Library Subscription: Guest
International Journal of Medicinal Mushrooms

Published 12 issues per year

ISSN Print: 1521-9437

ISSN Online: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

Antiprotozoal Activity of Mycelial Extracts of Several Medicinal Agaricomycetes Mushrooms against Giardia duodenalis

Volume 24, Issue 12, 2022, pp. 37-46
DOI: 10.1615/IntJMedMushrooms.2022045354
Get accessGet access

ABSTRACT

Despite knowledge on the therapeutic properties of fungal bio-compounds, few studies have been reported on their anti-parasitic activities. The anti-parasitic activity (APA) of mycelial extracts from seven medicinal agaricomycetous mushrooms (Polyporus lipsiensis, Ganoderma applanatum, Pleurotus ostreatus, P. flabellatus, Oudemansiella canarii, Lentinula edodes, and Pycnoporus sanguineus) against Giardia duodenalis, and identification of chemical compounds produced by mycelium P. lipsiensis mycelium, have been reported. The extracts of mycelia and fermented culture broths of tested mushroom species were evaluated against G. duodenalis by biological assays. P. lipsiensis showed the highest APA. The chemical analysis of mycelial extract of P. lipsiensis by gas chromatography-mass spectrometry (GC-MS) identified 73 molecules, including steroids, terpenes, and lipids. According to literature data, among these molecules, 11 possess APA. The present study revealed the diversity of compounds with anti-protozoal potential produced by mycelia of Agaricomycetes mushrooms, particularly P. lipsiensis against G. duodenalis.

REFERENCES
  1. Savioli L, Smith H, Thompson A. Giardia and Cryptosporidium join the 'neglected diseases initiative.' Trends Parasitol. 2006;22(5):203-8.

  2. Efstratiou A, Ongerth JE, Karanis P. Waterborne transmission of protozoan parasites: Review of worldwide outbreaks-an update 2011-2016. Water Res. 2017;114:14-22.

  3. Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY, Mckeever D, Mutua F, Young J, Mcdermott J, Pfeiffer DU. Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci U S A. 2013;110(21):8399-404.

  4. Watkins RR, Eckmann L. Treatment of giardiasis: Current status and future directions. Curr Infect Dis Rep. 2014;16:396.

  5. Nabarro LE, Lever RA, Armstrong M, Chiodini PL. Increased incidence of nitroimidazole-refractory giardiasis at the hospital for tropical diseases, London: 2008-2013. Clin Microbiol Infect. 2015;21:791e6.

  6. Escobedo AA, Cimerman S. Giardiasis: A pharmacotherapy review. Expert Opin Pharmacother. 2007;8:1885-902.

  7. Ansell BR, McConville MJ, Ma'ayeh SY, Dagley MJ, Gasser RB, Svard SG, Jex AR. Drug resistance in Giardia duodenalis. Biotechnol Adv. 2015;33:888-901.

  8. Baby S, Johnson AJ, Govindan B. Secondary metabolites from Ganoderma. Phytochemistry. 2015;114:66-101.

  9. Costa TM, Tavares LBB, Oliveira D. Fungi as a source of natural coumarin production. Appl Microbiol Biotechnol. 2016;100(15):6571-84.

  10. Costa TM, Lenzi J, Paganelli CJ, Filho HHDS, Alberton MD, Tavares LBB, de Oliveira D. Liposoluble compounds from Ganoderma lipsiense grown on solid red rice medium with antiparasitic and antibacterial properties. Biotechnol Appl Bio-chem. 2020;67(2):180-5.

  11. Duru ME, Qayan GT. Biologically active terpenoids from mushroom origin: A review. Rec Nat Prod. 2015;9(4):456-83.

  12. Dembitsky VM. Naturally occurring bioactive Cyclobutane containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine. 2014;21:1559-81.

  13. Lenzi J, Costa TM, Alberton MD, Goulart JAG, Tavares LBB. Medicinal fungi: A source of antiparasitic secondary metabolites. Appl Microbiol Biotechnol. 2018;102(14):5791-810.

  14. Oluba OM, Olusola AO, Fagbohunka BS, Onyeneke EC. Antimalarial and hepatoprotective effects of crude ethanolic extract of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (higher Basidiomycetes), in Plasmodium berghei-infected mice. Int J Med Mushrooms. 2012;14(5)459-66.

  15. Rosa LH, Cota BB, Machado KM, Rosa CA, Zani CL. Antifungal and other biological activities from Oudemansiella canarii (Basidiomycota). World J Microb Biot. 2005;21(6):983-7.

  16. Costa TM, Kaufmann V, Paganelli CJ, Siebert DA, Micke GA, Alberton MD, Tavares LBB, de Oliveira D. Kinetic identification of phenolic compounds and potential production of caffeic acid by Ganoderma lipsiense in solid-state fermentation. Bioprocess Biosyst Eng. 2019;42:1325-32.

  17. Neiva VA, Ribeiro MNS, Nascimento FRF, Cartagenes MSS, Coutinho-Moraes DF, Amaral FMM. Plant species used in giardiasis treatment: Ethnopharmacology and in vitro evaluation of anti-Giardia activity. Rev Bras Farmacogn. 2015;24:215-24.

  18. Mosmann T. Rapid colorimetric assay for cellular growth and survival. J Immunol Methods. 1983;65(2):55-63.

  19. Freitas SF, Shinohara L, Sforcin JM, Guimaraes S. In vitro effects of propolis on Giardia duodenalis trophozoites. Phytomedicine. 2006;13:170-5.

  20. Keister DB. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg. 1983;77(4):487-8.

  21. Edlind TD, Hang TI, Chakraborty PR. Activity of the anthelmintic benzimidazoles against Giardia lamblia in vitro. J Infect Dis. 1990;162:1408-11.

  22. Rahi DK, Malik D. Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. J Mycol. 2016(1-2):1-18.

  23. Lenzi J. Compostos de fungicos obtidos de basidiomicetos com ajao antiparasitaria para Giardia duodenalis [fungi compounds obtained from Basidiomycetes with antiparasitic action against Giardia duodenalis] Master's Thesis, Fundajao Universidade Regional de Blumenau. Portuguese; 2019. Available from: https://bu.furb.br/7docs/DS/2019/365674_1_1.pdf.

  24. Tylova T, Kolaiik M, Olsovska J. The UHPLC-DAD fingerprinting method for analysis of extracellular metabolites of fungi of the genus Geosmithia (Ascomycota: Hypocreales). Analyt Bioanalyt Chem. 2011;400:2943-52.

  25. Adams M, Christen M, Plitzko I, Zimmermann S, Brun R, Kaiser M, Hamburger M. Antiplasmodial lanostanes from the Ganoderma lucidum mushroom. J Nat Prod. 2010;73:897-900.

  26. Lovy A, Knowles B, Labbe R, Nolan L. Activity of edible mushrooms against the growth of human T4 leukemic cancer cells, HeLa cervical cancer cells, and Plasmodium falciparum. J Herbs Spices Med Plants. 2000;6(4):49-57.

  27. Ma K, Ren, J, Han J, Bao L, Li L, Yao Y, Sun C, Zhou B, Liu H. Ganoboninketals A-C, antiplasmodial 3,4-seco-27-norlanostane triterpenes from Ganoderma boninense. Pat J Nat Prod. 2014;77(8):1847-52.

  28. Chabra A, Rahimi-Esboei B, Habibi E, Monadi T, Azadbakht M, Elmi T, Valian HK, Akhtari J, Fakhar M, Naghshvar F. Effects of some natural products from fungal and herbal sources on Giardia lamblia in vivo. Parasitology. 2019;146(9):1188-98.

  29. Yarahmadi M, Fakhar M, Ebrahimzadeh MA, Chabra A, Rahimi-Esboei B. The anti-giardial effectiveness of fungal and commercial chitosan against Giardia intestinalis cysts in vitro. J Parasit Dis. 2016;40(1):75-80.

  30. Rosa LH, Machado KMG, Rabello ALT, Fagundes EMS, Oliveira RC, Rosa CA, Zani CL. Cytotoxic, immunosuppressive, trypanocidal and antileishmanial activities of Basidiomycota fungi present in Atlantic rainforest in Brazil. Anton Leeuw Int J. 2009;G 95:227-37.

  31. Perez CA, Santafe GG, Torres MG, Torres OL, Montano MC, Robledo SM. Lipid composition and evaluation of the antioxidant and leishmanicidal activities of the basidiomycete Ganoderma sp. Rev Cuba Plantas Med. 2017;21(3):318-31.

  32. Ligonio AR, Monteon AL, Trigos A. Trypanocidal activity of ergosterol peroxide from Pleurotus ostreatus. Phytother Res. 2012;26:938-43.

  33. Correa E, Cardona D, Quinones W, Torres F, Franco AE, Velez ID, Robledo S, Echeverri F. Leishmanicidal activity of Pycnoporus sanguineus. Phytother Res. 2006;20:497-9.

  34. Mccracken ST, Kaiser M, Boshoff HI, Boyd PD, Copp BR. Synthesis and antimalarial and antituberculosis activities of a series of natural and unnatural 4-methoxy-6-styryl-pyran-2-ones, dihydro analogues and photo-dimers. Bioorg Med Chem. 2012;20(4):1482-93.

  35. Hu CD, Liang YZ, Li XR, Guo FQ, Zeng MM, Zhang LX, Li HD. Essential oil composition of Osmanthus fragrans varieties by GC-MS and heuristic evolving latent projections. Chromatographia. 2009;70(7):1163.

  36. Kusel JR, Stones L, Tetley L. Damage to surface membrane of Schistosoma mansoni by pristane (2,6,10,14-tetramethyl pentadecane) and other hydrophobic compounds. Parasitology. 1980;80(1):83-94.

  37. Hema R, Kumaravel S, Alagusundaram K. GC/MS determination of bioactive components of Murraya koenigii. J Am Sci. 2011;7(1):80-3.

  38. Akpuaka A, Ekwenchi MM, Dashak DA, Dildar A. Biological activities of characterized isolates of n-hexane extract of Azadirachta indica A. Juss (Neem) leaves. Nat Sci. 2013;11(5):141-7.

  39. Wang YN, Wang HX, Shen ZJ, Zhao LL, Clarke SR, Sun JH, Shi GL. Methyl palmitate, an acaricidal compound occurring in green walnut husks. J Econ Entomol. 2009;102(1):196-202.

  40. Lv GP, Zhao J, Duan JA, Tang YP, Li SP. Comparison of sterols and fatty acids in two species of Ganoderma. Chem Cent J. 2012:6(1):10.

  41. Alexandre TR, Lima ML, Galuppo MK, Mesquita JT, Nascimento MA, Santos AL, Sartorelli P, Pimenta DC, Tempone AG. Ergosterol isolated from the basidiomycete Pleurotus salmoneostramineus affects Trypanosoma cruzi plasma membrane and mitochondria. J Venom Anim Toxins Incl Trop Dis. 2017;23:30.

  42. Da Franca Rodrigues KA, Amorim LV, Dias CN, Moraes DFC, Carneiro SMP, De Amorim Carvalho FA. Syzygium cumini (L.) Skeels essential oil and its major constituent a-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. J Ethnopharmacol. 2015;160:32-40.

  43. Hakkim FL, Al-Buloshi M, Achankunju J. Chemical composition and anti-proliferative effect of Ganoderma applanatum on breast cancer and cervical cancer cells. J Taibah Univ Sci. 2016;11(2):145-51.

  44. Graebin CS, Madeira MDF, Yokoyama-Yasunaka JK, Miguel DC, Uliana SR, Benitez D, Eifler-Lima VL. Synthesis and in vitro activity of limonene derivatives against Leishmania and Trypanosoma. Eur J Med Chem. 2010;45(4):1524-8.

  45. De Moraes J, Carvalho AAL, Nakano E, De Almeida AAC, Da Costa Marques TH, Andrade LN, De Sousa DP. Anthelmintic activity of carvacryl acetate against Schistosoma mansoni. Parasitol Res. 2013;112(2):603-10.

  46. Asahi H, Izumiyama S, Tolba MEM, Kwansa-Bentum B. Plasmodium falciparum: Differing effects of non-esterified fatty acids and phospholipids on intraerythrocytic growth in serum-free medium. Exp Parasitol. 2011;127(3):708-13.

  47. Caboni P, Ntalli NG, Aissani N, Cavoski I, Angioni A. Nematicidal activity of (E, E)-2,4-decadienal and (E)-2-decenal from Ailanthus altissima against Meloidogyne javanica. J Agr Food Chem. 2012;60(4):1146-51.

  48. Lopez-Huertas E. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacol Res. 2010;61(3):200-7.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain