Library Subscription: Guest
Atomization and Sprays

ISSN Print: 1044-5110

ISSN Online: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.134 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.864 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.235 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00116 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.23 SJR: 0.814 SNIP: 1.18 CiteScore™:: 2.2 H-Index: 52

Indexed in

Emerging Sources Citation Index (ESCI) Clarivate SCIE Scopus Ei Compendex/ Engineering Village Chemical Abstracts Service EBSCO INSPEC British Library Google Scholar Ulrich's CNKI Portico Copyright Clearance Center iThenticate Scientific Literature

A THREE-STAGE FREEZING MODEL FOR LIQUID DROPLETS WITH APPLICATIONS TO FOOD SPRAYS

Volume 20, Issue 11, 2010, pp. 1005-1016
DOI: 10.1615/AtomizSpr.v20.i11.60
Get accessGet access

ABSTRACT

The development and validation of a three-stage freezing model for polymorphous materials, with applications to food sprays, is presented. In the first stage, the cooling of the droplet down to the freezing temperature is described as a convective heat transfer process in turbulent flow. In the second stage, when the droplet has reached the freezing temperature, the solidification process is initiated, which results in the release of latent heat. The amount of latent heat released is related to the amount of heat convected away from the droplet. The solidification process is monitored with a progress variable that is used to determine the specific heat capacity of the semisolid droplet. After completion of the crystallization process, in stage three, the cooling of the solidified particle is described again by a convective heat transfer process until the particle temperature is close to that of the gaseous environment. The freezing model has been validated with experimental data of a single cocoa butter droplet in an air flow. Subsequently, the model has been implemented into the computational fluid dynamics code KIVA-3 and has been validated with experimental data of a cocoa butter spray. In addition, the sensitivity of drop sizes with respect to variations in material and processing parameters has been investigated.

CITED BY
  1. Tanner Franz X., Feigl Kathleen, Kaario Ossi, Windhab Erich J., Modeling and simulation of air-assist atomizers with applications to food sprays, Applied Mathematical Modelling, 40, 11-12, 2016. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain