Library Subscription: Guest
Critical Reviews™ in Biomedical Engineering

Published 6 issues per year

ISSN Print: 0278-940X

ISSN Online: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Electroencephalogram-Based Emotion Recognition Using a Particle Swarm Optimization-Derived Support Vector Machine Classifier

Volume 48, Issue 1, 2020, pp. 17-28
DOI: 10.1615/CritRevBiomedEng.2020033161
Get accessGet access

ABSTRACT

We sort human emotions using Russell's circumplex model of emotion by classifying electroencephalogram (EEG) signals from 25 subjects into four discrete states, namely, happy, sad, angry, and relaxed. After acquiring signals, we use a standard database for emotion analysis using physiological EEG signals. Once raw signals are pre-processed in an EEGLAB, we perform feature extraction using Matrix Laboratory and apply discrete wavelet transform. Before classifying we optimize extracted features with particle swarm optimization. The acquired set of EEG signals are validated after finding average classification accuracy of 75.25%, average sensitivity of 76.8%, and average specificity of 91.06%.

REFERENCES
  1. Plutchik R. The nature of emotions human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am Sci. 2001;89(4):344-50. .

  2. Candra H, Yuwono M, Handojoseno A, Chai R, Su S, Nguyen HT. Recognizing emotions from EEG subbands using wavelet analysis. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:603-3. doi: 10.1109/EMBC.2015.7319766. .

  3. Mohammadi Z, Frounchi J, Amiri M. Wavelet-based emotion recognition system using EEG signal. Neural Comp App. 2017;28(8):1985-90. .

  4. Murugappan M. Human emotion classification using wavelet transform and KNN. Proceedings of the 2011 International Conference on Pattern Analysis and Intelligence Robotics; 2011 Jun 28-29; Putrajaya, Malaysia. Piscataway, NJ: IEEE; 2011. p. 148-53. doi: 10.1109/ ICPAIR.2011.5976886. .

  5. Tu C-J, Chuang L-Y, Chang J-Y, Yang C-H. Feature selection using PSO-SVM. IAENG Int J Comp Sci. 2007;33(1):111-6. .

  6. Jatupaiboon N, Pan-ngum S, Israsena P. Emotion classifi-cation using minimal EEG channels and frequency bands. Proceedings of the 10th International Joint Conference on Computer Science and Software Engineering (JCSSE); 2013 May 29-31; Khon Kaen, Thailand. Picataway, NJ: IEEE. p. 21-4. doi:10.1109/JCSSE.2013.6567313. .

  7. Soleymani M, Pantic M, Pun T. Multimodal emotion recognition in response to videos. IEEE Trans Affect Comp. 2012;3(2):211-23. .

  8. Asghar MA, Khan MJ, Fawad M, Amin Y, Rizwan M, Rahman M, Badnava S, Mirjavadi SS. EEG-Based multi-modal emotion recognition using a bag of deep features: An optimal feature selection approach. Sensors (Basel). 2019;19(23):E5218. .

  9. Fawad M, Rahman M, Khan MJ, Asghar MA, Amin Y, Badnava S, Mirjavadi SS. Image local features description through polynomial approximation. IEEE Access. 2019;7:183692-705. doi: 10.1109/ACCESS.2019. 2959326. .

  10. Khan F, Rahman MU, Khan MJ, Amin Y, Tenhunen H. Low-rank multi-channel features for robust visual object tracking. Symmetry. 2019;11(9):1155. .

  11. Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias S, Fellenz W, Taylor JG. Emotion recognition in human-computer interaction. IEEE Signal Proc. 2001 Jan;18(1):32-80. .

  12. Richman JS, Moorman JR. Physiological time-series analysis using approximate and sample entropy. Am J Physiol. 2000;278:H2039-49. .

  13. Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks; 1995 Nov 27-Dec 1; Perth, WA, Australia: IEEE; 1995. p. 1942-48. .

  14. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002;46(1-3):389-422. .

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain