Library Subscription: Guest
Journal of Flow Visualization and Image Processing

Published 4 issues per year

ISSN Print: 1065-3090

ISSN Online: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

BACKGROUND-ORIENTED SCHLIEREN FOR FLOW AND THERMAL SYSTEMS: PRINCIPLES OF IMAGE FORMATION AND APPLICATIONS

Volume 29, Issue 1, 2022, pp. 29-68
DOI: 10.1615/JFlowVisImageProc.2021039623
Get accessDownload

ABSTRACT

Imaging fluid flow and transport phenomena has gained considerable attention in the recent past. The imaging techniques are not only limited to visualization tools but, when coupled with suitable data reduction algorithms, can lead to the generation of the complete whole field quantitative data of flow and transported properties. In this direction, the technique of background-oriented schlieren (BOS) is one of the latest developments that has garnered significant attention among the research community. The present article reviews the plausible configurations of the BOS system, including principles of image formation and its applications in the domain of flow and thermal systems. Particular attention is paid to various constraints that one faces while configuring the imaging technique correctly from its first principles and those associated with the development of data reduction methodologies for BOS image analysis. Various modifications affected in the standard BOS, since the time it was proposed by Meier et al. (2002, 2013), for mapping the flow and transported properties as well as thickness variations of liquid surfaces are reviewed. Following an extensive review of the available literature, the potential of BOS in imaging single- as well as two-phase heat transfer phenomena is demonstrated by setting up lab-based test configurations that include natural convection over a heated vertical flat plate and horizontally placed circular cylinder, and the evaporation dynamics of impinging acetone droplet(s). The recorded BOS images are quantitatively analyzed to retrieve the field distribution of parameters of interest in each of the configurations studied.

REFERENCES
  1. Aminfar, A., Cobian-Iniguez, J., Ghasemian, M., Rosales Espitia, N., Weise, D.R., and Princevac, M., Using Background-Oriented Schlieren to Visualize Convection in a Propagating Wildland Fire, Combust. Sci. Technol., vol. 192, no. 12, pp. 2259-2279, 2020. DOI: 10.1080/ 00102202.2019.1635122.

  2. Atcheson, B., Heidrich, W., and Ihrke, I., An Evaluation of Optical Flow Algorithms for Background Oriented Schlieren Imaging, Exp. Fluids, vol. 46, no. 3, pp. 467-476, 2009. DOI: 10.1007/s00348-008-0572-7.

  3. Bauknecht, A., Merz, C.B., Raffel, M., Landolt, A., and Meier, A.H., Blade-Tip Vortex Detection in Maneuvering Flight Using the Background-Oriented Schlieren Technique, J. Aircr., vol. 51, no. 6, pp. 2005-2014, 2014. DOI: 10.2514/1.C032672.

  4. Brox, T., Bruhn, A., Papenberg, N., Weickert, J., High Accuracy Optical Flow Estimation Based on a Theory for Warping, in Computer Vision - ECCV2004. ECCV 2004. Lecture Notes in Computer Science, T. Pajdla and J. Matas, Eds., Berlin, Heidelberg: Springer, pp. 25-36, 2004.

  5. Cai, S., Wang, Z., Fuest, F., Jeon, Y.J., Gray, C., and Karniadakis, G.E., Flow over an Espresso Cup: Inferring 3-D Velocity and Pressure Fields from Tomographic Background Oriented Schlieren via Physics-Informed Neural Networks, J. FluidMech., vol. 915, pp. 1-17, 2021. DOI: 10.1017/jfm.2021.135.

  6. Chehouani, H. and El Fagrich, M., Adaptation of the Fourier-Hankel Method for Deflection Tomographic Reconstruction of Axisymmetric Field, Appl. Opt., vol. 52, no. 3, pp. 439-448, 2013. DOI: 10.1364/ AO.52.000439.

  7. Churchill, S.W. and Chu, H.H.S., Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder, Int. J. Heat Mass Transf., vol. 18, no. 9, pp. 1049-1053, 1975. DOI: 10.1016/0017-9310(75)90222-7.

  8. D'Errico, J., Inverse Gradient, MATLAB Central File Exchange, 2021.

  9. Dehaeck, S., Rednikov, A., and Colinet, P., Vapor-Based Interferometric Measurement of Local Evaporation Rate and Interfacial Temperature of Evaporating Droplets, Langmuir, vol. 30, no. 8, pp. 2002-2008, 2014. DOI: 10.1021/la404999z.

  10. Desse, J.M. and Deron, R., Shadow, Schlieren and Color Interferometry, AerospaceLab J., no. 1, pp. 1-10, 2009.

  11. Desse, J.M., Picart, P. and Tankam, P., Digital Color Holography Applied to Fluid and Structural Mechanics, Opt. Lasers Eng., vol. 50, no. 1, pp. 18-28, 2012. DOI: 10.1016/j.optlaseng.2011.06.018.

  12. Elsinga, G.E., van Oudheusden, B.W., Scarano, F., and Watt, D.W., Assessment and Application of Quantitative Schlieren Methods: Calibrated Color Schlieren and Background Oriented Schlieren, Exp. Fluids, vol. 36, no. 2, pp. 309-325, 2004. DOI: 10.1007/s00348-003-0724-8.

  13. Feikema, D., Quantitative Rainbow Schlieren Deflectometry As a Temperature Diagnostic for Spherical Flames, 42nd AIAA Aerospace Sciences Meeting and Exhibit, vol. 45, no. 20, pp. 4826-4832, 2006. DOI: 10.1364/AO.45.004826.

  14. Gojani, A.B., Kamishi, B., and Obayashi, S., Measurement Sensitivity and Resolution for Background Oriented Schlieren during Image Recording, J. Vis., vol. 16, no. 3, pp. 201-207, 2013. DOI: 10.1007/s12650-013-0170-5.

  15. Gojani, A.B. and Obayashi, S., Assessment of Some Experimental and Image Analysis Factors for Back-ground-Oriented Schlieren Measurements, Appl. Opt., vol. 51, no. 31, p. 7554, 2012. DOI: 10.1364/ ao.51.007554.

  16. Gokhale, S.J., Plawsky, J.L., and Wayner, P.C., Experimental Investigation of Contact Angle, Curvature, and Contact Line Motion in Dropwise Condensation and Evaporation, J. Colloid Interface Sci., vol. 259, no. 2, pp. 354-366, 2003. DOI: 10.1016/S0021-9797(02)00213-8.

  17. Greenberg, P.S., Klimek, R.B., and Buchele, D.R., Quantitative Rainbow Schlieren Deflectometry, Appl. Opt., vol. 34, no. 19, pp. 3810-3825, 1995. DOI: 10.1364/AO.34.003810.

  18. Hargather, M.J., Background-Oriented Schlieren Diagnostics for Large-Scale Explosive Testing, Shock Waves, vol. 23, no. 5, pp. 529-536, 2013. DOI: 10.1007/s00193-013-0446-7.

  19. Hargather, M.J., Lawson, M.J., Settles, G.S., and Weinstein, L.M., Seedless Velocimetry Measurements by Schlieren Image Velocimetry, AIAA J., vol. 49, no. 3, pp. 611-620, 2011. DOI: 10.2514/1.J050753.

  20. Hargather, M.J. and Settles, G., A Comparison of Three Quantitative Schlieren Techniques, Opt. Lasers Eng., vol. 50, no. 1, pp. 8-17, 2012. DOI: 10.1016/j.optlaseng.2011.05.012.

  21. Hargather, M.J. and Settles, G., Natural-Background-Oriented Schlieren Imaging, Exp. Fluids, vol. 48, no. 1, pp. 59-68, 2010. DOI: 10.1007/s00348-009-0709-3.

  22. Harvey, A.H., Gallagher, J.S., and Sengers, J.M.H.L., Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density, J. Phys. Chem. Ref. Data, vol. 27, no. 4, pp. 761-774, 1998. DOI: 10.1063/1.556029.

  23. Hayasaka, K., Kawamotot, S., Kameda, M., and Tagawa, Y., Smartphone Background-Oriented Schlieren for Locating Gas-Leak Source in Emergencies, 19th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, pp. 1-9, 2018.

  24. Hayasaka, K., Tagawa, Y., Liu, T., and Kameda, M., Optical-Flow-Based Background-Oriented Schlieren Technique for Measuring a Laser-Induced Underwater Shock Wave, Exp. Fluids, vol. 57, no. 12, pp. 1-11, 2016. DOI: 10.1007/s00348-016-2271-0.

  25. Heineck, J.T., Banks, D.W., Smith, N.T., Schairer, E.T., Bean, P.S., and Robillos, T., Background-Oriented Schlieren Imaging of Supersonic Aircraft in Flight, AIAA J., vol. 59, no. 1, pp. 11-21, 2021. DOI: 10.2514/1.J059495.

  26. van Hinsberg, N.P. and Rosgen, T., Density Measurements Using Near-Field Background-Oriented Schlieren, Exp. Fluids, vol. 55, no. 4, pp. 1-11, 2014. DOI: 10.1007/s00348-014-1720-x.

  27. Howes, W.L., Rainbow Schlieren and Its Applications, Appl. Opt., vol. 23, no. 14, pp. 2449-2460, 1984. DOI: 10.1364/AO.23.002449.

  28. Huang, L., Ng, C., and Asundi, A.K., Dynamic 3D Measurement for Specular Reflecting Surface with Monoscopic Fringe Reflection Deflectometry, Opt. Infobase Conf. Papers, vol. 19, no. 13, pp. 12809-12814, 2011. DOI: 10.1364/cosi.2011.cwc3.

  29. Iffa, E.D., Aziz, A.R.A., and Malik, A.S., Gas Flame Temperature Measurement Using Background Oriented Schlieren, J. Appl. Sci., vol. 11, no. 9, pp. 1658-1662, 2011.

  30. Ito, Y., Liang, X., Ishikawa, K., Ujihara, T., Sakai, Y., and Iwano, K., Semi In-Situ Measurement of Zincate Ion Concentration Near Zinc Anode Using Background-Oriented Schlieren Technique, Phys. Rev. Res., vol. 1, no. 3, pp. 1-8, 2019. DOI: 10.1103/physrevresearch.1.033162.

  31. Jain, D.S., Srinivas Rao, S., and Srivastava, A., Rainbow Schlieren Deflectometry Technique for Nanofluid-Based Heat Transfer Measurements under Natural Convection Regime, Int. J. Heat Mass Transf., vol. 98, pp. 697-711, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.062.

  32. Jalan, P., Vyas, A., and Srivastava, A., Nonintrusive Diagnostics of Nanofluids-Based Natural Convection Heat Transfer over a Heated Cylinder, J. Thermophys Heat Trans., vol. 31, no. 3, pp. 674-685, 2017. DOI: 10.2514/1.T5047.

  33. Kindler, K., Goldhahn, E., Leopold, F., and Raffel, M., Recent Developments in Background Oriented Schlieren Methods for Rotor Blade Tip Vortex Measurements, Exp. Fluids, vol. 43, no. 2-3, pp. 233-240, 2007. DOI: 10.1007/s00348-007-0328-9.

  34. Klemkowsky, J.N., Fahringer, T.W., Clifford, C.J., Bathel, B.F., and Thurow, B.S., Plenoptic Background Oriented Schlieren Imaging,Meas. Sci. Technol., vol. 28, no. 9, 2017. DOI: 10.1088/1361-6501/aa7f3d.

  35. Kolhe, P.S. and Agrawal, A.K., Abel Inversion of Deflectometric Data: Comparison of Accuracy and Noise Propagation of Existing Techniques, Appl. Opt., vol. 48, no. 20, pp. 3894-3902, 2009a.

  36. Kolhe, P.S. and Agrawal, A.K., Density Measurements in a Supersonic Microjet Using Miniature Rainbow Schlieren Deflectometry, AIAAJ., vol. 47, no. 4, pp. 830-838, 2009b. DOI: 10.2514/1.37332.

  37. Kotchourko, N., Kuznetsov, M., Kotchourko, A., Grune, J., Lelyakin, A., and Jordan, T., Concentration Measurements in a Round Hydrogen Jet Using Background Oriented Schlieren (BOS) Technique, Int. J. Hydrog. Energy, vol. 39, no. 11, pp. 6201-6209, 2014. DOI: 10.1016/j.ijhydene.2013.10.152.

  38. Lauret, P., Slangen, P., Heymes, F., Aprin, L., Lecysyn, N., and Osmont, A., Natural Background Oriented Schlieren and Multiscale Visualizations of Overpressure Wave Resulting from Vapor Cloud Explosion, The 11th Pacific Symposium on Flow Visualization and Image Processing, December, pp. 2-7, 2017.

  39. Leopold, F., The Application of the Colored Background Oriented Schlieren Technique (CBOS) to Wind Tunnel, Free-Flight and in-Flight Measurements, J. Flow Vis. Image Process., vol. 16, no. 4, pp. 279-293, 2009. DOI: 10.1615/JFlowVisImageProc.v16.i4.10.

  40. Leopold, F., Ota, M., Klatt, D., and Maeno, K., Reconstruction of the Unsteady Supersonic Flow around a Spike Using the Colored Background Oriented Schlieren Technique, J. Flow Contr. Meas. Visual., vol. 1, no. 2, pp. 69-76, 2013. DOI: 10.4236/jfcmv.2013.12009.

  41. Liu, Z., Guo, J., Shi, W., Huang, X., and Xie, H., Transmission-Speckle Correlation for Measuring Dynamic Deformation of Liquid Surface, Opt. Lasers Eng., vol. 65, pp. 110-16, 2015. DOI: 10.1016/j.optlas-eng.2014.06.015.

  42. Liu, Z., Huang, X., and Xie, H., A Novel Orthogonal Transmission-Virtual Grating Method and Its Applications in Measuring Micro 3-D Shape of Deformed Liquid Surface, Opt. Lasers Eng., vol. 51, no. 2, pp. 167-171, 2013. DOI: 10.1016/j.optlaseng.2012.08.009.

  43. Lucas, B.D. and Kanade, T., Iterative Image Registration Technique with an Application to Stereo Vision, Proceedings of Imaging Understanding Workshop, pp. 121-130, 1981.

  44. Lucas, B.D., Generalized Image Matching by the Method of Differences, Pittsburgh, PA: Carnegie-Mellon University, 1985.

  45. Mayinger, F., Two-Phase Flow and Boiling: Insights and Understanding through Modern Noninvasive Measuring Techniques, Exp. Therm. Fluid Sci., vol. 15, no. 3, pp. 141-153, 1997. DOI: 10.1016/S0894-1777(97)00024-1.

  46. Meier, A.H. and Roesgen, T., Improved Background Oriented Schlieren Imaging Using Laser Speckle Illumination, Exp. Fluids, vol. 54, no. 6, 2013. DOI: 10.1007/s00348-013-1549-8 Meier, G., Computerized Background-Oriented Schlieren, Exp. Fluids, vol. 33, no. 1, pp. 181-187, 2002. DOI: 10.1007/s00348-002-0450-7.

  47. Michalski, Q., Benito Parejo, C.J., Claverie, A., Sotton, J., and Bellenoue, M., An Application of Speckle-Based Background Oriented Schlieren for Optical Calorimetry, Exp. Therm. Fluid Sci., vol. 91, pp. 470-478, 2018. DOI: 10.1016/j.expthermflusci.2017.09.012.

  48. Moisy, F., Rabaud, M., and Salsac, K., A Synthetic Schlieren Method for the Measurement of the Topography of a Liquid Interface, Exp. Fluids, vol. 46, no. 6, pp. 1021-1036, 2009. DOI: 10.1007/s00348-008-0608-z.

  49. Narayan, L.S. and Srivastava, A., On the Identification and Mapping of Three Distinct Stages of Single Vapor Bubble Growth with the Corresponding Microlayer Dynamics, Int. J. Multiph. Flow, vol. 142, p. 103722, 2021. DOI: 10.1016/j.ijmultiphaseflow.2021.103722.

  50. Narayan, S., Srivastava, A., and Singh, S., Rainbow Schlieren-Based Direct Visualization of Thermal Gradients around Single Vapor Bubble during Nucleate Boiling Phenomena of Water, Int. J. Multiph. Flow, vol. 110, pp. 82-95, 2019.

  51. Narayan, S., Singh, T., Singh, S., and Srivastava, A., Experiments on the Effects of Varying Subcooled Conditions on the Dynamics of Single Vapor Bubble and Heat Transfer Rates in Nucleate Pool Boiling Regime, Int. J. Heat Mass Transf., vol. 134, pp. 85-100, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.139.

  52. Narayan, S., Srivastava, A., and Singh, S., Rainbow Schlieren-Based Investigation of Heat Transfer Mechanisms during Isolated Nucleate Pool Boiling Phenomenon: Effect of Superheat Levels, Int. J. Heat Mass Transf., vol. 120, pp. 127-143, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.005.

  53. Naylor, D., On the Accuracy of Beam-Averaged Interferometric Heat Transfer Measurements, J. Heat Transf., vol. 124, pp. 978-982, 2002.

  54. Naylor, D. and Duarte, N., Direct Temperature Gradient Measurement Using Interferometry, Exp. Heat Transf., vol. 12, no. 4, pp. 279-294, 1999. DOI: 10.1080/089161599269609.

  55. Naylor, D. and MacHin, A.D., The Accuracy of Beam-Averaged Interferometric Temperature Measurements in a Three-Dimensional Field, Exp. Heat Transf., vol. 14, no. 3, pp. 217-228, 2001. DOI: 10.1080/089161501301419614.

  56. Oren, D.C., Durrett, R.P., and Ferguson, C.R., Bullseye Color Schlieren Flow Visualization, Exp. Fluids, vol. 6, no. 6, pp. 357-364, 1988. DOI: 10.1007/BF00196480.

  57. Ostrach, S., Laminar Natural-Convection Flow and Heat Transfer of Fluid with and without Heat Sources in Channels with Constant Wall Temperatures, Technical Note 2863, 1952.

  58. Ota, M., Hamada, K., Kato, H., and Maeno, K., Computed-Tomographic Density Measurement of Supersonic Flow Field by Colored-Grid Background Oriented Schlieren (CGBOS) Technique, Meas. Sci. Technol., vol. 22, no. 10, 2011. DOI: 10.1088/0957-0233/22/10/104011.

  59. Paquier, A., Moisy, F., and Rabaud, M., Viscosity Effects in Wind Wave Generation, Phys. Rev. Fluids, vol. 1, no. 8, p. 83901, 2016. DOI: 10.1103/PhysRevFluids.1.083901.

  60. Plaksina, Y.Y., Uvarov, A.V., Vinnichenko, N.A., and Lapshin, V.B., Experimental Investigation of Near-Surface Small-Scale Structures at Water-Air Interface: Background Oriented Schlieren and Thermal Imaging of Water Surface, Russ. J. Earth Sci., vol. 12, no. 4, pp. 1-8, 2012. DOI: 10.2205/2012es000517.

  61. Raffel, M., Background-Oriented Schlieren (BOS) Techniques, Exp. Fluids, vol. 56, no. 3, pp. 1-17, 2015. DOI: 10.1007/s00348-015-1927-5.

  62. Raffel, M., Heineck, J.T., Schairer, E., Leopold, F., and Kindler, K., Background-Oriented Schlieren Imaging for Full-Scale and In-Flight Testing, J. Am. Helicopter Soc., vol. 59, no. 1, pp. 1-10, 2014. DOI: 10.4050/JAHS.59.012002.

  63. Raffel, M., Willert, C.E., Scarano, F., and Kahler, C.J., Particle Image Velocimtery, p. 668, 2018.

  64. Ramanah, D., Raghunath, S., Mee, D.J., Rosgen, T., and Jacobs, P.A., Background Oriented Schlieren for Flow Visualisation in Hypersonic Impulse Facilities, Shock Waves, vol. 17, no. 1-2, pp. 65-70, 2007. DOI: 10.1007/s00193-007-0097-7.

  65. Richard, H. and Raffel, M., Principle and Applications of the Background Oriented Schlieren (BOS) Method,Meas. Sci. Technol., vol. 12, no. 9, pp. 1576-1585, 2001. DOI: 10.1088/0957-0233/12/9/325.

  66. Richard, H., Raffel, M.M., Rein, K.J., and Meier, G.E.A., Demonstration of the Applicablity of a Background Oriented Schlieren (BOS) Method, 2002.

  67. Roosenboom, E.W.M. and Schroder, A., Qualitative Investigation of a Propeller Slipstream with Background Oriented Schlieren, J. Vis., vol. 12, no. 2, pp. 165-172, 2009. DOI: 10.1007/BF03181958.

  68. Satti, R.P., Kolhe, P.S., Olcmen, S., and Agrawal, A.K., Miniature Rainbow Schlieren Deflectometry System for Quantitative Measurements in Microjets and Flames, Appl. Opt., vol. 46, no. 15, pp. 2954-2962, 2007. DOI: 10.1364/AO.46.002954.

  69. Settles, G., Colour-Coding Schlieren Techniques for the Optical Study of Heat and Fluid Flow, Int. J. Heat Fluid Flow, vol. 6, no. 1, pp. 3-15, 1985. DOI: 10.1016/0142-727X(85)90024-4.

  70. Settles, G. and Hargather, M., A Review of Recent Developments in Schlieren and Shadowgraph Techniques,Meas. Sci. Technol., vol. 28, no. 042001, pp. 1-25, 2017. DOI: 10.1088/1361-6501/aa5748.

  71. Settles, G., Schlieren and Shadowgraph Imaging in the Great Outdoors, Engineering, pp. 1-14, 2001.

  72. Sinha, G.K., Mahimkar, S., and Srivastava, A., Schlieren-Based Simultaneous Mapping of Bubble Dynamics and Temperature Gradients in Nucleate Flow Boiling Regime: Effect of Flow Rates and Degree of Subcooling, Exp. Therm. Fluid Sci., vol. 104, 2018, pp. 238-257, 2019. DOI: 10.1016/j.exptherm-flusci.2019.02.018.

  73. Sommersel, O.K., Bjerketvedt, D., Christensen, S.O., Krest, O., and Vaagsaether, K., Application of Background Oriented Schlieren for Quantitative Measurements of Shock Waves from Explosions, Shock Waves, vol. 18, no. 4, pp. 291-297, 2008. DOI: 10.1007/s00193-008-0142-1.

  74. Srivastava, A., Muralidhar, K., and Panigrahi, P.K., Optical Imaging and Three Dimensional Reconstruction of the Concentration Field around a Crystal Growing from an Aqueous Solution: A Review, Prog. Cryst. Growth Charact. Mater., vol. 58, no. 4, pp. 209-278, 2012. DOI: 10.1016/j.pcrysgrow.2012.06.001.

  75. Srivastava, A., Muralidhar, K., and Panigrahi, P.K., Reconstruction of the Concentration Field around a Growing KDP Crystal with Schlieren Tomography, Appl. Opt., vol. 44, no. 26, pp. 5381-5392, 2005. DOI: 10.1364/AO.44.005381.

  76. Srivastava, A., Phukan, A., Panigrahi, P.K., and Muralidhar, K., Imaging of a Convective Field in a Rectangular Cavity Using Interferometry, Schlieren and Shadowgraph, Opt. Lasers Eng., vol. 42, no. 4, pp. 469-485, 2004. DOI: 10.1016/j.optlaseng.2004.03.003.

  77. Srivastava, A., Tsukamoto, K., Yokoyama, E., Murayama, K., and Fukuyama, M., Fourier Analysis Based Phase Shift Interferometric Tomography for Three-Dimensional Reconstruction of Concentration Field around a Growing Crystal, J. Cryst. Growth, vol. 312, no. 15, pp. 2254-2262, 2010. DOI: 10.1016/j. jcrysgro.2010.04.053.

  78. Steinmann, T., Arutkin, M., Cochard, P., Raphael, E., Casas, J., and Benzaquen, M., Unsteady Wave Pattern Generation by Water Striders, J. FluidMech., vol. 848, pp. 370-387, 2018. DOI: 10.1017/jfm.2018.365.

  79. Su, C.H. and Bai, J.H., Measurement of the Neutral Plane of an Internal Fire Whirl Using the Background-Oriented Schlieren Technique for a Vertical Shaft Model of a High-Rise Building, Meas.: J. Int. Meas. Confed., vol. 78, pp. 151-67, 2016. DOI: 10.1016/j.measurement.2015.10.004.

  80. Sun, C.L. and Hsiao, T.H., On the Background Design for Microscale Background-Oriented Schlieren Measurements of Microfluidic Mixing, Microfluid. Nanofluidics, vol. 17, no. 2, pp. 375-391, 2014. DOI: 10.1007/s10404-013-1309-3.

  81. Surya Narayan, L. and Srivastava, A., Non-Contact Experiments to Quantify the Microlayer Evaporation Heat Transfer Coefficient during Isolated Nucleate Boiling Regime, Int. Commun. Heat Mass Transf., vol. 122, p. 105191, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105191.

  82. Tanda, G., Fossa, M., and Misale, M., Heat Transfer Measurements in Water Using a Schlieren Technique, Int. J. Heat Mass Transf., vol. 71, pp. 451-58, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.022.

  83. Thielicke, W. and Stamhuis, E.J., PIVlab - Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB, J. Open Res. Softw., vol. 2, 2014. DOI: doi:10.5334/jors.bl.

  84. Tillmann, W., Abdulgader, M., Rademacher, H.G., Anjami, N., and Hagen, L., Adapting of the Background-Oriented Schlieren (BOS) Technique in the Characterization of the Flow Regimes in Thermal Spraying Processes, J. Therm. Spray Technol., vol. 23, no. 1-2, pp. 21-30, 2014. DOI: 10.1007/s11666-013-0018-5.

  85. Toepler, V.M., Ojektive Sichtbarmachung von Funkenschallwellen Nach Der Schlierenmethode Mit Hilfe von Gleitfunken, pp. 838-842, 1889.

  86. Tokgoz, S., Geisler, R., van Bokhoven, L.J.A., and Wieneke, B., Temperature and Velocity Measurements in a Fluid Layer Using Background-Oriented Schlieren and PIV Methods, Meas. Sci. Technol., vol. 23, no. 11, 2012. DOI: 10.1088/0957-0233/23/11/115302.

  87. Venkatakrishnan, L. and Meier, G.E.A., Density Measurements Using the Background Oriented Schlieren Technique, Exp. Fluids, vol. 37, no. 2, pp. 237-247, 2004. DOI: 10.1007/s00348-004-0807-1.

  88. Vinnichenko, N.A., Pushtaev, A.V., Plaksina, Y.Y., and Uvarov, A.V., Measurements of Liquid Surface Relief with Moon-Glade Background Oriented Schlieren Technique, Exp. Therm. Fluid Sci., vol. 114, p. 110051, 2020. DOI: 10.1016/j.expthermflusci.2020.110051.

  89. Vyas, A., Mishra, B., Agrawal, A., and Srivastava, A., Non-Intrusive Investigation of Flow and Heat Transfer Characteristics of a Channel with a Built-In Circular Cylinder, Phys. Fluids, vol. 30, no. 3, 2018. DOI: 10.1063/1.5009427.

  90. Vyas, A., Mishra, B., and Srivastava, A., Experiments on Flow and Heat Transfer Characteristics of a Rectangular Channel with a Built-In Adiabatic Square Cylinder, Int. J. Heat Mass Transf., vol. 147, p. 118908, 2020a. DOI: 10.1016/j.ijheatmasstransfer.2019.118908.

  91. Vyas, A., Mishra, B., and Srivastava, A., Investigation of the Effect of Blockage Ratio on Flow and Heat Transfer in the Wake Region of a Cylinder Embedded in a Channel Using Whole Field Dynamic Measurements, Int. J. Therm. Sci., vol. 153, p. 106322, 2020b. DOI: 10.1016/j.ijthermalsci.2020. 106322.

  92. Wang, Q., Wu, Y., Cheng, H.T., Mei, X.H., and Zhao, C., A Schlieren Motion Estimation Method for Seedless Velocimetry Measurement, Exp. Therm. Fluid Sci., vol. 109, 2019. DOI: 10.1016/j.expthermflusci.2019.109880.

  93. Zhang, P., Xu, Z., Wang, T., and Che, Z., A Method to Measure Vapor Concentration of Droplet Evaporation Based on Background Oriented Schlieren, Int. J. Heat Mass Transf.., vol. 168, p. 120880, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120880.

CITED BY
  1. Shahdhaar Mohammad Autif, Srivastava Atul, Singh Suneet, On the interfacial dynamics and capillary waves during impingement of a drop on liquid pool: A background-oriented schlieren study at low Weber numbers, Physics of Fluids, 34, 8, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain