Library Subscription: Guest
Journal of Machine Learning for Modeling and Computing

Published 4 issues per year

ISSN Print: 2689-3967

ISSN Online: 2689-3975

Indexed in

GAUSSIAN PROCESS REGRESSION AND CONDITIONAL KARHUNEN-LOÈVE EXPANSION FOR FORWARD UNCERTAINTY QUANTIFICATION AND INVERSE MODELING IN THE PRESENCE OF MEASUREMENT NOISE

Volume 3, Issue 2, 2022, pp. 71-86
DOI: 10.1615/JMachLearnModelComput.2022041893
Get accessDownload

ABSTRACT

We propose a new machine learning framework for uncertainty quantification (UQ) and parameter estimation in partial differential equation (PDE) models using sparse noisy measurements of the parameter field. In our approach, the Gaussian process regression (GPR) is used to estimate the distribution of the unknown parameter κ, including mean and variance, conditioned on its measurements. Then, the conditional Karhunen-Loève (KL) expansion of κ and generalized polynomial chaos (gPC) expansion of the state variable u are constructed in terms of the parameter's conditional mean and the eigenfunctions and eigenvalues of the parameter's conditional covariance function. In the forward UQ application, the conditional gPC surrogate is used to estimate the mean and variance of u. Our results show that conditioning reduces the u variance and that the variance decreases with decreasing measurement noise. In the inverse solution, we use the conditional KL and gPC expansions to find a realization of conditional κ distribution that satisfies an appropriate maximum a posteriori minimization problem. We find that the error in the estimated κ decreases with the decreasing observation error.

REFERENCES
  1. Boschan, A. and Nretinger, B., Scale Dependence of Effective Hydraulic Conductivity Distributions in 3D Heterogeneous Media: A Numerical Study, Transp. Porous Media, vol. 94, no. 1,pp. 101-121,2012.

  2. Chevreuil, M., Lebrun, R., Nouy, A., and Rai, P., A Least-Squares Method for Sparse Low Rank Approximation of Multivariate Functions, SIAM/ASA J. Uncert. Quanif, vol. 3,no. 1,pp. 897-921,2015.

  3. Doostan, A., Validi, A., and Iaccarino, G., Non-Intrusive Low-Rank Separated Approximation of High-Dimensional Stochastic Models, Comput. Methods Appl. Mech. Eng., vol. 263, pp. 42-55,2013.

  4. Gorodetsky, A.A. and Jakeman, J.D., Gradient-Based Optimization for Regression in the Functional Tensor-Train Format, J. Comput. Phys, vol. 374, pp. 1219-1238,2018.

  5. Hampton, J. and Doostan, A., Compressive Sampling ofPolynomial Chaos Expansions: Convergence Analysis and Sampling Strategies, J. Comput. Phys, vol. 280, pp. 363-386,2015.

  6. Jakeman, J.D. and Roberts, S.G., Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification, in Sparse Grids and Applications, Berlin, Germany: Springer, pp. 181-203,2013.

  7. Li, J. and Tartakovsky, A.M., Gaussian Process Regression and Conditional Polynomial Chaos for Parameter Estimation, J. Comput. Phys, vol. 416, p. 109520,2020.

  8. Ma, X. and Zabaras, N., An Adaptive Hierarchical Sparse Grid Collocation Algorithm for the Solution of Stochastic Differential Equations, J. Comput. Phys, vol. 228, no. 8, pp. 3084-3113,2009.

  9. Marzouk, Y.M., Najm, H.N., and Rahn, L.A., Stochastic Spectral Methods for Efficient Bayesian Solution of Inverse Problems, J. Comput. Phys., vol. 224, no. 2, pp. 560-586,2007.

  10. MATLAB, 9.7.0.1190202 R2019b), The MathWorks Inc., Natick, MA, 2018.

  11. Neuman, S.P., Eulerian-Lagrangian Theory of Transport in Space-Time Nonstationary Velocity Fields: Exact Nonlocal Formalism by Conditional Moments and Weak Approximation, Water Res. Res., vol. 29, no. 3, pp. 633-645,1993.

  12. Nobile, F., Tempone, R., and Webster, C.G., A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data, SIAM J. Numer. Anal., vol. 46, no. 5, pp. 2309-2345, 2008.

  13. Rasmussen, C.E., Gaussian Processes in Machine Learning, in Summer School on Machine Learning, Berlin, Germany: Springer, pp. 63-71,2003.

  14. Shultz, G.A., Schnabel, R.B., and Byrd, R.H., A Family of Trust-Region-Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties, SIAM J. Numer. Anal., vol. 22, no. 1, pp. 47-67,1985. DOI: 10.1137/0722003.

  15. Tartakovsky, A., Barajas-Solano, D., and He, Q., Physics-Informed Machine Learning with Conditional Karhunen-Loeve Expansions, J. Comput. Phys, vol. 426, p. 109904,2021.

  16. Tartakovsky, D.M., Lu, Z., Guadagnini, A., and Tartakovsky, A.M., Unsaturated Flow in Heterogeneous Soils with Spatially Distributed Uncertain Hydraulic Parameters, J. Hydrol., vol. 275, no. 3, pp. 182-193,2003.

  17. Tartakovsky, D.M. and Neuman, S.P., Transient Flow in Bounded Randomly Heterogeneous Domains: 1. Exact Conditional Moment Equations and Recursive Approximations, Water Res. Res., vol. 34, no. 1, pp. 1-12,1998.

  18. Tipireddy, R., Barajas-Solano, D.A., and Tartakovsky, A.M., Conditional Karhunen-Loeve Expansion for Uncertainty Quantification and Active Learning in Partial Differential Equation Models, J. Comput. Phys.., vol. 418, p. 109604,2020.

  19. Xiu, D., Efficient Collocational Approach for Parametric Uncertainty Analysis, Commun. Comput. Phys., vol. 2, no. 2, pp. 293-309,2007.

  20. Xiu, D., Fast Numerical Methods for Stochastic Computations: A Review, Commun. Comput. Phys., vol. 5, pp. 242-272,2009.

  21. Xiu, D. and Hesthaven, J., High-Order Collocation Methods for Differential Equations with Random Inputs, SIAM J. Sci. Comput, vol. 27,no.3,pp. 1118-1139,2005.

  22. Xiu, D. and Karniadakis, G., The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations, SIAM J. Sci. Comput, vol. 24, no. 2, pp. 619-644,2002.

  23. Xiu, D. and Karniadakis, G.E., Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos, J. Comput. Phys, vol. 187, no. 1, pp. 137-167,2003.

  24. Yan, L., Guo, L., and Xiu, D., Stochastic Collocation Algorithms Using L1 Minimization, Int. J. Uncert. Quantif., vol. 2, pp. 279-293,2012.

  25. Yang, X. and Karniadakis, G.E., Reweighted L1 Minimization Method for Stochastic Elliptic Differential Equations, J. Comput. Phys, vol. 248, pp. 87-108,2013.

CITED BY
  1. Ciriello Valentina, Tartakovsky Daniel M., MACHINE LEARNING TECHNIQUES FOR APPLICATIONS IN SUSTAINABILITY RESEARCH , Journal of Machine Learning for Modeling and Computing, 3, 2, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain