Library Subscription: Guest
International Journal for Multiscale Computational Engineering

ISSN Print: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.591 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.406 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 1.478 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00049 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.49 SJR: 0.554 SNIP: 0.82 CiteScore™:: 2.9 H-Index: 28

Indexed in

Emerging Sources Citation Index (ESCI) Clarivate SCIE Scopus Ei Compendex/ Engineering Village Chemical Abstracts Service EBSCO INSPEC British Library Google Scholar Ulrich's CNKI Portico Copyright Clearance Center iThenticate Scientific Literature

GRADIENTS AND INTERNAL LENGTHS IN SMALL SCALE PROBLEMS OF MECHANICS

Volume 20, Issue 6, 2022, pp. 89-110
DOI: 10.1615/IntJMultCompEng.2022043377
Get accessGet access

ABSTRACT

Mechanics has been a fundamental tool and principal motivation for the development of basic sciences and engineering. Its use has recently been extended from macroscopic to microscopic and nanoscopic scales and phenomena. A particular methodology in this direction is the generalization of classical theories of elasticity, plasticity, and failure through the introduction of higher order gradients of the pertinent variables and corresponding internal lengths. This article, written in honor of a charismatic contributor in the field of generalized continuum mechanics, Professor Patrizia Trovalusci, begins with a simple paradigm of how to extend standard thermoelasticity theory to its gradient counterpart. It then provides a number of other examples ranging from strength of materials and stress concentrations to plastic flow and failure.

REFERENCES
  1. Aifantis, E.C., On the Problem of Diffusion in Solids, Acta Mech., vol. 37, pp. 265-296, 1980.

  2. Aifantis, E.C., On the Microstructural Origin of Certain Inelastic Models, J. Eng. Mater. Technol., vol. 106, pp. 326-330, 1984. Aifantis, E.C., The Physics of Plastic Deformation, Int. J. Plasticity, vol. 3, pp. 211-247, 1987.

  3. Aifantis, E.C., On the Role of Gradients in the Localization of Deformation and Fracture, Int. J. Eng. Sci., vol. 30, pp. 1279-1299, 1992.

  4. Aifantis, E.C., Pattern Formation in Plasticity, Int. J. Eng. Sci., vol. 33, pp. 2161-2178, 1995.

  5. Aifantis, E.C., Recent Progress on Gradient Theory and Applications, Material Instabilities in Solids, R. de Borst and E. van der Giessen, Eds., New York: Wiley, pp. 533-548, 1998.

  6. Aifantis, E.C., Strain Gradient Interpretation of Size Effects, Int. J. Fract., vol. 95, pp. 299-314, 1999a.

  7. Aifantis, E.C., Gradient Deformation Models at Nano, Micro and Macro Scales, J. Eng. Mater Technol., vol. 121, pp. 189-202, 1999b.

  8. Aifantis, E.C., Theoretical and Experimental Aspects of Gradient Theory, Proc. of SEMIXInt. Congress & Exposition on Experimental and Applied Mechanics, SEM, Bethel, CT, pp. 648-651, 2000a.

  9. Aifantis, E.C., Nanomechanics: An Introduction, Recent Adv. Appl. Mech. (Honorary Volume for Academician A.N. Kounadis), T. Katsikadelis, D.E. Beskos, and E.E. Gdoutos, Eds., Athens: NTUA, pp. 243-254, 2000b.

  10. Aifantis, E.C., Gradient Plasticity, Handbook of Materials Behavior Models, J. Lemaitre, Ed., New York: Academic Press, pp. 291-307, 2001.

  11. Aifantis, E.C., Update on a Class of Gradient Theories, Mech. Mater., vol. 35, pp. 259-280, 2003.

  12. Aifantis, E.C., On Stress Concentrators and the Elimination of Elastic Singularities: A Gradient Approach, Proc. of SEM Annu. Conf., SEM, Bethel, CT, 2009.

  13. Aifantis, E.C., Gradient Nanomechanics: Applications to Deformation, Fracture, and Diffusion inNanopolycrystals, Metall. Mater. Trans. A, vol. 42, pp. 2985-2998, 2011a.

  14. Aifantis, E.C., On the Gradient Approach - Relation to Eringen's Nonlocal Theory, Int. J. Eng. Sci, vol. 49, pp. 1367-1377, 2011b.

  15. Aifantis, E.C., A Note on Gradient Elasticity and Nonsingular Crack Fields, J. Mech. Behav. Mater, vol. 20, pp. 103-105, 2011c.

  16. Aifantis, E.C., Gradient Material Mechanics: Perspectives and Prospects, Acta Mech., vol. 225, pp. 999-1012,2014a.

  17. Aifantis, E.C., On Non-Singular GRADELA Crack Fields, Theor. Appl. Mech. Lett., vol. 4, Article ID 051005,2014b.

  18. Aifantis, E.C., Internal Length Gradient (ILG) Material Mechanics across Scales and Disciplines, Adv. Appl. Mech, vol. 49, pp. 1-110, 2016.

  19. Aifantis, E.C., Gradient Extension of Classical Materials Models: From Nuclear and Condensed Matter Scales to Earth and Cosmological Scales, Size-Dependent Continuum Mechanics Approaches, E. Ghavanloo, S. Ahmad Fazelzadeh, and F. Marotti de Sciarra, Eds., Cham: Springer, pp. 417-452, 2021.

  20. Aifantis, E.C. and Serrin, J.B., The Mechanical Theory of Fluid Interfaces and Maxwell's Rule, J. Colloid Interf. Sci, vol. 96, pp. 517-529, 1983a.

  21. Aifantis, E.C. and Serrin, J.B., Equilibrium Solutions in the Mechanical Theory of Fluid Microstructures, J. Colloid Interf. Sci, vol. 96, pp. 530-547, 1983b.

  22. Aifantis, K.E. and Willis, J.R., The Role of Interfaces in Enhancing the Yield Strength of Composites and Polycrystals, J. Mech. Phys. Solids, vol. 53, pp. 1047-1070, 2005.

  23. Aifantis, K.E., Konstantinidis, A., and Forest, S., Modeling Strain Localization Bands in Metal Foams, J. Comput. Theor. Nanosci., vol. 7, pp. 1-7,2010.

  24. Aifantis, K.E., Soer, W.A., De Hosson, J.Th.M., and Willis, J.R., Interfaces within Strain Gradient Plasticity: Theory and Experiments, Acta Mater., vol. 54, pp. 5077-5085, 2006.

  25. Altan, B.S. and Aifantis, E.C., On Some Aspects in the Special Theory of Gradient Elasticity, J. Mech. Behav. Mater, vol. 8, pp. 231-282, 1997.

  26. Askes, H. and Aifantis, E.C., Gradient Elasticity in Statics and Dynamics: An Overview of Formulations, Length Scale Identification Procedures, Finite Element Implementations and New Results, Int. J. Solids Struct., vol. 48, pp. 1962-1990,2011.

  27. Askes, H. and Aifantis, E.C., Numerical Modeling of Size Effects with Gradient Elasticity. Part I: Formulation, Meshless Discretization and Examples, Int. J. Fract., vol. 117, pp. 347-358,2002.

  28. Avlonitis, M., Ioannidou, T., Frantziskonis, G., and Aifantis, E.C., Statistical and Stochastic Aspects of Gradient Theory, J. Mech. Behav. Mater, vol. 12, pp. 77-84, 2001.

  29. Barretta, R., Canadija, M., and Marotti de Sciarra, F., Modified Nonlocal Strain Gradient Elasticity for Nano-Rods and Application to Carbon Nanotubes, Appl. Sci, vol. 2019, Article ID 514, 2019.

  30. Bertram, A., Compendium on Gradient Materials, Magdeburg: Otto-von-Guericke-Universitat, 2017.

  31. Cardena-Garcia, J.F. and Verhaeg, J.J.E., Catalogue of Moire Fringes for a Biaxially Loaded Infinite Plate with a Hole, Mech. Res. Commun., vol. 26, pp. 641-648, 1999.

  32. Carlson, D.E., Linear Thermoelasticity, Encyclopedia of Physics, Vol. VI a/2, C. Truesdell, Ed., Berlin: Springer-Verlag, pp. 297-345, 1972.

  33. Carsley, J.E., Milligan, W.W., Zhu, X.H., and Aifantis, E.C., On the Failure of Pressure-Sensitive Plastic Materials: Part II. Comparisons with Experiments on Ultra Fine Grained Fe-10% Cu Alloys, Scripta Mater., vol. 36, pp. 727-732, 1997.

  34. Chasiotis, I., Experimental Mechanics for MEMS and Thin Films: Direct and Local Sub-Micron Strain Measurements, Micromechanics and Nanoscale Effects: MEMS, Multiscale Materials and Micro-Flows, V.M. Harik and L.-S. Luo, Eds., Dordrecht: Kluwer Academic Press, pp. 3-37, 2004.

  35. Chasiotis, I., Bateson, C., Timpano, K., McCarty, A.S., Barker, N.S., and Stanek, J.R., Strain Rate Effects on the Mechanical Behavior of Nanocrystalline Au Films, Thin Solid Films, vol. 515, pp. 3183-3189, 2007.

  36. Cho, S., Cardena-Garcia, J.F., and Chasiotis, I., Measurement of Nanodisplacements and Elastic Properties of MEMS via the Microscopic Hole Method, Sens. Actuators A, vol. 120, pp. 163-171,2005.

  37. Davidson, D.L. and Lankford, J., Fatigue Crack Growth in Metals and Alloys - Mechanisms and Micromechanics, Int. Mater. Rev, vol. 37, pp. 45-76, 1992.

  38. De Domenico, D., Askes, H., and Aifantis, E.C., Gradient Elasticity and Dispersive Wave Propagation: Model Motivation and Length Scale Identification Procedures in Concrete and Composite Laminates, Int. J. Solids Struct., vol. 158, pp. 176-190, 2019.

  39. Dimiduk, D.M., Uchic, M.D., and Parthasarathy, T.A., Size-Affected Single-Slip Behavior of Pure Nickel Microcrystals, Acta Mater., vol. 53, pp. 4065-4077, 2005.

  40. Efremidis, G. and Aifantis, E.C., Application of a Gradient Elasticity Model to Interpret Size Effects in Uniaxial Loading, J. Mech. Behav. Mater, vol. 19, pp. 1-14,2009.

  41. Eringen, A.C., Theory of Micropolar Elasticity, Fracture: An Advanced Treatise, Vol. II, H. Liebowitz, Ed., London: Academic Press, pp. 622-728, 1968.

  42. Eringen, A.C., Nonlocal Continuum Field Theories, New York: Springer, 2002.

  43. Fantuzzi, N., Trovalusci, P., and Luciano, R., Multiscale Analysis of Anisotropic Materials with Hexagonal Microstructure as Micropolar Continua, Int. J. Multiscale Comput. Eng., vol. 18, pp. v-ix, 2020.

  44. Fleck, N.A. and Hutchinson, J.W., An Assessment of a Class of Strain Gradient Plasticity Theories, J. Mech. Phys. Sol., vol. 49, pp. 2045-2071,2001.

  45. Fleck, N.A. and Hutchinson, J.W., Strain Gradient Plasticity, Adv. Appl. Mech, J.W. Hutchinson and T.W. Wu, Eds., New York: Academic Press, pp. 295-361, 1997.

  46. Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W., Strain Gradient Plasticity: Theory and Experiment, Acta Metall. Mater., vol. 42, pp. 475-487, 1994.

  47. Forest, S. and Aifantis, E.C., Some Links between Recent Gradient Thermo-Elasto-Plasticity Theories and the Thermomechanics of Generalized Continua, Int. J. Solids Struct., vol. 47, pp. 3367-3376, 2010.

  48. Gudmundson, P., A Unified Treatment of Strain Gradient Plasticity, J. Mech. Phys. Solids, vol. 52, pp. 1379-1406,2004.

  49. Gurtin, M.E., Fried, E., and Anand, L., The Mechanics and Thermodynamics of Continua, Cambridge, UK: Cambridge University Press, 2010.

  50. Gutkin, M.Yu. and Aifantis, E.C., Dislocations in the Theory of Gradient Elasticity, Scripta Mater., vol. 40, pp. 559-566, 1999.

  51. Isaksson, P. and Dumond, P.J.J., Approximation of Mode I Crack-Tip Displacement Fields by a Gradient Enhanced Elasticity Theory, Eng. Fract. Mech, vol. 117, pp. 1-11, 2014.

  52. Karlicic, D., Kozic, P., and Pavlovic, R., Flexural Vibration and Buckling Analysis of Single-Walled Carbon Nanotubes Using Different Gradient Elasticity Theories Based on Reddy and Huu-Tai Formulations, J. Theor. Appl. Mech., vol. 53, pp. 217-233, 2015.

  53. Kioseoglou, J., Dimitrakopulos, G.P., Komninou, Ph., Karakostas, Th., and Aifantis, E.C., Dislocation Core Investigation by Geometric Phase Analysis and the Dislocation Density Tensor, J. Phys. D, vol. 41, p. 035408, 2008.

  54. Kioseoglou, J., Dimitrakopulos, G.P., Komninou, Ph., Karakostas, Th., Konstantopoulos, I, Avlonitis M., and Aifantis, E.C., Analysis of Partial Dislocations in Wurtzite GaN Using Gradient Elasticity, Phys. Status Solidi A, vol. 203, pp. 2161-2166, 2006.

  55. Konstantinidis, A.A., Aifantis, K.E., and De Hosson, J.Th.M., Capturing the Stochastic Mechanical Behavior of Micro and Nanopillars, Mater. Sci. Eng. A, vol. 597, pp. 89-94, 2014.

  56. Konstantinidis, A.A. and Aifantis, K.E., Capturing Slip Band Formation in Ni3Al Nanocubes during Compression, Mater. Sci. Technol., vol. 35, pp. 571-576, 2019.

  57. Konstantinidis, A.A., Zhang, X., and Aifantis, E.C., On the Combined Gradient-Stochastic Plasticity Model: Application to Mo-Micropillar Compression, AIP Conf. Proc, vol. 1646, pp. 3-9, 2015.

  58. Lakes, R.S., Size Effects and Micromechanics of a Porous Solid, J. Mat. Sci., vol. 18, pp. 2572-2580, 1983.

  59. Lakes, R.S., Experimental Microelasticity of Two Porous Solids, Int. J. Solids Struct., vol. 22, pp. 55-63,1986.

  60. Lazar, M., Maugin, G.A., and Aifantis, E.C., On Dislocations in a Special Class of Generalized Elasticity, Phys. Status Solidi B, vol. 242, pp. 2365-2390,2005.

  61. Lazar, M., Maugin, G.A., and Aifantis, E.C., On a Theory of Nonlocal Elasticity of Bi-Helmholtz Type and Some Applications, Int. J. Solids Struct, vol. 43, pp. 1404-1421, 2006a.

  62. Lazar, M., Maugin, G.A., and Aifantis, E.C., Dislocations in Second Strain Gradient Elasticity, Int. J. Solids Struct., vol. 43, pp. 1787-1817, 2006b.

  63. Milligan, W.W., Hackney, S.A., and Aifantis, E.C., Constitutive Modeling for Nanostructured Materials, Continuum Models for Materials with Microstructure, H.B. Muhlhaus, Ed., Hoboken, NJ: Wiley, pp. 379-393, 1995.

  64. Mindlin, R.D., Influence of Couple-Stresses on Stress Concentrations, Exp. Mech., vol. 3, pp. 1-7,1963.

  65. Morrison, J.L.M., The Yield of Mild Steel with Particular Reference to the Effect of Size of Specimen, Proc. Inst. Mech. Eng., vol. 142, pp. 193-223, 1939.

  66. Muhlhaus, H.B. and Aifantis, E.C., A Variational Principle for Gradient Plasticity, Int. J. Solids Struct., vol. 28, pp. 845-857,1991.

  67. Murphy, B.R., Eleftheriades, I.E., Ning, J., Milligan, W., and Aifantis, E.C., On Experimental Determination of Gradient Coefficient, J. Mech. Behav. Mat., vol. 14, pp. 271-278, 2003.

  68. Nix, W.P. and Gao, H., Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity, J. Mech. Phys. Solids, vol. 46, pp. 411-425, 1998.

  69. Parisis, K., Dimosthenis, V., Kouris, L., Konstantinidis, A., and Aifantis, E.C., A Note on Gradient/Fractional One-Dimensional Elasticity and Viscoelasticity, Fractal Fract., vol. 6, Article ID 84,2022.

  70. Rizzardi, Q., Sparks, G., and Maass, R., Fast Slip Velocity in a High-Entropy Alloy, JOM, vol. 70, pp. 1088-1093, 2018.

  71. Ru, C.Q. and Aifantis, E.C., A Simple Approach to Solve Boundary Value Problems in Gradient Elasticity, Acta Mech., vol. 101, pp. 59-68,1993.

  72. Ru, C.Q., Elastic Models for Carbon Nanotubes, Encyclopedia of Nanoscience and Nanotechnology, Vol. 2, H.S. Nalwa, Ed., Stevenson Ranch, CA: American Scientific Publishers, pp. 731-744, 2004.

  73. Sabate, N., Vogel, D., Keller, J., Gollhardt, A., Marcos, J., Gracia, I., Cane, C., and Michel, B., FIB-Based Technique for Stress Characterization on Thin Films for Reliability Purposes, Microelectr. Eng., vol. 84, pp. 1783-1787, 2007.

  74. Sadowski, T. and Trovalusci, P., Eds., Multiscale Modeling of Complex Materials. Phenomenological, Theoretical and Computational Aspects, Berlin: Springer, 2014.

  75. Sadowski, T., Trovalusci, P., Schrefler, B., and de Borst, R., Eds., Multiscale and Multiphysics Modelling for Complex Materials, Special Issue, Meccanica, vol. 49, 2014. DOI: 10.1007/s11012-014-0040-9. DOI: 10.1007/s11012-014-0040-9

  76. Sciammarella, C.A., Sciammarella, F.M., and Kim, T., Strain Measurements in the Nanometer Range in a Particulate Composite Using Computer Aided Moire, Exp. Mech., vol. 43, pp. 341-347, 2003.

  77. Shrefler, B., Zhang, H., and Sanavia, L., Fluid-Structure Interaction in the Localization of Saturated Porous Media, Z. Angew. Math. Mech, vol. 79, pp. 481-484, 1999.

  78. Shrefler, B., Zhang, H., and Sanavia, L., Interaction between Different Internal Length Scales in Strain Localization Analysis of Fully and Partially Saturated Porous Media - The 1D Case, Int. J. Numer. Anal. Meth. Geomech., vol. 30, pp. 45-70,2006.

  79. Stolken, J.S. and Evans, A.G., A Microbend Test Method for Measuring the Plasticity Length Scale, Acta Mater, vol. 46, pp. 5109-5115, 1998.

  80. Szekely, F., Groma, I., and Lendvai, J., Nonlocal Effects in Torsional Deformation, Mater. Sci. Eng. A, vol. 277, pp. 148-153, 2000.

  81. Tarasov, V.E. and Aifantis, E.C., On Fractional and Fractal Formulations of Gradient Linear and Nonlinear Elasticity, Acta Mech., vol. 230, pp. 2043-2070,2019.

  82. Toupin, R.A., Theories of Elasticity with Couple-Stress, Arch. Rational Mech. Anal, vol. 17, pp. 85-112, 1964.

  83. Trovalusci, P., A Multi-Scale Continuum for Damaged Fibre Composites, Mater. Sci. Forum, vols. 426-432, pp. 2133-2138,2003.

  84. Trovalusci, P. and Pau, A., Derivation of Microstructured Continua from Lattice Systems via Principle of Virtual Works. The Case of Masonry-Like Materials as Micropolar, Second Gradient and Classical Continua, Acta Mech., vol. 225, pp. 157-177, 2014.

  85. Trovalusci, P. and Sansalone, V., Multifield Continuum Modelling for Materials with Lattice Microstructure, in Continuum Models and Discrete Systems (CMDS11), D. Jeulin and S. Forest, Eds., Paris: Les Presses de l'Ecole des Mines de Paris, pp. 351-356, 2008.

  86. Trovalusci, P. and Schrefler, B., Eds., Multiscale Modelling for Materials with Internal Length, Int. J. Multiscale Comput. Eng., vol. 10, no. 6,2012. DOI: 10.1615/IntJMultCompEng.v10.i6. DOI: 10.1615/IntJMultCompEng.v10.i6

  87. Trovalusci, P., Capecchi, D., and Ruta, G., Genesis of the Multiscale Approach for Materials with Microstructure, Arch. Appl. Mech, vol. 79, pp. 981-997, 2009.

  88. Trovalusci, P., Molecular Approaches for Multifield Continua: Origins and Current Developments, Multiscale Modeling of Complex Materials. CISM International Centre for Mechanical Sciences, vol 556. Springer, Vienna,2014. DOI: 10.1007/978-3-7091-1812-2_7

  89. Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M.L., and Murrali, A., Scale-Dependent Homogenization of Random Composites as Micropolar Continua, Eur. J. Mech. A, vol. 49, pp. 396-407, 2015.

  90. Tsagrakis, I., Konstantinidis, A., and Aifantis, E.C., Strain Gradient and Wavelet Interpretation of Size Effects in Yield and Strength, Mech. Mater., vol. 35, pp. 733-745, 2003.

  91. Tsallis, C., Possible Generalization of Boltzmann-Gibbs Statistics, J. Stat. Phys., vol. 52, pp. 479-487, 1988.

  92. Vardoulakis, I., Exadaktylos, G., and Kourkoulis, S.K., Bending of Marble with Intrinsic Length Scales: Gradient Theory with Surface Energy and Size Effects, J. Phys. IV, vol. 8, pp. 399-406, 1998.

  93. Vogel, D. and Michel, B., Microcrack Evaluation for Electronic Components by AFM nanoDAC Deformation Measurement, IEE-Nano, vol. 2001, pp. 309-312,2001.

  94. Voyiadjis, G.Z. and Abu Al-Rub, R.K., Gradient Plasticity Theory with a Variable Length Scale Parameter, Int. J. Solids Struct., vol. 42, pp. 3998-4029, 2005.

  95. Voyiadjis, G.Z. and Song, Y., Gradient-Enhanced Continuum Plasticity, New York: Elsevier, 2020.

  96. Voyiadjis, G.Z. and Yaghoobi, M., Size Effects in Plasticity, New York: Elsevier, 2019.

  97. Wang, L. and Hu, H., Flexural Wave Propagation in Single-Walled Carbon Nanotubes, Phys. Rev. B, vol. 781, p. 195412,2005.

  98. Wunderle, B. and Michel, B., Progress in Reliability Research in the Micro and Nano Region, Microelectron Reliab., vol. 46, pp. 1685-1694, 2006.

  99. Yang, J.F.C. and Lakes, R.S., Transient Study of Couple Stress Effects in Compact Bone: Torsion, J. Biomed. Eng., vol. 103, pp. 175-179, 1981.

  100. Zaiser, M. and Aifantis, E.C., Randomness and Slip Avalanches in Gradient Plasticity, Int. J. Plasticity, vol. 22, pp. 1432-1455, 2006.

  101. Zaiser, M., Schwerdtfeger, J., Schneider, A.S., Frick, C.P., Clark, B.G., Gruber, P.A., and Arzt, E., Strain Bursts in Plastically Deforming Molybdenum Micro- and Nanopillars, Philos. Mag., vol. 28, pp. 3861-3874,2008.

  102. Zbib, H.M. and Aifantis, E.C., On the Gradient-Dependent Theory of Plasticity and Shear Banding, Acta Mech., vol. 92, pp. 209-225, 1992.

  103. Zhang, H., Sanavia, L., and Schrefler, B., An Internal Length Scale in Dynamic Strain Localization of Multiphase Porous Media, Mech. Cohes. Frict. Mater, vol. 4, pp. 443-460, 1999.

  104. Zhang, X. and Aifantis, K.E., Interpreting Strain Bursts and Size Effects in Micropillars Using Gradient Plasticity, Mater. Sci. Eng. A, vol. 528, pp. 5036-5043, 2011.

  105. Zhang, Y.Q., Liu, G.R., and Xie, X.Y., Free Transverse Vibrations of Double-Walled Carbon Nanotubes Using a Theory of Nonlocal Elasticity, Phys. Rev. B, vol. 781, p. 195404, 2005.

  106. Zhu, H., Zbib, H.M., and Aifantis, E.C., On the Role of Gradients in Adiabatic Shear Banding, Acta Mech., vol. 3, pp. 111-124, 1995.

  107. Zhu, X.H., Carsley, J.E., Milligan, W.W., and Aifantis, E.C., On the Failure of Pressure-Sensitive Plastic Materials: Part I. Models of Yield and Shear Band Behavior, Scripta Mater, vol. 36, pp. 721-726, 1997a.

  108. Zhu, H.T., Zbib, H.M., and Aifantis, E.C., Strain Gradients and Continuum Modeling of Size Effect in Metal Matrix Composites, Acta Mech, vol. 121, pp. 165-176, 1997b.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain