Library Subscription: Guest
Plasma Medicine

Published 4 issues per year

ISSN Print: 1947-5764

ISSN Online: 1947-5772

SJR: 0.216 SNIP: 0.263 CiteScore™:: 1.4 H-Index: 24

Indexed in

Effects of Plasma-Activated Water on Soybean and Wheat: Germination and Seedling Development

Volume 12, Issue 1, 2022, pp. 27-43
DOI: 10.1615/PlasmaMed.2022042374
Get accessDownload

ABSTRACT

The goal of this study is to explore how water treated using plasma affects the germination and growth of soybean and wheat seedlings. Deionized water (DIW) was exposed to a gliding arc discharge (GAD) for 5 and 10 min to create plasma-activated water. DIW revealed significant changes in physical properties as well as chemical parameters after its treatment with plasma. The germination rate (growth metrics, such as shoot/seedling length, imbibition rate of seeds, and vigor indices), increased when plasma-treated water was used for irrigation purposes. In conclusion, when plasma-treated water is used for irrigation, a better result yield in germination is acquired.

REFERENCES
  1. Guragain RP, Baniya HB, Dhungana S, Chhetri GK, Sedhai B, Basnet N, Sakya A, Pandey BP, Pradhan SP, Joshi UM, and Subedi DP. Effect of plasma treatment on the seed germination and seedling growth of radish (Raphanus sativus). Plasma Sci Technol. 2022;24:015502.

  2. Hayashi N, Ono R, Shiratani M, Yonesu A. Antioxidative activity and growth regulation ofBrassicaceae induced by oxygen radical irradiation. Jpn J Appl Phys. 2015;54(6S2):06GD01.

  3. Degutyte-Fomins L, Pauzaite G, Zukiene R, Mildaziene V, Koga K, Shiratani M. Relationship between cold plasma treatment-induced changes in radish seed germination and phytohormone balance. Jpn J Appl Phys. 2020;59(SH):SH1001.

  4. Kitazaki S, Koga K, Shiratani M, Hayashi N. Growth enhancement of radish sprouts induced by low pressure O2 radio frequency discharge plasma irradiation. Jpn J Appl Phys. 2012;51(1):01AE01.

  5. Ito M, Oh J-S, Ohta T, Shiratani M, Hori M. Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies. Plasma Process Polym. 2018;15:e1700073.

  6. Perez-Piza MC, Prevosto L, Grijalba PE, Zilli CG, Cejas E, Mancinelli B, Balestrasse KB. Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status. Heliyon. 2019;5(4):e01495.

  7. Zahoranova A, Henselova M, Hudecova D, Kalinakova B, Kovacik D, Medvecka V, Cernak M. Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process. 2015;36(2):397-414.

  8. Sivachandiran L, Khacef A. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: Combined effect of seed and water treatment. RSC Adv. 2017;7(4):1822-32.

  9. Adamovich I, Baalrud SD, Bogaerts A, Bruggeman PJ, Cappelli M, Colombo V, Czarnetzki U, Ebert U, Eden JG, Favia P, Graves DB, Hamaguchi S, Hieftje G, Hori M, Kaganovich ID, Kortshagen U, Kushner MJ, Mason NJ, Mazouffre S, Thagard SM, Metelmann H-R, Mizuno A, Moreau E, Murphy AB, Niemira BA, Oehrlein GS, Petrovic ZLJ, Pitchford LC, Pu YK, Rauf S, Sakai O, Samukawa S, Starikovskaia S, Tennyson J, Terashima K, Turner MM, Sanden MCM, Vardelle A. The 2017 plasma roadmap: Low temperature plasma science and technology. J Phys D. 2017;50(2):323001.

  10. Ranieri P, Sponsel N, Kizer J, Rojas-Pierce M, Hernandez R, Gatiboni L, Grunden A, Stapelmann K. Plasma agriculture: Review from the perspective of the plant and its ecosystem. Plasma Process Polym. 2021;18(1):e2000162.

  11. Sonawane SK, Marar T, Patil S. Non-thermal plasma: An advanced technology for food industry. Food Sci Technol Int. 2020;26(8):727-40.

  12. Weltmann KD, Kolb JF, Holub M, Uhrlandt D, Simek M, Ostrikov K, Hamaguchi S, Cvelbar U, Cernak C, Locke B, Fridman A, Favia P, Becker K. The future for plasma science and technology. Plasma Process Polym. 2019;16:e1800118.

  13. Sarangapani C, Patange A, Bourke P, Keener K, Cullen PJ. Recent advances in the application of cold plasma technology in foods. Annu Rev Food Sci Technol. 2018;9:609-29.

  14. Calicioglu O, Flammini A, Bracco S, Bellu L, Sims R. The future challenges of food and agriculture: An integrated analysis of trends and solutions. Sustainability. 2019;11(1):222.

  15. Guo D, Liu H, Zhou L, Xie J, He C. Plasma-activated water production and its application in agriculture. J Sci Food Agric. 2021;101(12):4891-9.

  16. Subramanium PSG, Ananthanarasimhan J, Leelesh P, Rao H, Shivapuji AM, Girard-Lauriault PL, Rao L. Plasma-activated water from DBD as a source of nitrogen for agriculture: Specific energy and stability studies. J Appl Phys. 2021;129,139901.

  17. Sarinont T, Katayama R, Wada Y, Koga K, Shiratani M. Plant growth enhancement of seeds immersed in plasma activated water. MRS Adv. 2017;2(18):995-1000.

  18. Terebun P, Kwiatkowski M, Hensel K, Kopacki M, Pawlat J. Influence of plasma activated water generated in a gliding arc discharge reactor on germination of beetroot and carrot seeds. Appl Sci. 2021;11(13):6164.

  19. Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt R and Vasilis P. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci Technol. 2018;77:21-31.

  20. Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE,Graham WG,Graves DB, Hofman-Caris RCH, Maric D, Reid JP, Ceriani E, Rivas DF, Foster JE, Garrick SC, Gorbanev Y, Hamaguchi S, Za F, Jablonowski H, Klimova E, Kolb J, Krcma K, Lukes P, Machala Z, Marinov I, Mariotti D, Thagard SM, Minakata D, Neyts EC, Pawlat J, Petrovic ZL, Pflieger R, Reuter S, Schram DC, Schroter S, Shiraiwa M, Tarabova B, Tsai PA, Verlet JRR, Woedtke T von, Wilson KR, Yasui K, Zvereva G. Plasma-liquid interactions: A review and roadmap. Plasma Sources Sci Technol. 2016;25:053002.

  21. Los A, Ziuzina D, Boehm D, Cullen PJ, Bourke P. Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics. Plasma Process Polym. 2019:e1800148.

  22. Enghiad A, Ufer D, Countryman AM, Thilmany DD. An overview of global wheat market fundamentals in an era of climate concerns. Int J Agronomy. 2017;2017:1-15.

  23. Laurita R, Barbieri D, Gherardi M, Colombo V, Lukes P. Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin Plasma Med. 2015;3(2):53-61.

  24. Zhou R, Zhou R, Wang P, Xian Y, Mai-Prochnow A, Lu XP, Cullen PJ, Ostrikov KK, Bazaka K. Plasma-activated water: Generation, origin of reactive species and biological applications. J Phys D. 2018;53:303001.

  25. Song J-S, Kim SB, Ryu S, Oh J, Kim D-S. Emerging plasma technology that alleviates crop stress during the early growth stages of plants: A review. Front Plant Sci. 2020;11:988.

  26. Zambon Y, Contaldo N, Laurita R, Varallyay E, Canel A, Gherardi M, Colombo V, Bertaccini A. Plasma activated water triggers plant defence responses. Sci Rep. 2020;10(1):19211.

  27. Ohta T. Plasma in agriculture. In: Misra, NN, Schluter O, Cullen PJ, editors. Cold plasma in food and agriculture. San Diego, CA: Academic Press; 2016. p. 205-21.

  28. Sera B, Spatenka P, Sery M, Vrchotova N, Hruskova I. Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans Plasma Sci. 2010;38(10):2963-8.

  29. Sery M, Zahoranova A, Kerdik A, Sera B. Seed germination of black pine (Pinus nigra Arnold) after diffuse coplanar surface barrier discharge plasma treatment. IEEE Trans Plasma Sci. 2020;48(4): 939-45.

  30. Sera B, Sery M. Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains. Plasma Sci Technol. 2018;20(4):044012.

  31. Rifna EJ, Ratish Ramanan K, Mahendran R. Emerging technology applications for improving seed germination. Trends Food Sci Technol. 2019;86:95-108.

  32. Lamichhane P, Veerana M, Lim JS, Mumtaz S, Shrestha B, Kumar Kaushik N, Park G, Choi EH. Low-temperature plasma-assisted nitrogen fixation for corn plant growth and development. Int J Mol Sci. 2021;22:5360.

  33. Guragain RP, Bahadur Baniya H, Pradhan SP, Pandey BP, Subedi DP. Influence of plasma-activated water (PAW) on the germination of radish, fenugreek, and pea seeds. AIP Adv. 2021;11(12): 125304.

  34. Naumova IK, Maksimov AI, Khlyustova AV. Stimulation of the germinability of seeds and germ growth under treatment with plasma-activated water. Surf Eng Appl Electrochem. 2011;47(3):263-5.

  35. M0ller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol. 2007;58:459-81.

  36. Park DP, Davis K, Gilani S, Alonzo CA, Dobrynin D, Friedman G, Fridman A, Rabinovich A, Fridman G. Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield. Curr Appl Phys. 2013;13(Suppl 1):S19-29.

  37. Kucerova K, Henselova M, Slovakova E, Hensel K. Effects of plasma activated water on wheat: Germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity. Plasma Process Polym. 2018:e1800131.

  38. Than HAQ, Pham TH, Nguyen DKV, Pham TH, Khacef A. Non-thermal plasma activated water for increasing germination and plant growth of Lactuca sativa L. Plasma Chem Plasma Process. 2022;42:73-89.

  39. Alves C, De Menezes FLG, De Vitoriano JO, Da Silva DLS. Effect of plasma-activated water on soaking, germination, and vigor of Erythrina velutina seeds. Plasma Med. 2019;9(2):111-120.

  40. El Shaer M, El Welily H, Zaki A, Arafa H, El Sebaei A, El Daly M, Mobasher E. Germination of wheat seeds exposed to cold atmospheric plasma in dry and wet plasma-activated water and mist. Plasma Med. 2020;10(1):1-13.

  41. Lo Porto C, Ziuzina D, Los A, Boehm D, Palumbo F, Favia P, Tiwari B, Cullen KJ. Plasma activated water and airborne ultrasound treatments for enhanced germination and growth of soybean. Innov Food Sci Emerg Technol. 2018;49:13-9.

  42. Guragain RP, Pradhan SP, Baniya HB, Pandey BP, Basnet N, Sedhai B, Dhungana S, Chhetri GK, Joshi UM, Subedi DP. Impact of plasma-activated water (PAW) on seed germination of soybean. J Chem. 2021;2021:1-12.

  43. Shen J, Tian Y, Li Y, Ma R, Zhang Q, Zhang J, Fang J. Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci Rep. 2016;6:28505.

  44. Ghimire B, Szili EJ, Patenall BL, Lamichhane P, Gaur N, Robson AJ, Trivedi D, Thet NT, Jenkins ATA, Choi EH, Short RD. Enhancement of hydrogen peroxide production from an atmospheric pressure argon plasma jet and implications to the antibacterial activity of plasma activated water. Plasma Sources Sci Technol. 2021;30:035009.

  45. Ikawa S, Kitano K, Hamaguchi S. Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application. Plasma Process Polym. 2010;7(1):33-42.

  46. Hoeben WFLM, van Ooij PP, Schram DC, Huiskamp T, Pemen AJM, Lukes P. On the possibilities of straightforward characterization of plasma activated water. Plasma Chem Plasma Process. 2019;39:597-626.

  47. Hefny MM, Pattyn C, Lukes P, Benedikt J. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions. J Phys D. 2016;49(40):404002.

  48. Brandi J, Wilson-Wilde L. Standard methods for the examination of water and wastewater. 23rd ed. Encyclopedia of forensic sciences: 2nd ed. Washington, DC: Water Environment Federation, American Public Health Association, American Water Works Association. 2013;522-27.

  49. Kader MA. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J Proc R Soc New South Wales. 2005;138:65-75.

  50. Ranal MA, De Santana DG. How and why to measure the germination process? Rev Bras Bot. 2006;29(1):1-11.

  51. Ranal MA, Santana DG de, Ferreira WR, Mendes-Rodrigues C. Calculating germination measurements and organizing spreadsheets. Rev Bras Botanica. 2009;32(4):849-55.

  52. Guragain RP, Baniya HB, Pradhan SP, Dhungana S, Chhetri GK, Sedhai B, Basnet N, Panta GP. Joshi UM, Pandey BP, Subedi DP. Impact of non-thermal plasma treatment on the seed germination and seedling development of carrot (Daucus carota sativus L.). J Phys Commun. 2021;5(12):125011.

  53. Lotfy K, Al-Harbi NA, Abd El-Raheem H. Cold atmospheric pressure nitrogen plasma jet for enhancement germination of wheat seeds. Plasma Chem Plasma Process. 2019;39:897-912.

  54. Stolarik T, Henselova M, Martinka M, Novak O, Zahoranova A, Cernak M. Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process. 2015;35:659-76.

  55. Guragain RP, Baniya HB, Dhungana S, Chhetri GK, Gautam S, Pandey BP, Joshi UM, Subedi DP. Improvement of hydrophilicity of polypropylene film by dielectric barrier discharge generated in air at atmospheric pressure. Rev Adhes Adhes. 2021;9(1):153-66.

  56. Guragain RP, Baniya HB, Dhungana S, Gautam S, Pandey BP, Joshi UM, Subedi DP. Characterization of dielectric barrier discharge (DBD) produced in air at atmospheric pressure and its application in surface modification of high-density polyethylene (HDPE). J Technol Space Plasmas. 2020;1(1):27-35.

  57. Kim JH, Choi YH, Hwang YS. Electron density and temperature measurement method by using emission spectroscopy in atmospheric pressure nonequilibrium nitrogen plasmas. Phys Plasmas. 2006;13:093501.

  58. Barba-Espln G, Hernandez JA, Diaz-Vivancos P. Role of H2O2 in pea seed germination. Plant Signal Behav. 2012;7(2):193-95.

  59. Fan L, Liu X, Ma Y, Xiang Q. Effects of plasma-activated water treatment on seed germination and growth of mung bean sprouts. J Taibah Univ Sci. 2020;14(1):823-30.

  60. Baniya HB, Guragain RP, Panta GP, Dhungana S, Chhetri GK, Joshi UM, Pandey BP, Subedi DP. Experimental studies on physicochemical parameters of water samples before and after treatment with a cold atmospheric plasma jet and its optical characterization. J Chem. 2021;2021:1-12.

  61. Shrestha R, Pradhan SP, Guragain RP, Subedi DP, Pandey BP. Investigating the effects of atmospheric pressure air dbd plasma on physio-chemical and microbial parameters of groundwater. Open Access Libr J. 2020;7:e6144.

  62. Koller D, Hadas A. Water relations in the germination of seeds. In: Lange OL, Nobel PS, Osmond CB, Ziegler H, editors. Physiological Plant Ecology II. Encyclopedia of plant physiology (new series). vol. 12/B. Berlin: Springer; 1982. p. 401-31.

  63. Zhou R, Li J, Zhou R, Zhang X, Yang S. Atmospheric-pressure plasma treated water for seed germination and seedling growth of mung bean and its sterilization effect on mung bean sprouts. Innov Food Sci Emerg Technol. 2019;53:36-44.

  64. Talska R, Machalova J, Smykal P, Hron K. A comparison of seed germination coefficients using functional regression. Appl Plant Sci. 2020;8(8):e11366.

  65. Molina R, Lalueza A, Lopez-Santos C, Ghobeira R, Cools P, Morent R, Morent, PCR, Geyter ND, Gonzalez-Elipe AR. Physicochemical surface analysis and germination at different irrigation conditions of DBD plasma-treated wheat seeds. Plasma Process Polym. 2020:e2000086.

  66. Diaz-Vivancos P, Barba-Espln G, Hernandez JA. Elucidating hormonal/ROS networks during seed germination: Insights and perspectives. Plant Cell Rep. 2013;32(10):1491-502.

  67. Bafoil M, Jemmat A, Martinez Y, Merbahi N, Eichwald O, Dunand C, Yousfi M. Effects of low temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth. PLoS One. 2018;13(4):e0195512.

  68. Stoleru V, Burlica R, Mihalache G, Dirlau D, Padureanu S, Teliban GC, Astanei D, Cojocaru A, Beniuga O, Patras A. Plant growth promotion effect of plasma activated water on Lactuca sativa L. cultivated in two different volumes of substrate. Sci Rep. 2020;10:20920.

  69. Hou C-Y, Kong T-K, Lin C-M, Chen H-L. The effects of plasma-activated water on heavy metals accumulation in water spinach. Appl Sci. 2021;11(11):5304.

  70. Attri P, Ishikawa K, Okumura T, Koga K, Shiratani M. Plasma agriculture from laboratory to farm: A review. Processes. 2020;8(8):1-20.

1550 Article views 2023 Article downloads Metrics
1550 VIEWS 2023 DOWNLOADS Google
Scholar
CITATIONS

Articles with similar content:

Germination of Wheat Seeds Exposed to Cold Atmospheric Plasma in Dry and Wet Plasma-Activated Water and Mist Plasma Medicine, Vol.10, 2020, issue 1
H. Arafa, A. Zaki, Mohamed El Shaer, H. El Welily, A. ElSebaei, Mona Mobasher, M. ElDaly
Effect of Plasma-Activated Water on Soaking, Germination, and Vigor of Erythrina velutina Seeds Plasma Medicine, Vol.9, 2019, issue 2
Clodomiro Alves Junior, F. L. G. de Menezes, J. de O. Vitoriano, D. L. S. da Silva
Role of Direct Plasma Irradiation, Plasma-Activated Liquid, and Plasma-Treated Soil in Plasma Agriculture Plasma Medicine, Vol.13, 2023, issue 3
Masaharu Shiratani, Takamasa Okumura, Pankaj Attri, Kunihiro Kamataki, Kazunori Koga, Jamoliddin Razzokov, Quanzhi Zhang, Nozomi Takeuchi
Plasma Treatment Effect on the Paramagnetic Species of Barley Seed Radical's Intensity: An EPR Study Plasma Medicine, Vol.10, 2020, issue 3
Yushi Ishibashi, Masaharu Shiratani, Daisuke Yamashita, Takamasa Okumura, Ryo Arita, Pankaj Attri, Naho Itagaki, Anan Teruki, Kunihiro Kamataki, Kazunori Koga, Kayo Matsuo, Kasuyuki Kuchitsu, Hayate Tanaka
Broccoli: Antimicrobial Efficacy and Influences to Sensory and Storage Properties by Microwave Plasma-Processed Air Treatment Plasma Medicine, Vol.6, 2016, issue 3-4
Mathias Andrasch, Oliver Schlüter, Marion Jakobs, Kai-Uwe Katroschan, Uta Schnabel, Rijana Niquet, Klaus-Dieter Weltmann, Jörg Ehlbeck
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain