Library Subscription: Guest
Critical Reviews™ in Biomedical Engineering

Published 6 issues per year

ISSN Print: 0278-940X

ISSN Online: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Surface Modification Strategies for Enhanced Morphological Performance in Biomedical Implantation: Recent Developments, Challenges, and Future Scope in the Health Sector

Volume 50, Issue 6, 2022, pp. 13-43
DOI: 10.1615/CritRevBiomedEng.2022045153
Get accessGet access

ABSTRACT

Surface modification is the science of manipulating surface morphology and interfacial properties and also plays a vital role in biomedical implantation. A few of the interfacial properties are biocompatibility, protein adsorption, wettability, cell proliferation, collagen, etc. These properties depend on surface modification strategies and significantly impact the implant response within the host body. Generally, the corrosion, surface wear, and degradation in the physiological environment limit the application of different biomaterials and can address through various surface modification strategies. These surface modifications developed over the years to improve the morphology and interfacial properties to meet the specific functional surface application in biomedical implantation. It can be done through surface roughening, patterning/texturing, coating with different materials, and hybrid modification. Further, the process development for bio-medical application, process capabilities, limitations, challenges, and characterization aspects are correlated to identify the effectiveness of different surface modification strategies. Finally, various innovative biomedical applications and surface characteristics are also present with future scope in the direction of surface modification for biomedical implantation.

Figures

  • Yearly research publication in the area of surface modifcations for biomedical implantation (source: Google
scholar)
  • Schematic illustration of different surface modifcation strategies/treatments widely used for titanium based
biomedical implantation (reprinted from Sunil et al. with permission from Elsevier, copyright 20224)
  • Schematic of femoral head textured artifcial hip joint. Figure reproduced from (Gosh et al.) under a Creative
Commons license.10
  • Schematics of multi-functional Layer by Layer deposition to stimulate the layered surfaces for bone tissue
regeneration. Figure reproduced from (Yavari et al.) under a Creative Commons license.14
  • Schematic of engineered surfaces used to enhance endothelialization and/or reduce thrombosis. Figure reproduced from (Govindarajan et al.) under a Creative Commons license.15
  • (a) Porous coated hip stem and (b) schematic of fully and partially coated porous hip stem in artifcial hip joint
(reprinted from Pal et al. with permission from Elsevier, copyright 20135)
  • SEM image of MG63 cell growth on nanostructured Fe/Cu-HAP coating at 1 day (a) and 3 days (b) of incubation (reprinted from Karthika with permission from Elsevier, copyright 202219)
  • Schematic illustration of surface modifcation process through (a) micro dimple texturing on implant surface,
(b) contact angle measurement, and (c) reciprocating pin on disc test for biotribological performance (reprinted from
Pratap et al. with permission from Elsevier, copyright 202121)
  • Schematic illustration Sol-Gel method through the colloidal solution followed by interconnected network of
gelation. Figure reproduced from (Owens et al.) under a Creative Commons license.18
  • Soft bone drilling and curvature of implant (a) drilling strategy for soft and dense bone using different drill
bits (b) computer numerical control drilling with an underneath load cell (c) deployment of NobleActive implant (d)
manual implantation through guide observing torque using insertion device and underneath load cell64
  • Functional behavior of surface topographies and related bioflm control (reprinted from Lee et al. with permission from Elsevier, copyright 202166)
  • Biological reactivity of implant contamination and its effects on host body cell. Figure reproduced from
(Eliaz) under a Creative Commons license.70
  • Graphene oxide nanoparticles effect on in vitro and in vivo behavior (reprinted from Kiew et al. with permission from Elsevier, copyright 201672)
  • Effect of biomimetic surfaces on osseointegration (reprinted from Bai et al. with permission from Elsevier,
copyright 202173)
  • Behavior of protein-surface interaction on hydrophobic or hydrophilic surfaces (a, b) smooth and (c, d)
roughened surface. Hydrophobic surface (a, c) there rough surface enhances the protein adsorption quantity along with
protein fouling. Hydrophilic (b) surface impedes protein adsorption and maintains native protein. While (d) produce
non fouling and improved water affection due to roughening that prevents protein adsorption.74
  • 3D-printed implantable biomedical devices for different applications. Figure reproduced from (Arefn et al.)
under a Creative Commons license.12
  • Different healthcare applications of nanobiosensors (reprinted from Lamabam and Thangjam with permission from Elsevier, copyright 201676)
REFERENCES
  1. Balani K, Verma V, Agarwal A, Narayan R. Biosurfaces: A materials science and engineering perspective. New York: John Wiley & Sons; 2015.

  2. Chandra K, Badola I, Jabeen N. Implant surface modifications: A review. Int J Appl Dent Sci. 2020;6(3):334-8.

  3. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng. 2004;47(3-4):49-121.

  4. Sunil BR, Kiran AS, Ramakrishna S. Surface functionalized titanium with enhanced bioactivity and antimicrobial properties through surface engineering strategies for bone implant applications. Curr Opin Biomed Eng. 2022;23:100398.

  5. Pal B, Puthumanapully PK, Amis AA. (ii) Biomechanics of implant fixation. Orthop Trauma. 2013;27(2):76-84.

  6. Hara D, Nakashima Y, Sato T, Hirata M, Kanazawa M, Kohno Y, Yoshimoto K, Yoshihara Y, Nakamura A, Nakao Y, Iwamoto Y. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique. Mater Sci Eng C. 2016;59:1047-52.

  7. Montazerian M, Hosseinzadeh F, Migneco C, Fook MV, Baino F. Bioceramic coatings on metallic implants: An overview. Ceram Int. 2022;48:8987-9005.

  8. Van Laarhoven SN, van Eerden AH, van Hellemondt GG, Schreurs BW, Wymenga AB, Heesterbeek PJ. Superior Surface Modification Strategies for Biomedical Implantation survival of fully cemented fixation compared with hybrid fixation in a single design rotating hinge knee implant. J Arthroplasty. 2022;37(3):482-7.

  9. Eliaz N, Shmueli S, Shur I, Benayahu D, Aronov D, Rosenman G. The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells. Acta Biomater. 2009;5(8):3178-91.

  10. Ghosh S, Abanteriba S. Status of surface modification techniques for artificial hip implants. Sci Technol Adv Mater. 2016;17(1):715-35.

  11. Agarwal S. Hip and knee replacement. In: Agarwal S, editor. Current orthopaedic practice. Cham, Switzerland: Springer; 2022. p. 481-566.

  12. Arefin AM, Khatri NR, Kulkarni N, Egan PF. Polymer 3D printing review: Materials, process, and design strategies for medical applications. Polymers. 2021;13(9): 1499.

  13. Sanchez-Bodon J, Andrade del Olmo J, Alonso JM, Moreno-Benitez I, Vilas-Vilela JL, Perez-Alvarez L. Bioactive coatings on titanium: A review on hydroxylation, self-assembled monolayers (SAMs) and surface modification strategies. Polymers. 2021;14(1):165.

  14. Yavari SA, Croes M, Akhavan B, Jahanmard F, Eigenhuis CC, Dadbakhsh S, Vogely HC, Bilek MM, Fluit AC, Boel CH, van der Wal BC. Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials. Addit Manuf. 2020;32:100991.

  15. Govindarajan T, Shandas R. A survey of surface modification techniques for next-generation shape memory polymer stent devices. Polymers. 2014;6(9):2309-31.

  16. Bauer S, Schmuki P, Von Der Mark K, Park J. Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Prog Mater Sci. 2013;58(3):261-326.

  17. Nuno N, Groppetti R, Senin N. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants. Clin Biomech. 2006;21(9):956-62.

  18. Karthika A. Biocompatible iron and copper incorporated nanohydroxyapatite coating for biomedical implant applications. Mater Today Proc. 2022;51:1754-9.

  19. Wu Z, Bao H, Xing Y, Liu L. Tribological characteristics and advanced processing methods of textured surfaces: A review. Int J Adv Manuf Technol. 2021;114(5):1241-77.

  20. Pratap T, Patra K. Micro–nano surface texturing, characterization, and their impact on biointerfaces. In: Davim JP, Gupta K, Pramanik A, editors. Advanced machining and finishing. Amsterdam, Netherlands: Elsevier; 2021. p.577–610.

  21. Pratap T, Patra K. Micro ball-end milling—an emerging manufacturing technology for micro-feature patterns. Int J Adv Manuf Technol. 2018;94(5):2821–45.

  22. Fox KE, Tran NL, Nguyen TA, Nguyen TT, Tran PA. Surface modification of medical devices at nanoscale – Recent development and translational perspectives. In: Yang L, Bhaduri S, Webster TJ, editors. Biomaterials in translational medicine. London, United Kingdom: Elsevier; 2019. p. 163–189.

  23. Hasan M, Zhao J, Jiang Z. A review of modern advancements in micro drilling techniques. J Manuf Process. 2017;29:343-75.

  24. Martan J, Moskal D, Smetak L, Honner M. Performance and accuracy of the shifted laser surface texturing method. Micromachines. 2020;11(5):520.

  25. Li D, Chen X, Guo C, Tao J, Tian C, Deng Y, Zhang W. Micro surface texturing of alumina ceramic with nanosecond laser. Procedia Eng. 2017;174:370-6.

  26. Li D, Chen X, Guo C, Tao J, Tian C, Deng Y, Zhang W. Micro surface texturing of alumina ceramic with nanosecond laser. Procedia Eng. 2017;174:370–6.

  27. Zhang S, Zhu W. TiN coating of tool steels: A review. J Mater Process Technol. 1993;39(1-2):165-77.

  28. Li J, Zhou P, Attarilar S, Shi H. Innovative surface modification procedures to achieve micro/nano-graded Ti-based biomedical alloys and implants. Coatings. 2021;11(6):647.

  29. Kaya C, Kaya F, Su B, Thomas B, Boccaccini AR. Structural and functional thick ceramic coatings by electrophoretic deposition. Surf Coat Technol. 2005;191(2-3):303-10.

  30. Zhao X, Liu H, Li S, Wang X, Sheng Y, Zhang P, Li W. Combined effect of TiN coating and surface texture on corrosion-wear behavior of selective laser melted CP-titanium in simulated body fluid. J Alloys Compd. 2020;816:152667.

  31. Zhao X, Zhang H, Liu H, Li S, Li W, Wang X. In vitro bio-tribological behaviour of textured nitride coating on selective laser melted Ti-6Al-4V alloy. Surf Coat Technol. 2021;409:126904.

  32. Wang C, Li Z, Zhao H, Zhang G, Ren T, Zhang Y. Enhanced anticorrosion and antiwear properties of Ti–6Al–4V alloys with laser texture and graphene oxide coatings. Tribol Int. 2020;152:106475.

  33. Yuan S, Lin N, Zou J, Liu Z, Wang Z, Tian L, Qin L, Zhang H, Wang Z, Tang B, Wu Y. Effect of laser surface texturing (LST) on tribological behavior of double glow plasma surface zirconizing coating on Ti6Al4V alloy. Surf Coat Technol. 2019;368:97-109.

  34. Cui WF, Niu FJ, Tan YL, Qin GW. Microstructure and tribocorrosion performance of nanocrystalline TiN graded coating on biomedical titanium alloy. Trans Nonferrous Met Soc China. 2019;29(5):1026-35.

  35. Lin DJ, Hung FY, Yeh ML, Lee HP, Lui TS. Development of a novel micro-textured surface using duplex surface modification for biomedical Mg alloy applications. Mater Lett. 2017;206:9-12.

  36. He D, Zheng S, Pu J, Zhang G, Hu L. Improving tribological properties of titanium alloys by combining laser 42 Murari et al. surface texturing and diamond-like carbon film. Tribol Int. 2015;82:20-7.

  37. Hu G, Guan K, Lu L, Zhang J, Lu N, Guan Y. Engineered functional surfaces by laser microprocessing for biomedical applications. Engineering. 2018;4(6):822-30.

  38. Zhang M, Zhou B, Gao J, Hei H, Ma Y, Huang X, Liu Z, Xue Y, Yu S, Wu Y. A scalelike micro/nano-textured structure on Ti-based implants with enhanced cytocompatibility and osteogenic activities. Surf Coat Technol. 2021;422:127497.

  39. Dong B, Guo X, Zhang K, Zhang Y, Li Z, Wang W, Cai C. Combined effect of laser texturing and carburizing on the bonding strength of DLC coatings deposited on medical titanium alloy. Surf Coat Technol. 2022;429:127951.

  40. Cui L, Li H, Gong C, Huang J, Xiong D. A biomimetic bilayer coating on laser-textured Ti6Al4V alloy with excellent surface wettability and biotribological properties for artificial joints. Ceram Int. 2022;48(18)26264-73.

  41. Xin Z, Ren N, Ren Y, Yue X, Zhou QH, Tao Y, Ye Y. In-situ nitriding on the textured titanium alloy using femtosecond laser. J Mater Res Technol. 2022;19:466-71.

  42. Wang Z, Ren B. Preparation of superhydrophobic titanium surface via the combined modification of hierarchical micro/nanopatterning and fluorination. J Coat Technol Res. 2022;19(3):1-9.

  43. Wei Y, Hu Y, Li M, Li D. Sr-containing micro/nano-hierarchical textured TiO2 nanotubes on 3D printing titanium. Inorg Chem Commun. 2020;117:107947.

  44. Booth L, Catledge SA, Nolen D, Thompson RG, Vohra YK. Synthesis and characterization of multilayered diamond coatings for biomedical implants. Materials. 2011;4(5):857-68.

  45. Teker D, Muhaffel F, Menekse M, Karaguler NG, Baydogan M, Cimenoglu H. Characteristics of multilayer coating formed on commercially pure titanium for biomedical applications. Mater Sci Eng C. 2015;48:579-85.

  46. Hsu HC, Chung YC, Wu SC, Ho YC, Chang HH, Ho WF. Preparation of chitosan/hydroxyapatite composite coating obtained from crab shells on hierarchical micro/nano-textured Ti surface. Surf Coat Technol. 2022;437:128364.

  47. Kashyap V, Ramkumar P. DLC coating over pre-oxidized and textured Ti6Al4V for superior adhesion and tribo-performance of hip implant. Surf Coat Technol. 2022;440:128492.

  48. Mendizabal L, Lopez A, Bayon R, Herrero-Fernandez P, Barriga J, Gonzalez JJ. Tribocorrosion response in biological environments of multilayer TaN films deposited by HPPMS. Surf Coat Technol. 2016;295:60-9.

  49. Alemon B, Flores M, Ramirez W, Huegel JC, Broitman E. Tribocorrosion behavior and ions release of CoCrMo alloy coated with a TiAlVCN/CNx multilayer in simulated body fluid plus bovine serum albumin. Tribol Int. 2015;81:159-68.

  50. Zhang X, Zhao Y, Gao W, Ren L, Yang K. Study of TiCuN/ZrN multilayer coatings with adjustable combination properties deposited on TiCu alloy. Vacuum. 2022;25:111202.

  51. Deen I, Selopal GS, Wang ZM, Rosei F. Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implants. J Colloid Interface Sci. 2022;607:869-80.

  52. Beliardouh NE, Ramoul CE, Nouveau C, Kaleli EH, Montagne A. Synthesis and tribocorrosion performances of multilayer (Ta/ZrN) n coatings. Thin Solid Films. 2022;749:139184.

  53. Das A, Saxena V, Bhardwaj A, Rabha S, Pandey LM, Dobbidi P. Microstructural, interfacial, biological and electrical activity in sputtered hydroxyapatite-barium strontium titanate bilayered thin films. Surf Interfaces. 2022;31:102063.

  54. Fernandez-Hernan JP, Lopez AJ, Torres B, Martinez-Campos E, Matykina E, Rams J. Anticorrosion and cytocompatibility assessment of graphene-doped hybrid silica and plasma electrolytic oxidation coatings for biomedical applications. ACS Biomater Sci Eng. 2021;7(12):5861-77.

  55. Donkov N, Walkowicz J, Zavaleyev V, Zykova A, Safonov V, Dudin S, Yakovin S. Mechanical properties of tantalum-based ceramic coatings for biomedical applications. J Phys Conf Ser. 2018;992(1):012034.

  56. Wang Z, Zhitomirsky I. Deposition of organic-inorganic nanocomposite coatings for biomedical applications. Solids. 2022;3(2):271-81.

  57. Raj A, CP P, KK R, U S. Characterization of Ti biomedical implant surfaces modified by physical vapour deposition coating. Proceedings of the International Conference on Aerospace and Mechanical Engineering (ICAME 21); 2022 Feb 24; Kerala Indian. SSRN; 2022.

  58. Çomaklı O. Improved structural, mechanical, corrosion and tribocorrosion properties of Ti45Nb alloys by TiN, TiAlN monolayers, and TiAlN/TiN multilayer ceramic films. Ceram Int. 2021;47(3):4149-56.

  59. Mina-Aponzá S, Castro-Narváez SP, Caicedo-Bejarano LD, Bermeo-Acosta F. Study of titanium–silver monolayer and multilayer films for protective applications in biomedical devices. Molecules. 2021;26(16):4813.

  60. Ding Z, Zhou Q, Wang Y, Ding Z, Tang Y, He Q. Microstructure and properties of monolayer, bilayer and multilayer Ta2O5-based coatings on biomedical Ti-6Al-4V alloy by magnetron sputtering. Ceram Int. 2021;47(1):1133-44.

  61. Fazel ZA, Elmkhah H, Fattah-Alhosseini A, Babaei K, Meghdari M. Comparing electrochemical behavior of applied CrN/TiN nanoscale multilayer and TiN single-layer coatings deposited by CAE-PVD method. J Asian Ceram Soc. 2020;8(2):510-8.

  62. Cruz MB, Silva N, Marques JF, Mata A, Silva FS, Carames J. Biomimetic implant surfaces and their role in biological integration-A concise review. Biomimetics. 2022;7(2):74.

  63. Voumard B, Maquer G, Heuberger P, Zysset PK, Wolfram U. Peroperative estimation of bone quality and primary 65. Kuhn L T. Biomaterials. In: Enderle J D, Blanchard S M, Bronzino J D, editors. Introduction to biomedical engineering. Burlington, USA: Elsevier; Academic Press; 2012;5(3):255-312.

  64. Kuhn L T. Biomaterials. In: Enderle J D, Blanchard S M, Bronzino J D, editors. Introduction to biomedical engineering. Burlington, USA: Elsevier; Academic Press; 2012;5(3):255–312.

  65. Lee SW, Phillips KS, Gu H, Kazemzadeh-Narbat M, Ren D. How microbes read the map: Effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials. 2021;268:120595.

  66. Meng GH, Zhang BY, Liu H, Yang GJ, Xu T, Li CX, Li CJ. Vacuum heat treatment mechanisms promoting the adhesion strength of thermally sprayed metallic coatings. Surf Coat Technol. 2018;344:102-10.

  67. Shan, J. Laser welding of magnesium alloys. In: Liu L, editor. Welding and joining of magnesium alloys. Cambridge UK: Woodhead Publishing Limited; 2010. p. 306-350.

  68. Fatoba OS, Akinlabi SA, Akinlabi ET, Gharehbaghi R. Microstructural analysis, micro-hardness and wear resistance properties of quasicrystalline Al–Cu–Fe coatings on Ti-6Al-4V alloy. Mater Res Express. 2018;5(6): 066538.

  69. Eliaz N. Corrosion of metallic biomaterials: A review. Materials. 2019;12(3):407.

  70. Silva-Bermudez P, Rodil SE. An overview of protein adsorption on metal oxide coatings for biomedical implants. Surf Coat Technol. 2013;233:147-58.

  71. Kiew SF, Kiew LV, Lee HB, Imae T, Chung LY. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J Control Release. 2016;226:217-28.

  72. Bai L, Chen P, Zhao Y, Hang R, Yao X, Tang B, Liu C, Xiao Y, Hang R. A micro/nano-biomimetic coating on titanium orchestrates osteo/angio-genesis and osteoimmunomodulation for advanced osseointegration. Biomaterials. 2021;278:121162.

  73. Stewart C, Akhavan B, Wise SG, Bilek MM. A review of biomimetic surface functionalization for bone-integrating orthopedic implants: Mechanisms, current approaches, and future directions. Prog Mater Sci. 2019;106:100588.

  74. Biran R, Pond D. Heparin coatings for improving blood compatibility of medical devices. Adv Drug Deliv Rev. 2017;112:12-23.

  75. Lamabam SD, Thangjam R. Emerging trends in the application of nanobiosensors in the food industry. In: Grumezescu AM, editor. Nanotechnology in the agri-food industry, novel approaches of nanotechnology in food. Academic Press; 2016. p. 663-96.

  76. Tan R, Yoo J, Jang Y. Engineering approaches to create antibacterial surfaces on biomedical implants and devices. In: Li B, Moriarty TF, Webster T, Xing M, editors. Racing for the surface: Antimicrobial and interface tissue engineering. Cham, Switzerland: Springer; 2020. p. 313-40.

  77. Covani U, Marconcini S, Crespi R, Barone A. Bacterial plaque colonization around dental implant surfaces. Implant Dent. 2006;15(3):298-304.

  78. Ferraris S, Spriano SJ. Antibacterial titanium surfaces for medical implants. Mater Sci Eng C. 2016;61:965-78.

  79. Ishak MI, Liu X, Jenkins J, Nobbs AH, Su B. Protruding nanostructured surfaces for antimicrobial and osteogenic titanium implants. Coatings. 2020;10(8):756.

  80. Omri A, Anderson M, Mugabe C, Suntres Z, Mozafari MR, Azghani A. Artificial implants–new developments and associated problems. In: Mozafari MR, editor. Nanomaterials and nanosystems for biomedical applications. Dordrecht, Netherlands: Springer; 2007. p. 53–65.

  81. Han A, Tsoi JK, Rodrigues FP, Leprince JG, Palin WM. Bacterial adhesion mechanisms on dental implant surfaces and the influencing factors. Int J Adhes Adhes. 2016;69:58-71.

  82. Prathapachandran J, Suresh N. Management of peri-implantitis. Dent Res J. 2012;9(5):516.

  83. Chevillotte C, Trousdale RT, An KN, Padgett D, Wright T. Retrieval analysis of squeaking ceramic implants: Are there related specific features? Orthop Traumatol Surg Res. 2012;98(3):281-7.

  84. Imbuldeniya AM, Pearce SJ, Walter WL, Zicat BA, Walter WK. Squeaking: Current knowledge and how to avoid it. Curr Rev Musculoskelet Med. 2013;6(4):342-9.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain