Library Subscription: Guest
International Journal for Uncertainty Quantification

Published 6 issues per year

ISSN Print: 2152-5080

ISSN Online: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

BAYESIAN IDENTIFICATION OF PYROLYSIS MODEL PARAMETERS FOR THERMAL PROTECTION MATERIALS USING AN ADAPTIVE GRADIENT-INFORMED SAMPLING ALGORITHM WITH APPLICATION TO A MARS ATMOSPHERIC ENTRY

Volume 13, Issue 2, 2023, pp. 53-80
DOI: 10.1615/Int.J.UncertaintyQuantification.2022042928
Get accessGet access

ABSTRACT

For space missions involving atmospheric entry, a thermal protection system is essential to shield the spacecraft and its payload from the severe aerothermal loads. Carbon/phenolic composite materials have gained renewed interest to serve as ablative thermal protection materials (TPMs). New experimental data relevant to the pyrolytic decomposition of the phenolic resin used in such carbon/phenolic composite TPMs have recently been published in the literature. In this paper, we infer from these new experimental data an uncertainty-quantified pyrolysis model. We adopt a Bayesian probabilistic approach to account for uncertainties in the model identification. We use an approximate likelihood function involving a weighted distance between the model predictions and the time-dependent experimental data. To sample from the posterior, we use a gradient-informed Markov chain Monte Carlo method, namely, a method based on an Ito stochastic differential equation, with an adaptive selection of the numerical parameters. To select the decomposition mechanisms to be represented in the pyrolysis model, we proceed by progressively increasing the complexity of the pyrolysis model until a satisfactory fit to the data is ultimately obtained. The pyrolysis model thus obtained involves six reactions and has 48 parameters. We demonstrate the use of the identified pyrolysis model in a numerical simulation of heat-shield surface recession in a Martian entry.

REFERENCES
  1. Williams, S.D. and Curry, D.M., Thermal Protection Materials: Thermophysical Property Data, NASA Reference Publication RP-1289, 1992.

  2. Stackpoole, M., Sepka, S., Cozmuta, I., andKontinos, D., Post-Flight Evaluation of Stardus Sample Return Capsule Forebody Heatshield Material, j. Thermophys. Heat Transf, 24(4):694-707, 2010.

  3. Wright, M., Cozmuta, I., Laub, B., Chen, Y.K., and Wilcoxson, W.H., Defining Ablative Thermal Protection System Margins for Planetary Entry Vehicles, 42nd AIAA Thermophysics Conf, American Institute of Aeronautics and Astronautics, 2011.

  4. Seedhouse, E., Dragon Design, Development, and Test, in SpaceX's Dragon: America's Next Generation Spacecraft, Chichester, UK: Springer, pp. 23-44, 2016.

  5. Natali, M., Puri, I., Rallini, M., Kenny, J., and Torre, L., Ablation Modeling of State of the Art EPDM Based Elastomeric Heat Shielding Materials for Solid Rocket Motors, Computat. Mater. Sci., 111:460-480, 2016.

  6. Reimer, T., Zuber, C., Rieser, J., and Rothermel, T., Determination of the Mechanical Properties of the Lightweight Ablative Material Zuram, in Ceramic Transactions Series, Hoboken, NJ: Wiley, pp. 311-326, 2018.

  7. Duffa, G., Ablative Thermal Protection Systems Modeling, Reston, VA: AIAA, Inc., 2013.

  8. Wong, H.W., Peck, J., Assif, J., Panerai, F., Lachaud, J., and Mansour, N.N., Detailed Analysis of Species Production from the Pyrolysis of the Phenolic Impregnated Carbon Ablator, J. Anal. Appl. Pyrolys, 122:258-267,2016.

  9. Torres-Herrador, F., Eschenbacher, A., Coheur, J., Blondeau, J., Magin, T.E., and Geem, K.M.V., Decomposition of Carbon/Phenolic Composites for Aerospace Heatshields: Detailed Speciation of Phenolic Resin Pyrolysis Products, Aerospace Sci. Technol., 119:107079-107089,2021.

  10. Bessire, B.K. and Minton, T.K., Decomposition of Phenolic Impregnated Carbon Ablator (PICA) as a Function of Temperature and Heating Rate, ACS Appl. Mater. Int., 9(25):21422-21437, 2017.

  11. Vyazovkin, S., Burnham, A.K., Criado, J.M., Perez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data, Thermochim. Acta, 520(1-2):1-19, 2011.

  12. Coheur, J., Torres-Herrador, F., Chatelain, P., Mansour, N.N., Magin, T.E., and Arnst, M., Analytical Solution for Multi-Component Pyrolysis Simulations of Thermal Protection Materials, J. Mater. Sci., 56:6845-6860, 2021.

  13. Torres-Herrador, F., Meurisse, J.B., Panerai, F., Blondeau, J., Lachaud, J., Bessire, B.K., Magin, T.E., and Mansour, N.N., A High Heating Rate Pyrolysis Model for the Phenolic Impregnated Carbon Ablator (PICA) Based on Mass Spectroscopy Experiments, J. Anal. Appl. Pyrol., 141:104625-104635, 2019.

  14. Najm, H., Berry, R., Safta, C., Sargsyan, K., and Debusschere, B., Data-Free Inference of Uncertain Parameters in Chemical Models, Int. J. Uncertainty Quantif., 4(2):111-132, 2014.

  15. Cheung, S.H., Miki, K., Prudencio, E., and Simmons, C., Uncertainty Quantification and Robust Predictive System Analysis for High Temperature Kinetics of HCN/O2MJ Mixture, Chem. Phys, 475:136-152,2016.

  16. Khalil, M. and Najm, H.N., Probabilistic Inference of Reaction Rate Parameters from Summary Statistics, Combust. Theory Model., 22(4):635-665,2018.

  17. Urzay, J., Kseib, N., Constantine, P.G., Davidson, D.F., and Iaccarino, G., Uncertainty-Quantifying Models for Chemical-Kinetic Rates, Center for Turbulence Research Annual Briefs, 2012.

  18. Bruns, M.C., Inferring and Propagating Kinetic Parameter Uncertainty for Condensed Phase Burning Models, Fire Technol., 52(1):93-120, 2015.

  19. Torres-Herrador, F., Coheur, J., Panerai, F., Magin, T.E., Arnst, M., Mansour, N.N., and Blondeau, J., Competitive Kinetic Model for the Pyrolysis of the Phenolic Impregnated Carbon Ablator, Aerospace Sci. Technol, 100:105784, 2019.

  20. Beck, J.L. and Katafygiotis, L.S., Updating Models and Their Uncertainties. I: Bayesian Statistical Framework, J. Eng. Mech., 124(4):455-461, 1998.

  21. Kennedy, M.C. and O'Hagan, A., Bayesian Calibration of Computer Models, J. R. Stat. Soc., 63(3):425-464,2001.

  22. Koga, N., A Review of the Mutual Dependence of Arrhenius Parameters Evaluated by the Thermoanalytical Study of Solid-State Reactions: The Kinetic Compensation Effect, Thermochim. Acta, 244:1-20, 1994.

  23. Galwey, A.K. and Brown, M.E., Thermal Decomposition of Ionic Solids, Amsterdam, The Netherlands: Elsevier, 1999.

  24. Rodionova, O.E. and Pomerantsev, A.L., Estimating the Parameters of the Arrhenius Equation, Kinet. Catal., 46(3):305-308, 2005.

  25. Pomerantsev, A.L., Kutsenova, A.V., and Rodionova, O.Y., Kinetic Analysis of Non-Isothermal Solid-State Reactions: Multistage Modeling without Assumptions in the Reaction Mechanism, Phys. Chem. Chem. Phys., 19(5):3606-3615, 2017.

  26. Soize, C., Construction of Probability Distributions in High Dimension Using the Maximum Entropy Principle: Applications to Stochastic Processes, Random Fields and Random Matrices, Int. J. Numer. Methods Eng., 76(10):1583-1611, 2008.

  27. Soize, C., Polynomial Chaos Expansion of a Multimodal Random Vector, SIAM/ASA J. Uncertainty Quantif., 3(1):34-60, 2015.

  28. Soize, C., Uncertainty Quantification, Cham, Switzerland: Springer International Publishing, 2017.

  29. Kolda, T.G. and Bader, B.W., Tensor Decompositions and Applications, SIAMRev, 51(3):455-500, 2009.

  30. Wright, M.J., Beck, R.A.S., Edquist, K.T., Driver, D., Sepka, S.A., Slimko, E.M., and Willcockson, W.H., Sizing and Margins Assessment of Mars Science Laboratory Aeroshell Thermal Protection System, J. Spacecraft Rockets, 51(4):1125-1138,2014.

  31. Kendall, R.M., Barlett, E.P., Rindal, R.A., and Moyer, C.B., An Analysis of the Coupled Chemically Reacting Boundary Layer and Charring Ablator: Part I., Tech. Rep., NASA CR-1060, 1968.

  32. Chen, Y.K. and Milos, F.S., Ablation and Thermal Response Program for Spacecraft Heatshield Analysis, J. Spacecraft Rockets, 36(3):475-483, 1999.

  33. Sykes, G.F., Decomposition Characteristics of a Char-Forming Phenolic Polymer Used for Ablative Composites, Tech. Rep., NASA TN D-3810, National Aeronautics and Space Administration, 1967.

  34. Goldstein, H.E., Pyrolysis Kinetics of Nylon 6-6, Phenolic Resin, and Their Composites, J. Macromolec. Sci., 3(4):649-673, 1969.

  35. Trick, K.A. and Saliba, T.E., Mechanisms of the Pyrolysis of Phenolic Resin in a Carbon/Phenolic Composite, Carbon, 33(11):1509-1515, 1995.

  36. Trick, K.A., Saliba, T.E., and Sandhu, S.S., A Kinetic Model of the Pyrolysis of Phenolic Resin in a Carbon/Phenolic Comosite, Carbon, 35(3):393-401, 1997.

  37. Wong, H.W., Peck, J., Bonomi, R.E., Assif, J., Panerai, F., Reinisch, G., Lachaud, J., and Mansour, N.N., Quantitative Determination of Species Production from Phenol-Formaldehyde Resin Pyrolysis, Polymer Degradat. Stab., 112:122-131,2015.

  38. Bessire, B.K., Lahankar, S.A., and Minton, T.K., Pyrolysis of Phenolic Impregnated Carbon Ablator (PICA), ACSAppl. Mater. Inter., 7(3):1383-1395, 2015.

  39. Lachaud, J., Magin, T.E., Cozmuta, I., and Mansour, N.N., A Short Review of Ablative-Material Response Models and Simulation Tools, 7th European Symposium on Aerothermodynamics, L. Ouwehand, Ed., Brugge, Belgium, ESTEC-ESA, SP-692, pp. 91-98,2011.

  40. Arnst, M., Alvarez, B.A., Ponthot, J.P., and Boman, R., Ito-SDE MCMC Method for Bayesian Characterization of Errors Associated with Data Limitations in Stochastic Expansion Methods for Uncertainty Quantification, J. Comput. Phys, 349:59-79, 2017.

  41. Arnst, M. and Soize, C., Identification and Sampling of Bayesian Posteriors of High-Dimensional Symmetric Positive-Definite Matrices for Data-Driven Updating of Computational Models, Comput. Methods Appl. Mech. Eng., 352:300-323, 2019.

  42. Girolami, M. and Calderhead, B., Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods, J. R. Stat. Soc., 73(2):123-214,2011.

  43. Law, K., Proposals Which Speed Up Function-Space MCMC, J. Comput. Appl. Math, 262:127-138, 2014.

  44. Hoffman, M.D. and Gelman, A., The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo, J. Mach. Learn. Res, 15:1593-1623,2014.

  45. Marshall, T. and Roberts, G., An Adaptive Approach to Langevin MCMC, Stat. Comput., 22(5):1041-1057, 2011.

  46. Atchade, Y.F., An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift, Methodol. Comput. Appl. Probab, 8(2):235-254,2006.

  47. Haario, H., Saksman, E., and Tamminen, J., An Adaptive Metropolis Algorithm, Bernoulli, 7(2):223-242,2001.

  48. Atchade, Y.F. and Rosenthal, J.S., On Adaptive Markov Chain Monte Carlo Algorithms, Bernoulli, 11(5):815-828,2005.

  49. Andrieu, C. and Thoms, J., A Tutorial on Adaptive MCMC, Stat. Comput., 18:343-374, 2008.

  50. Roberts, G.O. and Rosenthal, J.S., Examples of Adaptive MCMC, J. Comput. Graph. Stat., 18(2):349-367, 2009.

  51. Rosenthal, J.S., Optimal Proposal Distributions and Adaptive MCMC, Boca Raton, FL: Chapman and Hall, 2010.

  52. Gelman, A.G., Roberts, G.O., and Gilks, W.R., Efficient Metropolis jumping Rules, Oxford, UK: Oxford University Press, pp. 599-608, 1996.

  53. Andrieu, C. and Moulines, E., On the Ergodicity Properties of Some Adaptive MCMC Algorithms, Annals Appl. Probab, 16(3):1462-1505, 2006.

  54. Coheur, Uncertainty Quantification of Aerothermal Flow-Material Simulations of Low-Density Ablative Thermal Protection Systems, PhD, University of Liege, University of Louvain, 2021.

  55. Hairer, E., Lubich, C., and Wanner, G., Geometric Numerical Integration, Berlin, Germany: Springer-Verlag, 2006.

  56. Guilleminot, J. and Soize, C., Ito SDE-Based Generator for a Class of Non-Gaussian Vector-Valued Random Fields in Uncertainty Quantification, SIAMJ. Sci. Comput., 36(6):A2763-A2786, 2014.

  57. Lachaud, J. and Mansour, N.N., Porous-Material Analysis Toolbox Based on OpenFOAM and Applications, j. Thermophys. Heat Transf., 28(2):191-202, 2014.

  58. Scoggins, J.B., Leroy, V., Bellas-Chatzigeorgis, G., Dias, B., and Magin, T.E., Mutation++: MUlticomponent Thermodynamic and Transport Properties for IONized Gases in C++, SoftwareX, 12:100575-100583, 2020.

  59. Meurisse, J., Lachaud, J., Panerai, F., Tang, C., and Mansour, N.N., Multidimensional Material Response Simulations of a Full-Scale Tiled Ablative Heatshield, Aerospace Sci. Technol., 76:497-511,2018.

  60. Lachaud, J., Martin, A., Van Eekelen, T., and Cozmuta, I., Ablationtest-Caseseries#2, 5th Ablation Workshop, Lexington, Kentucky, KY, pp. 10-18,2012.

  61. Edquist, K., Dyakonov, A., Wright, M., and Tang, C., Aerothermodynamic Design of the Mars Science Laboratory Heatshield, 41st AIAA Thermophysics Conf., AIAA, 2009.

  62. White, T.R., Mahzari, M., Bose, D., and Santos, J.A., Post-Flight Analysis of Mars Science Laboratory's Entry Aerothermal Environment and Thermal Protection System Response, 44th AIAA Thermophysics Conf., AIAA, 2013.

  63. Lachaud, J., Scoggins, J., Magin, T., Meyer, M., and Mansour, N., A Generic Local Thermal Equilibrium Model for Porous Reactive Materials Submitted to High Temperatures, Int. J. Heat Mass Transf., 108:1406-1417, 2017.

  64. Griewank, A. and Walther, A., Evaluating Derivatives, Philadelphia, PA: SIAM, 2008.

  65. Cao, Y., Li, S., Petzold, L., and Serban, R., Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution, SIAMJ. Sci. Comput., 24(3):21, 2003.

  66. Bosco, A., Bayesian Inference for the Identification of Model Parameters in Atmospheric Entry Problems, Master's, University of Liege, 2019.

  67. Dodwell, T.J., Ketelsen, C., Scheichl, R., and Teckentrup, A.L., A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow, SIAM/ASA J. Uncertainty Quantif., 3(1):1075-1108,2015.

  68. Beskos, A., Jasra, A., Law, K., Tempone, R., and Zhou, Y., Multilevel Sequential Monte Carlo Samplers, Stochastic Proc. Their Appl., 127(5):1417-1440,2017.

  69. Heng, J., Jasra, A., Law, K.J.H., and Tarakanov, A., On Unbiased Estimation for Discretized Models, Stat. Comput:., arXiv:2102.12230, 2021.

  70. Jasra, A., Law, K.J.H., and Lu, D., Unbiased Estimation of the Gradient of the Log-Likelihood in Inverse Problems, Stat. Comput, 31(3):21, 2021.

  71. Burnham, K.P. and Anderson, D.R., Model Selection andMultimodel Inference: A Practical Information-Theoretic Approach, 2nd ed., New York: Springer, 2002.

  72. MacKay, D., Information Theory, Inference, and Learning Algorithms, Cambridge, UK: Cambridge University Press, 2003.

  73. Link, W.A. and Barker, R.J., Model Weights and the Foundations of Multimodel Inference, Ecology, 87(10):2626-2635,2006.

  74. Strong, M. and Oakley, J.E., When Is a Model Good Enough? Deriving the Expected Value of Model Improvement via Specifying Internal Model Discrepancies, SIAM/ASA J. Uncertainty Quantif., 2(1):106-125, 2014.

  75. Galagali, N. andMarzouk, Y.M., Bayesian Inference of Chemical Kinetic Models from Proposed Reactions, Chem. Eng. Sci, 123:170-190,2015.

  76. Malek, J. and Criado, J., Empirical Kinetic Models in Thermal Analysis, Thermochim. Acta, 203:25-30,1992.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain