Library Subscription: Guest
Hydrobiological Journal
Editorial Board Executive Secretary: L.I. Kalinina (open in a new tab)

Published 6 issues per year

ISSN Print: 0018-8166

ISSN Online: 1943-5991

SJR: 0.221 SNIP: 0.469 CiteScore™:: 0.9 H-Index: 12

Indexed in

Polysaccharides of Seaweeds' Cell Walls: Structure and Features (a Review)

Volume 56, Issue 5, 2020, pp. 41-50
DOI: 10.1615/HydrobJ.v56.i5.50
Get accessGet access

ABSTRACT

Polysaccharides are paid special attention because they possess the unique physical and chemical properties, which condition not only with their important functional features but also potential biotechnological applications. Due to the unique properties of sulfated polysaccharides (SP), found in seaweed, these biopolymers can be used in various fields, such as medicine, food, pharmaceutical and cosmetic industries. This review reports the results of the recent studies on the functioning of SPs in the cell, their structure and properties. The article also discusses the biological activity and biotechnological application of these algal biopolymers.

REFERENCES
  1. Ale, M.T. & A.S. Meyer. 2013. Fucoidans from brown seaweeds: an update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Advances 3: 8131-8141.

  2. Ale, M.T., J.D. Mikkelsen & A.S. Meyer. 2011. Important determinants for fucoidan bio-activity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. drugs 9: 2106-2130.

  3. Andrade, L.R., R.N. Leal, M. Noseda et al. 2010. Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity. Mar. Pollut. Bull. 60: 1482-1488.

  4. Aquino, R.S., A.M. Landeira-Fernandez, A.P. Valente et al. 2005. Occurrence of sulfated galactans in marine angiosperms: evolutionary implications. Glycobiol. 15: 11-20.

  5. Arata, P.X., J. Alberghina, V. Confalonieri et al. 2017. Sulfated polysaccharides in the freshwater green macroalga Cladophora surera not linked to salinity adaptation. Front. Plant Sci. 8: 19-27.

  6. Arlov, 0. 2012.Heparin analogs created by sulfation of alginates using a chemoenzymatic strategy: MS thesis. Institutt for bioteknologi. http://hdl.handle.net/11250/245802.

  7. Aziza, M., T. Givernaud, M. Chikhaoui-khay & L. Bennasser. 2008. Seasonal variation of the growth, chemical composition and carrageenan extracted from Hypnea musciformis (Wulfen) Lamouroux harvested along the Atlantic coast of Morocco. Sci. Res. Essay 2(10): 509-514.

  8. Bilan, M.I., A.A. Grachev, A. Shashkov et al. 2006. Structure of a fucoidan from the brown sea-weed Fucus serratus L. Carbohydr. Res. 341: 238-245.

  9. Bilan, M.I., E.V. Vinogradova, A.S. Shashkov & A.I. Usov. 2007. Structure of a highly pyruvylated galactan sulfate from the Pacific green alga Codium yezoense (Bryopsidales, Chlorophyta). Ibid. 342: 586-596.

  10. Brownlee, C. 2002. Role of the extracellular matrix in cell-cell signaling: paracrine paradigms. Curr. Opin. Plant Biol. 5: 396-401.

  11. Gacesa, P. Alginates. Carbohydr. Polym. 8: 161-182.

  12. Chang, L., Z. Sui, F. Fu et al. 2014. Relationship between gene expression of UDP-glucose pyrophosphorylase and agar yield in Gracilariopsis lemaneiformis (Rhodophyta). J. Appl. Phycol. 26(6): 2435-2441.

  13. Collen, J., M.L. Cornish, J. Craigie et al. 2014. Chondrus crispus - a present and historical model organism for red seaweeds. Adv. Bot. Res. 71: 53-89.

  14. Cumashi, A., N.A. Ushakova, M.E. Preobrazhenskaya et al. 2007. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiol. 17: 541-552.

  15. Deniaud-Bouet, E., N. Kervarec, G. Michel et al. 2014. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann. Bot. 114: 1203-1216.

  16. Deniaud-Bouet, E., K. Hardouin, P. Potin et al. 2017. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: Cell wall context, biomedical properties and key research challenges. Carbohydr. Polym. 175: 395-408.

  17. Domozych, D.S., M. Ciancia, J.U. Fangel et al. 2012.The cell walls of green algae: A journey through evolution and diversity. Front. Plant Sci. 3: 82.

  18. Doyle. J.W., T.P. Roth, R.M. Smith et al. 1996. Effects of calcium alginate on cellular wound healing processes modeled in vitro. J. Biomed. Mater. Res. A. 32: 561-568.

  19. Draget, K.I., O. Smidsrad, G. Skjak-Brak et al. Alginates from algae. In: Biopolymers Online. Ed. by A. Steinbuchel. 2005.

  20. Duarte, M.E.R., M.A. Cardoso, M.D. Noseda & A.S. Cerezo. 2001. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carb. Res. 333: 281-293.

  21. Ficko-Blean, E., C. Herve, G. Michel 2015. Sweet and sour sugar from the sea: the biosynthesis and remodeling of sulfated cell wall polysaccharides from marine. Perspect. Phycol. 2: 51-64.

  22. Field, C.B., M.J. Behrenfeld, J.T. Randerson, P. Falkowski. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237-240.

  23. Florez, N., M.J. Gonzalez-Munoz, D. Ribeiro et al. 2017. Algae polysaccharides" chemical characterization and their role in the inflammatory process. Cur. Med. Chem. 24: 149-175.

  24. Guibet, M., P. Boulenguer, J. Mazoyer et al. 2007. Composition and distribution of carrabiose moieties in hybrid K-A-carrageenans using carrageenases. Biomacromolecules 9: 408-415.

  25. de Jesus Paniagua-Michel, J., J. Olmos-Soto & E.R. Morales-Guerrero.2014. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers. Adv. Food Nutr. Res. 73: 221-257.

  26. Jiao, G., G. Yu, J. Zhang & H.E. Ewar. 2011. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar. drugs 9(2): 196-223.

  27. Hay, I.D., Z.U. Rehman, M.F. Moradali et al. 2013. Microbial alginate production, modification and its application. Microbial. Biotechnol. 6: 637-650.

  28. Holdt, S. & S. Kraan. 2011. Bioactive compounds in seaweed: functional food applications and legislation. J. Appl. Phycol. 23: 543-597.

  29. Henshaw, J., A. Horne-Bitschy, A.L. van Buren et al. 2006. Family 6 carbohydrate binding modules in P-agarases display exquisite selectivity for the non-reducing termini of agarose chains. J. Biol. Chem. 281: 17099-17107.

  30. Lahaye, M. & A. Robic. 2007. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8: 1765-1774.

  31. Lechat, H., M. Amat, J. Mazoyer et al. 1997. Cell wall composition of the carrageenophyte Kappaphycus alvarezii (Gigartinales, Rhodophyta) partitioned by wet sieving. J. Appl. Phycol. 9(6): 565-573.

  32. Lee, W.K., Y.Y. Lim, A.T.C. Leow et al. 2017. Biosynthesis of agar in red seaweeds. A review. Carbohydr. polym. 164: 23-30.

  33. Lee, K.Y. & D.J. Mooney. 2012. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37: 106-126.

  34. Mabeau, S., B. Kloareg & J-P. Joseleau. 1990. Fractionation and analysis of fucans from brown algae. Phytochem. 29: 2441-2445.

  35. Maeda, H., R. Yamamoto, K. Hirao & O. Tochikubo. 2005. Effects of agar (kanten) diet on obese patients with impaired glucose tolerance and type 2 diabetes. Diabetes Obes. Metab. 7: 40-46.

  36. McCandless, E.L. & J.S. Craigie. 1979. Sulfated polysaccharides in red and brown algae. Ann. Rev. Plant Physiol. 30: 41-53.

  37. Mokrosnop, V.M., A.V. Polishchuk & E.K. Zolotareva. 2016. Accumulation of a-tocopherol and P-carotene in Euglena gracilis cells under autotrophic and mixotrophic culture conditions. Appl. Biochem. Microbiol. 52(2): 216-221.

  38. Nil, S., S. Ali-Mehidi, A. Zellal & S.M.E.A. Abi-Ayad. 2016. Effects of season on the yield and quality of agar from Gelidium sesquipedale (Rhodophyta) from Mostaganem, Algeria. Afr. J. Biotechn. 15(10): 350-355.

  39. Pal, R. & A.K. Choudhury. 2014. Phytoplanktons and primary productivity. Pp. 55-57 in: An Introduction to Phytoplanktons: Diversity and Ecology. New Delhi, Springer.

  40. Pankiewicz, R., B. Leska, B. Messyasz et al. 2015. First isolation of polysaccharidic ulvans from the cell walls of fresh water algae. Alg. Res. 19: 348-354.

  41. Paradossi, G., F. Cavalieri & E. Chiessi. 2002. A conformational study on the algal poly-saccharide ulvan. Macromolecules 35: 6404-6411.

  42. Patel, S. 2012. Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. Biotech. 2: 171-185.

  43. Pomin, V.H. & A.S.M. Paulo. 2008. Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiol. 18: 1016-1027.

  44. Popper, Z.A., G. Michel, C. Herve et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Ann. Rev. Plant Biol. 62: 567-590.

  45. Qi, H. & Y. Sun. 2015. Antioxidant activity of high sulfate content derivative of ulvans in hyperlipidemic rats. Int. J. Biol. Macromolec. 76: 326-329.

  46. Robic, A., C. Gaillard, J.-F. Sassi et al. 2009. Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolymers 91: 652-664.

  47. Rocha de Souza, M.C., C.T. Marques, C.M. Guerra Dore et al. 2007. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J. Appl. Phycol. 19: 153-160.

  48. Ruocco, N., S. Costantini, S. Guariniello & M. Costantini. 2016. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules 21: 551.

  49. da Silva Vaz, B., J.Botelho Moreira, M. Greque de Morais, J.A. Vieira Costa. 2016. Microalgae as a new source of bioactive compounds in food supplements. Cur. Opin. Food Sci. 7: 73-77.

  50. Singh, S., B.N. Kate & U.C. Banerjee. 2005. Bioactive compounds from cyanobacteria and microalgae: an overview. Crit. Rev. Biotechnol. 25: 73-95.

  51. Skriptsova, A., N. Shevchenko, T. Zvyagintseva & T. Imbs. 2010. Monthly changes in the content and monosaccharide composition of fucoidans from Undaria pinnatifida (Laminariales, Phaeophyta). J. Appl. Phycol. 22: 79-86.

  52. Ueno, M., T. Hiroki, S. Takeshita et al. 2012. Comparative study on antioxidative and macrophage-stimulating activities of polyguluronic acid (PG) and polymannuronic acid (PM) prepared from alginate. Carbohydr. Res. 352: 88-93.

  53. Usov, A.I. 2011. Polysaccharides of the red algae. Adv. Carbohydr. Chem. Biochem. 65: 115-217.

  54. Usov, A.I. & M.I. Bilan. 2009. Fucoidans - sulfated polysaccharides of brown algae. Rus. Chem. Rev. 78: 785-799.

  55. Van De Velde, F., S.H. Knutsen, A.I. Usov et al. 2002. H-1 and C-13 high resolution NMR spectroscopy of carrageenans: application in research and industry. 13: 73-92.

  56. Venkatesan, J., B. Lowe, S. Anil et al. 2015. Seaweed polysaccharides and their potential biomedical applications. Starch-Starke 67: 381-390.

  57. Wells, M.L., P. Potin, J.S. Craigie et al. 2017. Algae as nutritional and functional food sources: revisiting our understanding. J. Apl. Phycol. 29: 949-982.

  58. Yaich, H., H. Garna, S. Besbes et al. 2014. Impact of extraction procedures on the chemical, rheological and textural properties of ulvan from Ulva lactuca of Tunisia coast. Food Hydrocoll. 40: 53-63.

  59. Zhu, Z., Q. Zhang, L. Chen et al. 2010. Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thromb. Res. 125: 419-426.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain