Library Subscription: Guest
International Journal of Medicinal Mushrooms

Published 12 issues per year

ISSN Print: 1521-9437

ISSN Online: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

Antidiabetic Effects and Antioxidant Properties of the Saggy Ink Cap Medicinal Mushroom, Coprinus comatus (Agaricomycetes), in Streptozotocin-Induced Hyperglycemic Rats

Volume 23, Issue 10, 2021, pp. 9-21
DOI: 10.1615/IntJMedMushrooms.2021040020
Get accessGet access

ABSTRACT

Coprinus comatus is known for its antihyperglycemic benefits. This study aimed to identify the effect of bioactive compounds of C. comatus extract as an antidiabetic agent linked to glucagon-like peptide 1 (GLP-1) and antioxidant properties in increasing glutathione (GSH) levels. This study used six groups of Wistar rats (n = 24). Group 1 comprised the healthy control. Groups 2-6 received 45 mg of streptozotocin/kg body weight (BW) once. Group 3 was also given 45 mg of metformin/kg BW, whereas groups 4-6 were also given 250, 500, and 750 mg of C. comatus ethyl acetate extract/kg BW for 14 days. Antidiabetic effects of alkaloids and saponin were seen in blood glucose and glycated hemoglobin (HbA1c) degradation, increased insulin, and increased inhibition of GLP-1 through dipeptidyl peptidase-4 activity. Flavonoid antioxidants, ascorbic acid (vitamin C), and α-tocopherol (vitamin E) are useful in protecting pancreatic в cells from free radicals. Data were analyzed using analysis of variance and Duncan's multiple range test. C. comatus ethyl acetate extract at doses of 250, 500, and 750 mg/kg BW worked as an antidiabetic and antioxidant agent that contained flavonoids (16.4 mg/L), alkaloids (2.97 mg/L), saponin, rutin (351.13 ppm), vitamin C (132.342 mg/L), and vitamin E (102.320 g/L). The 250-mg dose was effective in increasing insulin (8.11 mlU/mL) and reducing blood glucose (23.92%) and HbA1c (3.775%), whereas the 500-mg dose was effective in increasing levels of GLP-1 (1056.923 ng/L) and GSH (4.62 μmol/L).

REFERENCES
  1. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: Report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. Geneva, Switzerland: WHO; 1999.

  2. Unwin N, Gan D, Mbanya JC, Ramachandran A, Roglic G, Shaw J, Soltesz G, Whiting D, Zgibor J, Zhang P, Zimmet P. IDF Diabetes Atlas, 4th ed. Brussels, Belgium: International Diabetes Federation; 2009.

  3. Sulistyorini R, Johan A, Djamiatun K. Effect of ethanol extract of Moringa oleifera leaves on insulin expression and insulitis in diabetes mellitus rats. Maj Kedokt Bandung. 2013;47(2):69-76.

  4. Dadich KA. Diabetes mellitus: A guide to patient care, 1st ed. Munden J, editor. Philadelphia, PA: Lippincott Williams & Wilkins; 2007. p. 123-30.

  5. Li B, Lu F, Suo X, Nan H, Li B. Antioxidant properties of cap and stipe from Coprinus comatus. Molecules. 2010;15(3):1473-86.

  6. Ding Z, Lu Y, Lu Z, Lv F, Wang Y, Bie X, Wang F, Zhang K. Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chem. 2010;121(1):39-43.

  7. McFarland MS, Cripps R. Diabetes mellitus and increased risk of cancer: Focus on metformin and the insulin analogs. J Hum Pharmacol Drug Ther. 2010;30(11):1159-78.

  8. Reyes RG, Lopez LLMA, Kumakura K, Kalaw SP, Kikukawa T, Eguchi F. Coprinus comatus, a newly domesticated wild nutriceutical mushroom in the Philippines. J Agric Technol. 2009;5(2):299-316.

  9. Yu J, Cui PJ, Zeng WL, Xie XL, Liang WJ, Lin GB, Zheng L. Protective effect of selenium-polysaccharides from the mycelia of Coprinus comatus on alloxan-induced oxidative stress in mice. Food Chem. 2009;117(1):42-7.

  10. Ratnaningtyas NI, Hernayanti H, Ekowati N, Sukmawati D, Widianti H. Chicken drumstick mushroom (Coprinus comatus) ethanol extract exerts a hypoglycaemic effect in the Rattus norvegicus model of diabetes. Biocatal Agric Biotechnol. 2019;19:1-4.

  11. Shukla A, Srinivasan BP. 16,17-Dihydro-17b-hydroxy isomitraphylline alkaloid as an inhibitor of DPP-IV, and its effect on incretin hormone and P-cell proliferation in diabetic rat. Eur J Pharm Sci. 2012;47(2):512-9.

  12. Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017;482(3):419-25.

  13. Rock CL, Jacob RA, Bowen PE. Update on the biological characteristics of the antioxidant micronutrients: Vitamin C, vitamin E, and the carotenoids. J Am Diet Assoc. 1996;96(7):693-702.

  14. Ergina, Nuryanti S, Pursitasari ID. Qualitative test of secondary metabolites compounds in palado leaves (Agave angustifolia) extracted with water and ethanol. J Akad Kim. 2014;3(3):165-72.

  15. Suresh S, Chhipa AS, Gupta M, Lalotra S, Sisodia SS, Baksi R, Nivsarkar M. Phytochemical analysis and pharmacological evaluation of methanolic leaf extract of Moringa oleifera Lam. in ovalbumin induced allergic asthma. S African J Bot. 2020;130:484-93.

  16. Meyer VR. Practical high-performance liquid chromatography, 5th ed. Chichester, UK: John Wiley & Sons; 2010.

  17. Abeeleh MA, Ismail ZB, Alzaben KR, Abu-Halaweh SA, Al-Essa MK, Abuabeeleh J, Alsmady MM. Induction of diabetes mellitus in rats using intraperitoneal streptozotocin: A comparison between 2 strains of rats. Eur J Sci Res. 2009;32(3):398-402.

  18. Bioassay Technology Laboratory. Rat insulin and rat GLP-1 ELISA kit procedure. Shanghai, China: Biotech. Co.; 2018. p. 1-8.

  19. Tesanovic K, Pejin B, Sibul F, Matavulj M, Raseta M, Janjusevic L, Karaman M. A comparative overview of antioxidative properties and phenolic profiles of different fungal origins: Fruiting bodies and submerged cultures of Coprinus comatus and Coprinellus truncorum. J Food Sci Technol. 2017;54(2):430-8.

  20. Tian F, Li B, Ji B, Yang J, Zhang G, Chen Y, Luo Y. Antioxidant and antimicrobial activities of consecutive extracts from Galla chinensis: The polarity affects the bioactivities. Food Chem. 2009;113:173-9.

  21. Winarsi H, Wijayanti SPM, Purwanto A. Activity of superoxide dismutase, catalase, and glutathione peroxidase enzymes in women with metabolic syndrome. Maj Kedokt Bandung. 2012;44(1):7-12.

  22. Morel I, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brissot P, Cillard P, Cillard J. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol. 1993;45(1):13-9.

  23. Firdaus F, Rimbawan R, Marliyati SA, Roosita K. Streptozotocin, sucrose-induced diabetic male rats model for research approach of gestational diabetes mellitus. J MKMI. 2016;12(1):29-34.

  24. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537-46.

  25. Saputra NT, Suartha IN, Dharmayudha AAGO. Diabetagonic agent streptozocin to make white rats male diabetes mellitus. Bul Vet Udayana. 2018;10(2):116.

  26. Kanter M, Yoruk M, Koc A, Meral I, Karaca T. Effects of cadmium exposure on morphological aspects of pancreas, weights of fetus and placenta in streptozotocin-induced diabetic pregnant rats. Biol Trace Elem Res. 2003;93(1-3):189-200.

  27. Ahmed R. The physiological and biochemical effects of diabetes on the balance between oxidative stress and antioxidant defense system. Med J Islam World Acad Sci. 2005;15(1):31-42.

  28. Houcher Z, Boudiaf K, Benboubetra M, Houcher B. Effects of methanolic extract and commercial oil of Nigella sativa L. on blood glucose and antioxidant capacity in alloxan-induced diabetic rats. Pteridines. 2007;18(1):8-18.

  29. Ji W, Huang H, Chao J, Lu W, Guo J. Protective effect of agaricus brasiliensis on STZ-induced diabetic neuropathic pain in rats. Evid Based Complement Altern Med. 2014;2014:679259.

  30. Yamac M, Zeytinoglu M, Kanbak G, Bayramoglu G, Senturk H. Hypoglycemic effect of crude exopolysaccharides produced by Cerrena unicolor, Coprinus comatus, and Lenzites betulina isolates in streptozotocin-induced diabetic rats. Pharm Biol. 2009;47(2):168-74.

  31. Zhang ZM, Wu WW, Li GK. A GC-MS study of the volatile organic composition of straw and oyster mushrooms during maturity and its relation to antioxidant activity. J Chromatogr Sci. 2008;46(8):690-6.

  32. Gutierrez MRP, Gomez YG, Ramirez EB. Nephroprotective activity of prosthechea michuacana against cisplatin-induced acute renal failure in rats. J Med Food. 2010;13(4):911-6.

  33. Ding Z, Wang W, Wang F, Wang Q, Zhang K. Polysaccharides production by submerged fermentation of Coprinus comatus and their inhibitory effects on non-enzymatic glycosylation. J Med Plants Res. 2012;6(7):1375-81.

  34. Sharma B, Salunke R, Balomajumder C, Daniel S, Roy P. Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. J Ethnopharmacol. 2010;127(2):457-62.

  35. Ahmad P, Sarwat M, Sharma S. Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol. 2008;5(3):167-73.

  36. Rees D, Alcolado J. Animal models of diabetes mellitus. Diabet Med. 2005;22(4):359-70.

  37. Yuniastuti A, Susanti R, Iswari R. Effect of garut tuber infusion (Marantha arundinacea L.) on glucose and insulin levels in streptozotocyn-induced rat plasma. Indones J Math Nat Sci. 2018;41(1):34-9.

  38. Cai R, Li X, Chen B, Xie Y, Xie H, Chen D. Antioxidant change in biosynthesis from naringenin chalcone to flavonoid apingenin. Chem Select. 2019;4(17):5155-9.

  39. Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr Metab. 2015;12(1):1-20.

  40. Drucker DJ. Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: Preclinical biology and mechanisms of action. Diabetes Care. 2007;30:1335-43.

  41. Stehouwer CDA, Schaper NC, editors. Therapeutic strategies in diabetes, 1st ed. Oxford, UK: Atlas Medical Publishing; 2009. p. 250-62.

  42. Padidela R, Patterson M, Sharief N, Ghatei M, Hussain K. Elevated basal and post-feed glucagon-like peptide 1 (GLP-1) concentrations in the neonatal period. Eur J Endocrinol. 2009;160(1):53-8.

  43. Bharti SK, Krishnan S, Kumar A, Rajak KK, Murari K, Bharti BK, Gupta AK. Antihyperglycemic activity with DPP-IV inhibition of alkaloids from seed extract of Castanospermum australe: Investigation by experimental validation and molecular docking. Phytomedicine. 2012;20(1):24-31.

  44. Augustyns K, Veken P, Senten K, Haemers A. The therapeutic potential of inhibitors of dipeptidyl peptidase IV (DPP IV) and related proline-specific dipeptidyl aminopeptidases. Curr Med Chem. 2005;12(8):971-98.

  45. Ramachandran V, Saravanan R. Efficacy of asiatic acid, a pentacyclic triterpene on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-induced diabetic rats. Phytomedicine. 2012;20(3-4):230-6.

  46. Kim D-H, Yang B-K, Hur N-J, Das S, Yun J-W, Choi Y-S, Song C-H. Hypoglycemic effects of mycelia produced from a submerged culture of Phellinus linteus (Berk. et Curt.) Teng (Aphyllophoromycetidae) in streptozotocin-lnduced diabetic rats. Int J Med Mushrooms. 2001;3(1):1-6.

  47. Fatimah RN. Type 2 diabetes mellitus. J Major. 2015;4(5):93-101.

  48. Mclennan S V, Heffernan S, Wright L, Rae C, Fisher E, Yue DK, Turtle JR. Changes in hepatic glutathione metabolism in diabetes. Diabetes. 2006;40(3):344-8.

  49. Wang Y, Branicky R, Noe A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2014;217(6):1915-28.

  50. 50. Wu T, Xu B. Antidiabetic and antioxidant activities of eight medicinal mushroom species from China. Int J Med Mushrooms. 2015;17(2):129-40.

  51. 51. Suarsana IN, Utama IH, Agung IG, Suartini A. Hyperglycemic and vitamin E effect on malondialdehyde and antioxidant intracellular enzyme in rat pancreatic tissue. Maj Kedokt Bandung. 2011;43(2):72-6.

  52. 52. Prameswari OM, Widjanarko SB. The effect of water extract of pandan wangi leaf to decrease blood glucose levels and pancreas histopathology at diabetes mellitus rats. J Pangan dan Agroindustr. 2014;2(2):16-27.

  53. 53. Heisterkamp N, Groffen J, Warburton D, Sneddon TP. The human gamma-glutamyltransferase gene family. Hum Genet. 2008;123(4):321-32.

CITED BY
  1. López‐Hortas Lucía, Flórez‐Fernández Noelia, Torres María D., Domínguez Herminia, Update on potential of edible mushrooms: high‐value compounds, extraction strategies and bioactive properties, International Journal of Food Science & Technology, 57, 3, 2022. Crossref

  2. Ratnaningtyas Nuniek Ina, Hernayanti Hernayanti, Ekowati Nuraeni, Husen Fajar, Ethanol extract of the mushroom Coprinus comatus exhibits antidiabetic and antioxidant activities in streptozotocin-induced diabetic rats, Pharmaceutical Biology, 60, 1, 2022. Crossref

  3. Ratnaningtyas Nuniek Ina, Husen Fajar , Sukmawati Dalia , Wibowo Eko Setio , Hikam Arif Rahman , Aksoy Adil , Antidiabetic Effects and Enzymatic Antioxidant Activity of Chicken Drumstick Mushroom (Coprinus comatus) Extract in Diabetic Rats Model, Journal of Pure and Applied Microbiology, 16, 4, 2022. Crossref

2635 Article views 24 Article downloads Metrics
2635 VIEWS 24 DOWNLOADS 3 Crossref CITATIONS Google
Scholar
CITATIONS

Articles with similar content:

Modulatory Effect of Crude Aqueous Extract of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes), on Hematological and Antioxidant Indices in Plasmodium berghei−infected Mice International Journal of Medicinal Mushrooms, Vol.16, 2014, issue 5
Olarewaju M. Oluba, Kayode E. Adebisi, E. Chukwu Onyeneke, Adewale A. Odutuga, George O. Eidangbe
Nephroprotective and Antioxidant Effects of King Tuber Oyster Medicinal Mushroom, Pleurotus tuber-regium (Agaricomycetes), on Carbon Tetrachloride-Induced Nephrotoxicity in Male Sprague Dawley Rats International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 5
Kenneth O. Okolo, Orish Ebere Orisakwe, Iyeopu M. Siminialayi
Anti-Tumor Activity of Aloe vera Against DMBA/Croton Oil-Induced Skin Papillomagenesis in Swiss Albino Mice Journal of Environmental Pathology, Toxicology and Oncology, Vol.29, 2010, issue 2
Pradeep Kumar Goyal, Geeta Chaudhary, M. R. Saini
Hepatoprotective and Immunosuppressive Effect of Synedrella nodiflora L. on Carbon Tetrachloride (CCl4)-Intoxicated Rats Journal of Environmental Pathology, Toxicology and Oncology, Vol.35, 2016, issue 1
Muhammad Dawood Shah, A.T.M. Emdadul Haque, Mohammad Iqbal, Jaafar Sadeq Makki, Charles Gnanaraj
Post Treatment Effect of Grewia asiatica against Radiation-Induced Biochemical Alterations in Swiss Albino Mice Journal of Environmental Pathology, Toxicology and Oncology, Vol.27, 2008, issue 2
Smita Singh, K. V. Sharma, Muktika Ahaskar, Rashmi Sisodia
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain