Shi S, Zhang Z, Gong T, Sun X. Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics. 2015;5(7):755.

  71. Banerjee I, De M, Dey G, Bharti R, Chattopadhyay S, Ali N, Chakrabarti P, Reis RL, Kundu SC, Mandal M. A peptide-modified solid lipid nanoparticle formulation of paclitaxel modulates immunity and outperforms dacarbazine in a murine melanoma model. Biomater Sci. 2019; 7(3):1161-78.

  72. Clemente N, Ferrara B, Gigliotti CL, Boggio E, Capucchio MT, Biasibetti E, Schiffer D, Mellai M, Annovazzi L, Cangemi L, Muntoni E. Solid lipid nanoparticles carrying temozolomide for melanoma treatment. Preliminary in vitro and in vivo studies. Int J Mol Sci. 2018;19(2):255.

  73. Cassano R, Mellace S, Marrelli M, Conforti F, Trombino S. a-Tocopheryl linolenate solid lipid nanoparticles for the encapsulation, protection, and release of the omega-3 polyunsaturated fatty acid: In vitro anti-melanoma activity evaluation. Colloids Surf B Biointerfaces. 2017;151:128-33.

  74. Bansal T, Mustafa G, Khan ZI, Ahmad FJ, Khar RK, Talegaonkar S. Solid self-nanoemulsifying delivery systems as a platform technology for formulation of poorly soluble drugs. Crit Rev Ther Drug Carrier Syst. 2008;25(1):63-116.

  75. Pawar KR, Babu RJ. Lipid materials for topical and transdermal delivery of nanoemulsions. Crit Rev Ther Drug Carrier Syst. 2014;31(5):429-58.

  76. Mundada V, Patel M, Sawant K. Submicron emulsions and their applications in oral delivery. Crit Rev Ther Drug Carrier Syst. 2016;33(3):265-308.

  77. Sheth T, Seshadri S, Prileszky T, Helgeson ME. Multiple nanoemulsions. Nat Rev Mater. 2020;5:214-28.

  78. Tagne JB, Kakumanu S, Nicolosi RJ. Nanoemulsion preparations of the anticancer drug dacarbazine significantly increase its efficacy in a xenograft mouse melanoma model. Mol Pharm. 2008;5(6):1055-63.

  79. Prete AC, Maria DA, Rodrigues DB, Valduga CJ, Ibanez OC, Maranhao RC. Evaluation in melanoma-bearing mice of an etoposide derivative associated to a cholesterol-rich nanoemulsion. J Pharm Pharmacol. 2006;58(6):801-8.

  80. Kretzer IF, Maria DA, Maranhao RC. Drug-targeting in combined cancer chemotherapy: Tumor growth inhibition in mice by association of paclitaxel and etoposide with a cholesterol-rich nanoemulsion. Cell Oncol. 2012;35(6):451-60.

  81. Fofaria NM, Qhattal HS, Liu X, Srivastava SK. Nanoemulsion formulations for anti-cancer agent piplartine: Characterization, toxicological, pharmacokinetics and efficacy studies. Int J Pharm. 2016;498(1-2):12-22.

  82. Shakeel F, Haq N, Al-Dhfyan A, Alanazi FK, Alsarra IA. Chemoprevention of skin cancer using low HLB surfactant nanoemulsion of 5-fluorouracil: A preliminary study. Drug Deliv. 2015;22(4):573-80.

  83. Ahmad N, Ahmad R, Mohammed T, Al-Homoud HS, Alnasif H, Sarafroz M. A comparative ex vivo permeation evaluation of a novel 5-Fluorocuracil nanoemulsion-gel by topically applied in the different excised rat, goat, and cow skin. Saudi J Biol Sci. 2020;27(4):1024-40.

  84. Adhikari M, Adhikari B, Ghimire B, Baboota S, Choi EH. Cold atmospheric plasma and silymarin nanoemulsion activate autophagy in human melanoma cells. Int J Mol Sci. 2020;21(6):1939.

  85. Yousef SA, Mohammed YH, Namjoshi S, Grice JE, Benson HA, Sakran W, Roberts MS. Mechanistic evaluation of enhanced curcumin delivery through human skin in vitro from optimised nanoemulsion formulations fabricated with different penetration enhancers. Pharmaceutics. 2019;11(12):639.

  86. Kim SY, Kim S, Kim JE, Lee SN, Shin IW, Shin HS, Jin SM, Noh YW, Kang YJ, Kim YS, Kang TH. Lyophilizable and multifaceted Toll-like receptor 7/8 agonist-loaded nanoemulsion for the re-programming of tumor microenvironments and enhanced cancer immunotherapy. ACS Nano. 2019;13(11):12671-86.

  87. Hou L, Liu Q, Shen L, Liu Y, Zhang X, Chen F, Huang L. Nano-delivery of fraxinellone remodels tumor microenvironment and facilitates therapeutic vaccination in desmoplastic melanoma. Theranostics. 2018;8(14):3781.

  88. Favero GM, Paz JL, Otake AH, Maria DA, Caldini EG, de Medeiros RS, Deus DF, Chammas R, Maranhao RC, Bydlowski SP. Cell internalization of 7-ketocholesterol-containing nanoemulsion through LDL receptor reduces melanoma growth in vitro and in vivo: A preliminary report. Oncotarget. 2018;9(18):14160.

  89. Carvalho VF, Migotto A, Giacone DV, de Lemos DP, Zanoni TB, Maria-Engler SS, Costa-Lotufo LV, Lopes LB. Co-encapsulation of paclitaxel and C6 ceramide in tributyrin-containing nanocarriers improve co-localization in the skin and potentiate cytotoxic effects in 2D and 3D models. Eur J Pharm Sci. 2017;109:131-43.

  90. El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: From drug delivery to model membranes. Eur J Pharm Sci. 2008;34(4-5):203-22.

  91. Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv. 2005;2(4):369-81.

  92. Sofou S, Sgouros G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv. 2008;5(2):189-204.

  93. Slingerland M, Guchelaar HJ, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today. 2012;17(3-4):160-6.

  94. Minko T, Pakunlu RI, Wang Y, Khandare JJ, Saad M. New generation of liposomal drugs for cancer. Anticancer Agents Med Chem. 2006;6(6):537-52.

  95. Kumar P, Gulbake A, Jain SK. Liposomes a vesicular nanocarrier: Potential advancements in cancer chemotherapy. Crit Rev Ther Drug Carrier Syst. 2012;29(5):355-411.

  96. Jain A, Tiwari A, Verma A, Saraf S, Jain SK. Combination cancer therapy using multifunctional liposomes. Crit Rev Ther Drug Carrier Syst. 2020;37(2):106-34.

  97. Sugarman SM, Perez-Soler R. Liposomes in the treatment of malignancy: A clinical perspective. Crit Rev Oncol Hematol. 1992;12(3):231-42.

  98. Batist G, Ramakrishnan G, Rao CS, Chandrasekharan A, Gutheil J, Guthrie T, Shah P, Khojasteh A, Nair MK, Hoelzer K, Tkaczuk K. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol. 2001;19(5):1444-54.

  99. Smylie MG, Wong R, Mihalcioiu C, Lee C, Pouliot JF. A phase II, open label, monotherapy study of liposomal doxorubicin in patients with metastatic malignant melanoma. Invest New Drugs. 2007;25(2):155-9.

  100. Deng C, Zhang Q, Fu Y, Sun X, Gong T, Zhang Z. Coadministration of oligomeric hyaluronic acid-modified liposomes with tumor-penetrating peptide-iRGD enhances the antitumor efficacy of doxorubicin against melanoma. ACS Appl Mater Interfaces. 2017;9(2):1280-92.

  101. Hwang TL, Lee WR, Hua SC, Fang JY. Cisplatin encapsulated in phosphatidylethanolamine liposomes enhances the in vitro cytotoxicity and in vivo intratumor drug accumulation against melanomas. J Dermatol Sci. 2007;46(1):11-20.

  102. Bedikian AY, Papadopoulos NE, Kim KB, Vardeleon A, Smith T, Lu B, Deitcher SR. A pilot study with vincristine sulfate liposome infusion in patients with metastatic melanoma. Melanoma Res. 2008;18(6):400-4.

  103. Banciu M, Metselaar JM, Schiffelers RM, Storm G. Liposomal glucocorticoids as tumor-targeted anti-angiogenic nanomedicine in B16 melanoma-bearing mice. J Steroid Biochem Mol Biol. 2008;111(1-2):101-10.

  104. Oskouian B, Saba JD. Cancer treatment strategies targeting sphingolipid metabolism. Adv Exp Med Biol. 2010;688:185-205.

  105. Davaille J, Li L, Mallat A, Lotersztajn S. Sphingosine 1-phosphate triggers both apoptotic and survival signals for human hepatic myofibroblasts. J Biol Chem. 2002;277(40):37323-30.

  106. Fonseca NA, Gomes-da-Silva LC, Moura V, Simoes S, Moreira JN. Simultaneous active intracellular delivery of doxorubicin and C6-ceramide shifts the additive/antagonistic drug interaction of non-encapsulated combination. J Control Release. 2014;196:122-31.

  107. Heakal Y, Kester M. Nanoliposomal short-chain ceramide inhibits agonist-dependent translocation of neurotensin receptor 1 to structured membrane microdomains in breast cancer cells. Mol Cancer Res. 2009;7(5):724-34.

  108. Shabbits JA, Mayer LD. Intracellular delivery of ceramide lipids via liposomes enhances apoptosis in vitro. Biochim Biophys Acta. 2003;1612(1):98-106.

  109. Tran MA, Smith CD, Kester M, Robertson GP. Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin Cancer Res. 2008;14(11):3571-81.

  110. Matsumoto K, Saida T, Mizuno M, Yoshida J. Cationic liposome-mediated human interferon-beta (HuIFN beta) gene therapy for patients with advanced melanoma. J Gene Med. 2006;8(3):372-3.

  111. Kim JK, Choi SH, Kim CO, Park JS, Ahn WS, Kim CK. Enhancement of polyethylene glycol (PEG)-modified cationic liposome-mediated gene deliveries: Effects on serum stability and transfection efficiency. J Pharm Pharmacol. 2003;55(4):453-60.

  112. Ma K, Shen H, Shen S, Xie M, Mao C, Qiu L, Jin Y. Development of a successive targeting liposome with multi-ligand for efficient targeting gene delivery. J Gene Med. 2011;13(5):290-301.

  113. Ryuke Y, Mizuno M, Natsume A, Suzuki O, Nobayashi M, Kageshita T, Matsumoto K, Saida T, Yoshida J. Growth inhibition of subcutaneous mouse melanoma and induction of natural killer cells by liposome-mediated interferon-P gene therapy. Melanoma Res. 2003;13(4):349-56.

  114. Stopeck AT, Jones A, Hersh EM, Thompson JA, Finucane DM, Gutheil JC, Gonzalez R. Phase II study of direct intralesional gene transfer of Allovectin-7, an HLA-B7/p2-microglobulin DNA-liposome complex, in patients with metastatic melanoma. Clin Cancer Res. 2001;7(8): 2285-91.

  115. Mockey M, Bourseau E, Chandrashekhar V, Chaudhuri A, Lafosse S, Le Cam E, Quesniaux VF, Ryffel B, Pichon C, Midoux P. mRNA-based cancer vaccine: Prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther. 2007;14(9):802-14.

  116. M Markov OV, Mironova NL, Shmendel EV, Maslov MA, Zenkova MA. Systemic delivery of complexes of melanoma RNA with mannosylated liposomes activates highly efficient murine melanoma-specific cytotoxic T cells in vivo. Mol Biol. 2017;51(1):102-7.

  117. Fujimura T, Nakagawa S, Ohtani T, Ito Y, Aiba S. Inhibitory effect of the polyinosinic-polycytidylic acid/cationic liposome on the progression of murine B16F10 melanoma. Eur J Immunol. 2006;36(12):3371-80.

  118. Okumura K, Nakase M, Inui M, Nakamura S, Watanabe Y, Tagawa T. Bax mRNA therapy using cationic liposomes for human malignant melanoma. J Gene Med. 2008;10(8):910-7.

  119. Mishra P, Nayak B, Dey RK. PEGylation in anti-cancer therapy: An overview. Asian J Pharm Sci. 2016;11(3):337-48.

  120. Bystryn JC, Tedholm CA, Heaney-Kieras J. Release of surface macromolecules by human melanoma and normal cells. Cancer Res. 1981;41(3):910-4.

  121. Kolhatkar R, Lote A, Khambhati H. Active tumor targeting of nanomaterials using folic acid, transferrin and integrin receptors. Curr Drug Discov Technol. 2011;8(3):197-206.

  122. Pastorino F, Brignole C, Marimpietri D, Pagnan G, Morando A, Ribatti D, Semple SC, Gambini C, Allen TM, Ponzoni M. Targeted liposomal c-myc antisense oligodeoxynucleotides induce apoptosis and inhibit tumor growth and metastases in human melanoma models. Clin Cancer Res. 2003;9(12):4595-605.

  123. Oda Y, Suzuki R, Otake S, Nishiie N, Hirata K, Koshima R, Nomura T, Utoguchi N, Kudo N, Tachibana K, Maruyama K. Prophylactic immunization with Bubble liposomes and ultrasound-treated dendritic cells provided a four-fold decrease in the frequency of melanoma lung metastasis. J Control Release. 2012;160(2):362-6.

  124. Bertini I, Bianchini F, Calorini L, Colagrande S, Fragai M, Franchi A, Gallo O, Gavazzi C, Luchinat C. Persistent contrast enhancement by sterically stabilized paramagnetic liposomes in murine melanoma. Magn Reson Med. 2004;52(3):669-72.

  125. Hwang TL, Lee WR, Hua SC, Fang JY. Cisplatin encapsulated in phosphatidylethanolamine liposomes enhances the in vitro cytotoxicity and in vivo intratumor drug accumulation against melanomas. J Dermatol Sci. 2007;46(1):11-20.

  126. Cruz N, Pinho JO, Soveral G, Ascensao L, Matela N, Reis C, Gaspar MM. A Novel Hybrid Nanosystem integrating cytotoxic and magnetic properties as a tool to potentiate melanoma therapy. Nanomaterials. 2020;10(4):693.

  127. Zagana P, Mourtas S, Basta A, Antimisiaris SG. Preparation, physicochemical properties, and in vitro toxicity towards cancer cells of novel types of arsonoliposomes. Pharmaceutics. 2020;12(4):327.

  128. Huang S, Zhang Y, Wang L, Liu W, Xiao L, Lin Q, Gong T, Sun X, He Q, Zhang Z, Zhang L. Improved melanoma suppression with target-delivered TRAIL and PaclitaxSel by a multifunctional nanocarrier. J Control Release. 2020;325:10-24.

  129. Fandzloch M, Jaromin A, Zaremba-Czogalla M, Wojtczak A, Lewinska A, Sitkowski J, Wisniewska J, Lakomska I, Gubernator J. Nanoencapsulation of a ruthenium (II) complex with triazolopyrimidine in liposomes as a tool for improving its anticancer activity against melanoma cell lines. Dalton Trans. 2020;49(4):1207-19.

  130. Filipczak N, Jaromin A, Piwoni A, Mahmud M, Sarisozen C, Torchilin V, Gubernator J. A triple co-delivery liposomal carrier that enhances apoptosis via an intrinsic pathway in melanoma cells. Cancers. 2019;11(12):1982.

  131. Kazi KM, Mandal AS, Biswas N, Guha A, Chatteijee S, Behera M, Kuotsu K. Niosome: A future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1(4):374.

  132. Sankhyan A, Pawar P. Recent trends in niosome as vesicular drug delivery system. J Appl Pharm Sci. 2012;2(6):20-32.

  133. Makeshwar KB, Wasankar SR. Niosome: A novel drug delivery system. Asian J Pharm Res. 2013;3(1):16-20.

  134. Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F, Esposito S, Carafa M. Niosomes from 80s to present: The state of the art. Adv Colloid Interface Sci. 2014;205:187-206.

  135. Tangri P, Khurana S. Niosomes: Formulation and evaluation. Int J Biopharm. 2011;2(1):47-53.

  136. Arias JL, Clares B, Morales ME, Gallardo V, Ruiz MA. Lipid-based drug delivery systems for cancer treatment. Curr Drug Targets. 2011;12(8):1151-65.

  137. Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: Some recent advances. J Drug Target. 2009;17(9):671-89.

  138. Sinico C, Fadda AM. Vesicular carriers for dermal drug delivery. Expert Opin Drug Deliv. 2009;6(8):813-25.

  139. Paolino D, Muzzalupo R, Ricciardi A, Celia C, Picci N, Fresta M. In vitro and in vivo evaluation of Bolasurfactant containing niosomes for transdermal delivery. Biomed Microdevices. 2007;9(4):421-33.

  140. Jain S, Singh P, Mishra V, Vyas SP. Mannosylated niosomes as adjuvant-carrier system for oral genetic immunization against hepatitis B. Immunol Lett. 2005;101(1):41-9.

  141. Mukherjee B, Patra B, Layek B, Mukherjee A. Sustained release of acyclovir from nano-liposomes and nano-niosomes: An in vitro study. Int J Nanomed. 2007;2(2):213.

  142. Bragagni M, Mennini N, Ghelardini C, Mura P. Development and characterization of niosomal formulations of doxorubicin aimed at brain targeting. J Pharm Pharm Sci. 2012;15(1):184-96.

  143. Marianecci C, Paolino D, Celia C, Fresta M, Carafa M, Alhaique F. Non-ionic surfactant vesicles in pulmonary glucocorticoid delivery: Characterization and interaction with human lung fibroblasts. J Control Release. 2010;147(1):127-35.

  144. Fang JY, Hong CT, Chiu WT, Wang YY. Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm. 2001;219(1-2):61-72.

  145. Shahiwala A, Misra A. Studies in topical application of niosomally entrapped nimesulide. J Pharm Pharm Sci. 2002;5(3):220-5.

  146. Manconi M, Sinico C, Valenti D, Lai F, Fadda AM. Niosomes as carriers for tretinoin: III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int J Pharm. 2006;311(1-2):11-9.

  147. Sezgin-Bayindir Z, Onay-Besikci A, Vural N, Yuksel N. Niosomes encapsulating paclitaxel for oral bioavailability enhancement: Preparation, characterization, pharmacokinetics and biodistribution. J Microencapsul. 2013;30(8):796-804.

  148. Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm. 2008;353(1-2):233-42.

  149. Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm. 2008;353(1-2):233-42.

  150. Riccardi C, Fabrega C, Grijalvo S, Vitiello G, D'Errico G, Eritja R, Montesarchio D. AS1411-decorated niosomes as effective nanocarriers for Ru (iii)-based drugs in anticancer strategies. J Mater Chem B. 2018;6(33):5368-84.

  151. Pawar S, Shevalkar G, Vavia P. Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: Pharmacokinetic, toxicity and pharmacodynamic evaluation. J Drug Target. 2016;24(8):730-43.

  152. Batus M, Waheed S, Ruby C, Petersen L, Bines SD, Kaufman HL. Optimal management of metastatic melanoma: Current strategies and future directions. Am J Clin Dermatol. 2013;14(3):179-94.

  153. Austin E, Mamalis A, Ho D, Jagdeo J. Laser and light-based therapy for cutaneous and soft-tissue metastases of malignant melanoma: A systematic review. Arch Dermatol Res. 2017;309(4):229-42.

  154. Garbe C, Peris K, Hauschild A, Saiag P, Middleton M, Spatz A, Grob JJ, Malvehy J, Newton-Bishop J, Stratigos A, Pehamberger H. Diagnosis and treatment of melanoma: European consensus-based interdisciplinary guideline. Eur J Cancer. 2010;46(2):270-83.

  155. Kennedy JC, Marcus SL, Pottier RH. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): Mechanisms and clinical results. J Clin Laser Med Surg. 1996;14(5):289-304.

  156. Almeida ED, Dipieri LV, Rossetti FC, Marchetti JM, Bentley MV, Nunes RD, Sarmento VH, Valerio ME, Junior JJ, Montalvao MM, Correa CB. Skin permeation, biocompatibility and antitumor effect of chloroaluminum phthalocyanine associated to oleic acid in lipid nanoparticles. Photodiagnosis Photodyn Ther. 2018;24:262-73.

  157. Goto PL, Siqueira-Moura MP, Tedesco AC. Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells. Int J Pharm. 2017;518(1-2):228-41.

  158. de Morais FA, Gonjalves RS, Vilsinski BH, de Oliveira EL, Rocha NL, Hioka N, Caetano W. Hypericin photodynamic activity in DPPC liposome. PART I: Biomimetism of loading, location, interactions and thermodynamic properties. J Photochem Photobiol B. 2019;190:118-27.

  159. de Morais FA, Gonjalves RS, Vilsinski BH, Lazarin-Bidoia D, Balbinot RB, Tsubone TM, Brunaldi K, Nakamura CV, Hioka N, Caetano W. Hypericin photodynamic activity in DPPC liposome. PART II: Stability and application in melanoma B16-F10 cancer cells. Photochem Photobiol Sci. 2020;19(5):620-30.

  160. Chen Q, Ramu V, Aydar Y, Groenewoud A, Zhou XQ, Jager MJ, Cole H, Cameron CG, McFarland SA, Bonnet S, Snaar-Jagalska BE. TLD1433 photosensitizer inhibits conjunctival melanoma cells in zebrafish ectopic and orthotopic tumour models. Cancers. 2020;12(3):587.

  161. Ng SY, Kamkaew A, Fu N, Kue CS, Chung LY, Kiew LV, Wittayakun J, Burgess K, Lee HB. Active targeted ligandaza-bodipy conjugate for near-infrared photodynamic therapy in melanoma. Int J Pharm. 2020;579:119189.

  162. Valli F, Vior MC, Roguin LP, Marino J. Crosstalk between oxidative stress-induced apoptotic and autophagic signaling pathways in Zn (II) phthalocyanine photodynamic therapy of melanoma. Free Radic Biol Med. 2020;152:742-4.

  163. Dhillon SK, Porter SL, Rizk N, Sheng Y, McKaig T, Burnett K, White B, Nesbitt H, Matin RN, McHale AP, Callan B. Rose bengal-amphiphilic peptide conjugate for enhanced photodynamic therapy of malignant melanoma. J Med Chem. 2020;63(3):1328-36.

  164. Gusti-Ngurah-Putu EP, Huang L, Hsu YC. Effective combined photodynamic therapy with lipid platinum chloride nanoparticles therapies of oral squamous carcinoma tumor inhibition. J Clin Med. 2019;8(12):2112.

  165. Naidoo C, Kruger CA, Abrahamse H. Targeted photodynamic therapy treatment of in vitro A375 metastatic melanoma cells. Oncotarget. 2019;10(58):6079.

  166. Khoza P, Ndhundhuma I, Karsten A, Nyokong T. Photodynamic therapy activity of phthalocyanine-silver nanoparticles on melanoma cancer cells. J Nanosci Nanotechnol. 2020;20(5):3097-104.

  167. Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J Clin. 2012;62(5):309-35.

  168. Tarhini AA, Gogas H, Kirkwood JM. IFN-a in the treatment of melanoma. J Immunol. 2012;189(8):3789-93.

  169. Larkin J, Chmielowski B, Lao CD, Hodi FS, Sharfman W, Weber J, Suijkerbuijk KP, Azevedo S, Li H, Reshef D, Avila A. Neurologic serious adverse events associated with nivolumab plus ipilimumab or nivolumab alone in advanced melanoma, including a case series of encephalitis. Oncologist. 2017;22(6):709.

  170. Tseng HY, Dreyer J, Al Emran A, Gunatilake D, Pirozyan M, Cullinane C, Dutton-Regester K, Rizos H, Hayward NK, McArthur G, Hersey P. Co-targeting BET proteins and MCL1 induces synergistic cell death in melanoma. Int J Cancer. 2020;147(3):2176-89.

  171. Zhu Y, Xue J, Chen W, Bai S, Zheng T, He C, Guo Z, Jiang M, Du G, Sun X. Albumin-biomineralized nanoparticles to synergize phototherapy and immunotherapy against melanoma. J Control Release. 2020;322:300-11.

  172. Zhu H, Liu Q, Miao L, Musetti S, Huo M, Huang L. Remodeling fibrotic tumor microenvironment of desmoplastic melanoma to facilitate vaccine immunotherapy. Nanoscale. 2020;12(5):3400-10.

  173. Yang P, Lu C, Qin W, Chen M, Quan G, Liu H, Wang L, Bai X, Pan X, Wu C. Construction of a core-shell microneedle system to achieve targeted co-delivery of checkpoint inhibitors for melanoma immunotherapy. Acta Biomater. 2020;104:147-57.

  174. Zhang N, Song J, Liu Y, Liu M, Zhang L, Sheng D, Deng L, Yi H, Wu M, Zheng Y, Wang Z. Photothermal therapy mediated by phase-transformation nanoparticles facilitates delivery of anti-PD1 antibody and synergizes with antitumor immunotherapy for melanoma. J Control Release. 2019;306:15-28.

  175. He M, Huang L, Hou X, Zhong C, Bachir ZA, Lan M, Chen R, Gao F. Efficient ovalbumin delivery using a novel multifunctional micellar platform for targeted melanoma immunotherapy. Int J Pharm. 2019;560:1-10.

  176. Chen W, Qin M, Chen X, Wang Q, Zhang Z, Sun X. Combining photothermal therapy and immunotherapy against melanoma by polydopamine-coated Al2O3 nanoparticles. Theranostics. 2018;8(8):2229.

  177. Jimbow K, Ishii-Osai Y, Ito S, Tamura Y, Ito A, Yoneta A, Kamiya T, Yamashita T, Honda H, Wakamatsu K, Murase K. Melanoma-targeted chemothermotherapy and in situ peptide immunotherapy through HSP production by using melanogenesis substrate, NPrCAP, and magnetite nanoparticles. J Skin Cancer. 2013;2013:742925.

  178. Ding B, Wu X, Fan W, Wu Z, Gao J, Zhang W, Ma L, Xiang W, Zhu Q, Liu J, Ding X. Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: Target formulation development and in vitro anticancer activity. Int J Nanomed. 2011;6:1991-2005.

  179. Yao H, Ng SS, Huo LF, Chow BK, Shen Z, Yang M, Sze J, Ko O, Li M, Yue A, Lu LW. Effective melanoma immunotherapy with interleukin-2 delivered by a novel polymeric nanoparticle. Mol Cancer Ther. 2011;10(6):1082-92.

  180. Hermans IF, Chong TW, Palmowski MJ, Harris AL, Cerundolo V. Synergistic effect of metronomic dosing of cyclophosphamide combined with specific antitumor immunotherapy in a murine melanoma model. Cancer Res. 2003;63(23):8408-13.

  181. Petkar KC, Chavhan SS, Agatonovik-Kustrin S, Sawant K. Nanostructured materials in drug and gene delivery: A review of the state of the art. Crit Rev Ther Drug Carrier Syst. 2011;28(2):101-64.

  182. Cross D, Burmester JK. Gene therapy for cancer treatment: Past, present and future. Clin Med Res. 2006;4(3):218-27.

  183. El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release. 2004;94(1):1-14.

  184. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29(24-25):3477-96.

  185. Tesic N, Kamensek U, Sersa G, Kranjc S, Stimac M, Lampreht U, Preat V, Vandermeulen G, Butinar M, Turk B, Cemazar M. Endoglin (CD105) silencing mediated by shRNA under the control of endothelin-1 promoter for targeted gene therapy of melanoma. Mol Ther Nucleic Acids. 2015;4:e239.

  186. Resnier P, LeQuinio P, Lautram N, Andre E, Gaillard C, Bastiat G, Benoit JP, Passirani C. Efficient in vitro gene therapy with PEG siRNA lipid nanocapsules for passive targeting strategy in melanoma. Biotechnol J. 2014;9(11):1389-1401.

  187. Seo KW, Lee HW, Oh YI, Ahn JO, Koh YR, Oh SH, Kang SK, Youn HY. Anti-tumor effects of canine adipose tissue-derived mesenchymal stromal cell-based interferon-P gene therapy and cisplatin in a mouse melanoma model. Cytotherapy. 2011;13(8):944-55.

  188. Friedlos F, Lehouritis P, Ogilvie L, Hedley D, Davies L, Bermudes D, King I, Martin J, Marais R, Springer CJ. Attenuated Salmonella targets prodrug activating enzyme carboxypeptidase G2 to mouse melanoma and human breast and colon carcinomas for effective suicide gene therapy. Clin Cancer Res. 2008;14(13):4259-66.

  189. Campana LG, Testori A, Mozzillo N, Rossi CR. Treatment of metastatic melanoma with electrochemotherapy. J Surg Oncol. 2014;109(4):301-7.

  190. Sounni NE, Noel A. Targeting the tumor microenvironment for cancer therapy. Clin Chem. 2013;59(1):85-93.

  191. Kontopodis E, Kentepozidis N, Christophyllakis CH, Boukovinas I, Kalykaki A, Kalbakis K, Vamvakas L, Agelaki S, Kotsakis A, Vardakis N, Georgoulias V. Docetaxel, gemcitabine and bevacizumab as salvage chemotherapy for HER-2-negative metastatic breast cancer. Cancer Chemother Pharmacol. 2015;75(1):153-60.

  192. Qin M, Lee YE, Ray A, Kopelman R. Overcoming cancer multidrug resistance by codelivery of doxorubicin and verapamil with hydrogel nanoparticles. Macromol Biosci. 2014;14(8):1106-15.

  193. Kolishetti N, Dhar S, Valencia PM, Lin LQ, Karnik R, Lippard SJ, Langer R, Farokhzad OC. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci U S A. 2010;107(42):17939-44.

  194. MacEwen EG, Kurzman ID, Vail DM, Dubielzig RR, Everlith K, Madewell BR, Rodriguez CO, Phillips B, Zwahlen CH, Obradovich J, Rosenthal RC. Adjuvant therapy for melanoma in dogs: Results of randomized clinical trials using surgery, liposome-encapsulated muramyl tripeptide, and granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 1999;5(12):4249-58.

  195. Mitrus I, Sochanik A, Cichon T, Szala S. Combination of combretastatin A4 phosphate and doxorubicin-containing liposomes affects growth of B16-F10 tumors. Acta Biochim Pol. 2009;56(1):161-5.

  196. Shiraga E, Barichello JM, Ishida T, Kiwada H. A metronomic schedule of cyclophosphamide combined with PEGylated liposomal doxorubicin has a highly antitumor effect in an experimental pulmonary metastatic mouse model. Int J Pharm. 2008;353(1-2):65-73.

  197. Kretzer IF, Maria DA, Maranhao RC. Drug-targeting in combined cancer chemotherapy: Tumor growth inhibition in mice by association of paclitaxel and etoposide with a cholesterol-rich nanoemulsion. Cell Oncol. 2012;35(6):451-60.

  198. Liu Y, Fang J, Kim YJ, Wong MK, Wang P. Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol Pharm. 2014;11(5):1651-61.

  199. Guo S, Lin CM, Xu Z, Miao L, Wang Y, Huang L. Co-delivery of cisplatin and rapamycin for enhanced anticancer therapy through synergistic effects and microenvironment modulation. ACS Nano. 2014;8(5):4996-5009.

  200. Somlo G, Doroshow JH, Synold T, Longmate J, Reardon D, Chow W, Forman SJ, Leong LA, Margolin KA, Morgan Jr RJ, Raschko JW. High-dose paclitaxel in combination with doxorubicin, cyclophos-phamide and peripheral blood progenitor cell rescue in patients with high-risk primary and responding metastatic breast carcinoma: Toxicity profile, relationship to paclitaxel pharmacokinetics and short-term outcome. Br J Cancer. 2001;84(12):1591-8.

  201. Pritchard JR, Bruno PM, Gilbert LA, Capron KL, Lauffenburger DA, Hemann MT. Defining principles of combination drug mechanisms of action. Proc Natl Acad Sci U S A. 2013;110(2):E170-9.

  202. Lu Y, Wang Y, Miao L, Haynes M, Xiang G, Huang L. Exploiting in situ antigen generation and immune modulation to enhance chemotherapy response in advanced melanoma: A combination nano-medicine approach. Cancer Lett. 2016;379(1):32-8.

  203. Guo S, Wang Y, Miao L, Xu Z, Lin CM, Zhang Y, Huang L. Lipid-coated cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS Nano. 2013;7(11):9896-904.

  204. Chen L, Ding Y, Wang Y, Liu X, Babu RJ, Ravis WR, Yan W. Codelivery of zoledronic acid and dou-blestranded RNA from core-shell nanoparticles. Int J Nanomed. 2013;8:137.

  205. Cao L, Zeng Q, Xu C, Shi S, Zhang Z, Sun X. Enhanced antitumor response mediated by the codelivery of paclitaxel and adenoviral vector expressing IL-12. Mol Pharm. 2013;10(5):1804-14.

  206. Li Y, Yuan J, Yang Q, Cao W, Zhou X, Xie Y, Tu H, Zhang Y, Wang S. Immunoliposome co-delivery of bufalin and anti-CD40 antibody adjuvant induces synergetic therapeutic efficacy against melanoma. Int J Nanomed. 2014;9:5683.

  207. Park SY, Lee W, Lee J, Kim IS. Combination gene therapy using multidrug resistance (MDR1) gene shRNA and herpes simplex virus-thymidine kinase. Cancer Lett. 2008;261(2):205-14.

  208. Han Y, Zhang Y, Li D, Chen Y, Sun J, Kong F. Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin. Int J Nanomed. 2014;9:4107.

  209. Labala S, Jose A, Chawla SR, Khan MS, Bhatnagar S, Kulkarni OP, Venuganti VV. Effective melanoma cancer suppression by iontophoretic co-delivery of STAT3 siRNA and imatinib using gold nanoparticles. Int J Pharm. 2017;525(2):407-17.

  210. Saraswathy M, Gong S. Recent developments in the co-delivery of siRNA and small molecule anti-cancer drugs for cancer treatment. Mater Today. 2014;17(6):298-306.

  211. Huang S, Zhang Y, Wang L, Liu W, Xiao L, Lin Q, Gong T, Sun X, He Q, Zhang Z, Zhang L. Improved melanoma suppression with target-delivered TRAIL and PaclitaxSel by a multifunctional nanocarrier. J Control Release. 2020;325:10-24.

  212. Bariwal J, Kumar V, Chen H, Bhattarai RS, Peng Y, Li W, Mahato RI. Nanoparticulate delivery of potent microtubule inhibitor for metastatic melanoma treatment. J Control Release. 2019;309:231-43.

  213. Xia C, Yin S, Xu S, Ran G, Deng M, Mei L, Tang X, Rao J, Li M, Zhang Z, He Q. Low molecular weight heparin-coated and dendrimer-based core-shell nanoplatform with enhanced immune activation and multiple anti-metastatic effects for melanoma treatment. Theranostics. 2019;9(2):337.

  214. Oh N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed. 2014;9(Suppl 1):51.

  215. Jia ZC, Zou LY, Ni B, Wan Y, Zhou W, Lv YB, Geng M, Wu YZ. Effective induction of antitumor immunity by immunization with plasmid DNA encoding TRP-2 plus neutralization of TGF-p. Cancer Immunol Immunother. 2005;54(5):446-52.

  216. Mondal SK, Jinka S, Pal K, Nelli S, Dutta SK, Wang E, Ahmad A, Al Kharfy KM, Mukhopadhyay D, Banerjee R. Glucocorticoid receptor-targeted liposomal codelivery of lipophilic drug and anti-Hsp90 gene: Strategy to induce drug-sensitivity, EMT-reversal, and reduced malignancy in aggressive tumors. Mol Pharm. 2016;13(7):2507-23.

  217. Chen L. Development of lipid based nanoparticles for melanoma treatment [dissertation]. Auburn University; 2015.

  218. Legha SS, Ring S, Bedikian A, Plager C, Eton O, Buzaid AC, Papadopoulos N. Treatment of metastatic melanoma with combined chemotherapy containing cisplatin, vinblastine and dacarbazine (CVD) and biotherapy using interleukin-2 and interferon-a. Ann Oncol. 1996;7(8):827-35.

CITED BY
  1. Neupane Rabin, Boddu Sai H. S., Abou-Dahech Mariam Sami, Bachu Rinda Devi, Terrero David, Babu R. Jayachandra, Tiwari Amit K., Transdermal Delivery of Chemotherapeutics: Strategies, Requirements, and Opportunities, Pharmaceutics, 13, 7, 2021. Crossref

  2. Raut Abhinav, Thorat Nanasaheb D., Niosomes based drug delivery in targeting brain tumors, in Nanocarriers for Drug-Targeting Brain Tumors, 2022. Crossref

  3. Zeng Hong, Li Jia, Hou Kai, Wu Yiping, Chen Hongbo, Ning Zeng, Melanoma and Nanotechnology-Based Treatment, Frontiers in Oncology, 12, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain