Library Subscription: Guest
Catalysis in Green Chemistry and Engineering

Published 4 issues per year

ISSN Print: 2572-9896

ISSN Online: 2572-990X

H-Index: 2

Indexed in

RUTHENIUM MESO-TETRAKIS(4-CARBOXYPHENYL)PORPHYRIN (Ru-TCPP): SYNTHESIS AND ITS APPLICATION IN FURFURAL HYDROGENATION

Volume 3, Issue 2, 2020, pp. 127-139
DOI: 10.1615/CatalGreenChemEng.2020035825
Get accessGet access

ABSTRACT

Ruthenium containing meso-tetrakis(4-carboxyphenyl)porphyrin (Ru-TCPP) was prepared for the first time by a simple method. The resultant Ru-TCPP molecule was heterogenized on the surface of mesoporous molecular sieve material. The formations of the Ru-TCPP molecule and the heterogenized Ru-TCCP complex (Ru-TCPP-SBA-AM) were thoroughly monitored with the help of FT-IR, UV-Vis, DR UV-Vis, carbon, hydrogen, nitrogen (CHN) elemental analysis, proton nuclear magnetic resonance (1H NMR), powder x-ray diffraction (XRD), and N2 sorption studies. The catalytic activity of the homogeneous (Ru-TCPP) and the heterogenized Ru-TCPP complex (Ru-TCPP-SBA-AM) was explored for the hydrogenation of furfural. This study revealed that homogeneous Ru-TCPP shows better conversion (60%) compared to heterogeneous Ru-TCPP-SBA-AM catalysts (40%), which can be explained based on the labile axial ligand in the homogeneous catalyst. In addition, furfural hydrogenation yields furfuryl alcohol along with some other hydrogenated products such as tetrahydrofurfuryl alcohol, γ-valerolactone, and 1,5-pentanediol.

REFERENCES
  1. Abrantes, M., Sakthivel, A., Romao, C.C., and Kuhn, F.E., A Chiral Menthyl Cyclopentadienyl Molybdenum Tricarbonyl Chloro Complex: Synthesis, Heterogenization on MCM-41/MCM-48 and Application in Olefin Epoxidation Catalysis, J. Organomet. Chem., vol. 691, no. 14, pp. 3137-3145,2006.

  2. Adler, A.D., Longo, F.R., Varadi, V., and Little, R.G., Metalloporphyrins, Inorg. Synth, vol. 16, pp. 213-220, 1976.

  3. Ahmed, M. and Sakthivel, A., Covalent Grafting of Cobalt Carbonyl Cluster on Functionalized Mesoporous SBA-15 Molecular Sieve and Its Applications towards Hydroformylation of 1-Octene, J. Mol. Catal. A: Chem., vol. 424, pp. 85-90, 2016.

  4. Ahmed, M. and Sakthivel, A., Preparation of Cyclic Carbonate via Cycloaddition of CO2 on Epoxide Using Amine-Functionalized SAPO-34 as Catalyst, J CO2 Util., vol. 22, pp. 392-399, 2017.

  5. Anjali, K., Ahmed, M., Christopher, J., and Sakthivel, A., Rhodium-Calix[4]Pyrrole and Rhodium-Tetraphenyl Porphyrin: Prepa-ration, Surface Grafting and Their Catalytic Application in Nitro-Benzene Reduction, Dalton Trans., vol. 47, no. 35, pp. 12353-12361,2018.

  6. Anjali, K., Aswini, M.S., Aswin, P., Ganesh, V., and Sakthivel, A., Iridium Tetra(4-carboxyphenyl) Porphyrin, Calix[4]Pyrrole and Tetraphenyl Porphyrin Complexes as Potential Hydrogenation Catalysts, Eur. J. Inorg. Chem., vol. 2019, no. 38, pp. 4087-4094, 2019a.

  7. Anjali, K., Christopher, J., and Sakthivel, A., Ruthenium-Based Macromolecules as Potential Catalysts in Homogeneous and Heterogeneous Phases for the Utilization of Carbon Dioxide, ACS Omega, vol. 4, no. 8, pp. 13454-13464,2019b.

  8. Anjali, K., Nishana, L., Christopher, J., and Sakthivel, A., ZincTetraphenylporphyrinGrafted onFunctionalisedMesoporous SBA-15: Synthesis and Utilisation for Nitroaldol Condensation, J. Porous Mater., vol. 27, pp. 1191-1201,2020a.

  9. Anjali, K., Venkatesha, N., Christopher, J., and Sakthivel, A., Rhodium Porphyrin Molecule Based Catalysts for the Hydrogenation of Biomass Derived Levulinic Acid to Biofuel Additive y-Valerolactone, New J. Chem.., vol. 44, pp. 11064-11075,2020b.

  10. Ariga, K., Ji, Q., McShane, M.J., Lvov, Y.M., Vinu, A., and Hill, J.P., Inorganic Nano Architectonics for Biological Applications, Chem. Mater, vol. 24, no. 5, pp. 728-737,2012.

  11. Baeyer, A., Ueber ein Condensationsproduct von Pyrrol mit Aceton, Berichte der Deutschen Chemischen Gesellschaft., vol. 19, no. 2, pp. 2184-2185,1886.

  12. Baskaran, T., Christopher, J., Radhakrishnan, S., and Sakthivel, A., Diaminosilane-Functionalized on Silicate-Stabilised Hydrotalcite (MA-HTSi-DA): As Potential Catalyst for Nitro-Aldol Condensation, J. Mol. Catal. A: Chem., vol. 409, pp. 11-18, 2015a.

  13. Baskaran, T., Christopher, J., Ajithkumar, T.G., and Sakthivel, A., SBA-15 Intercalated Mg-Al Hydrotalcite: An Environmental Friendly Catalyst for Hydroisomerization of Olefin, Appl. Catal., A, vol. 488, pp. 119-127,2014.

  14. Baskaran, T., Kumaravel, R., Christopher, J., Ajithkumar, T.G., and Sakthivel, A., An Environmentally Friendly Route for Grafting of Molybdenum Carbonyl onto a Diaminosilane-Modified SBA-15 Molecular Sieve and Its Catalytic Behaviour in Olefin Epoxidation, New J. Chem., vol. 39, no. 5, pp. 3758-3764,2015b.

  15. Cai, W., Yu, J., Anand, C., Vinu, A., and Jaroniec, M., Facile Synthesis of Ordered Mesoporous Alumina and Alumina-Supported Metal Oxides with Tailored Adsorption and Framework Properties, Chem. Mater., vol. 23,no. 5,pp. 1147-1157,2011.

  16. Dastidar, P., Stein, Z., Goldberg, I., and Strouse, C.E., Supramolecular Assembly of Functionalized Metalloporphyrins. Porous Crystalline Networks of Zinc-Tetra(4-Carboxyphenyl)Porphyrin, Supramol. Chem., vol. 7, no. 4, pp. 257-270,1996.

  17. Date, N.S., Hengne, A.M., Huang, K.W., Chikate, R.C., and Rode, C.V., Single Pot Selective Hydrogenation of Furfural to 2- Methylfuran over Carbon Supported Iridium Catalysts, Green Chem., vol. 20, no. 9, pp. 2027-2037,2018.

  18. Frenzel, U. and Nuyken, O., Ruthenium-Based Metathesis Initiators: Development and Use in Ring-Opening Metathesis Polymerization, J. Polym. Sci, Part A: Polym. Chem, vol. 40, no. 17, pp. 2895-2916,2002.

  19. Gomez Millan, G., Hellsten, S., Llorca, J., Luque, R., Sixta, H., and Balu, A.M., Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass, ChemCatChem, vol. 11, no. 8, pp. 2022-2042,2019.

  20. Han, X., Guo, Y., Liu, X., Xia, Q., and Wang, Y., Catalytic Conversion of Lignocellulosic Biomass into Hydrocarbons: A Mini Review, Catal. Today, vol. 319, pp. 2-13,2019.

  21. Hommes, A., Heeres, H.J., and Yue, J., Catalytic Transformation of Biomass Derivatives to Value-Added Chemicals and Fuels in Continuous Flow Microreactors, ChemCatChem, vol. 11, no. 19, pp. 4671-4708,2019.

  22. Jessop, P.G., Ikariya, T., and Noyori, R., Homogeneous Catalytic Hydrogenation of Supercritical Carbon Dioxide, Nature, vol. 368, no. 6468, pp. 231-233,1994.

  23. Jin, X., Yin, B., Xia, Q., Fang, T., Shen, J., Kuang, L., and Yang, C., Catalytic Transfer Hydrogenation of Biomass-Derived Substrates to Value-Added Chemicals on Dual-Function Catalysts: Opportunities and Challenges, ChemSusChem, vol. 12, no. 1,pp. 71-92,2019.

  24. Khaliq, S., Danish, M., Yasin, M., and Asim, R., Preparation of Symmetrical Tetraphenyl Porphyrin Metal Complexes and Their Spectroscopic Studies, J. Nanoanal., vol. 2, no. 1, pp. 1-9,2015.

  25. Lindoy, L.F., The Chemistry of Macrocyclic Ligand Complexes, Cambridge, UK: Cambridge University Press, 1990.

  26. Lu, X. and Devaramani, S., Electrochemical Investigation of Porphyrin and Its Derivatives at Various Interfaces, in Phthalocya- nines and Some Current Applications, Yusuf Yilmaz, Ed., IntechOpen, 2017.

  27. Magerlein, W., Dreisbach, C., Hugl, H., Tse, M.K., Klawonn, M., Bhor, S., and Beller, M., Homogeneous and Heterogeneous Ruthenium Catalysts in the Synthesis of Fine Chemicals, Catal. Today, vol. 121, nos. 1-2, pp. 140-150,2007.

  28. Murahashi, S.-I., Ruthenium in Organic Synthesis, New York: John Wiley and Sons, 2006.

  29. Naota, T., Takaya, H., and Murahashi, S.-I., Ruthenium-Catalyzed Reactions for Organic Synthesis, Chem. Rev., vol. 98, no. 7, pp. 2599-2660,1998.

  30. Palai, Y.N., Anjali, K., Sakthivel, A., Ahmed, M., Sharma, D., and Badamali, S.K., Cerium Ions Grafted on Functionalized Mesoporous SBA-15 Molecular Sieves: Preparation and Its Catalytic Activity on p-Cresol Oxidation, Catal. Lett., vol. 148, no. 1, pp. 465-473,2018.

  31. Perrin, D.D., Armarego, W., and Perrin, D.R., Purification of Laboratory Chemicals, Oxford, UK: Pergamon Press, 1996.

  32. Ren, J., Liu, Y.L., Zhao, X.Y., and Cao, J.P., Biomass Thermochemical Conversion: A Review on Tar Elimination from Biomass Catalytic Gasification, J. Energy Inst, vol. 93, no. 3, pp. 1083-1098,2020.

  33. Sakthivel, A., Abrantes, M., Chiang, A.S., and Kuhn, F.E., Grafting of rI5-Cp(COOMe)MoCl(CO)3 on the Surface of Mesoporous MCM-41 and MCM-48 Materials, J. Organomet. Chem., vol. 691, no. 5, pp. 1007-1011,2006a.

  34. Sakthivel, A., Hijazi, A.K., Al Hmaideen, A.I., and Kiihn, F.E., Grafting of [Cu(NCCH3)6][B(C6H3(m-CF3)2)4]2 on the Surface of Aminosilane Modified SBA-15, Microporous Mesoporous Mater., vol. 96, nos. 1-3, pp. 293-300,2006b.

  35. Sakthivel, A., Komura, K., and Sugi, Y, MCM-48 Supported Tungstophosphoric Acid: An Efficient Catalyst for the Esterification of Long-Chain Fatty Acids and Alcohols in Supercritical Carbon Dioxide, Ind. Eng. Chem. Res., vol. 47, no. 8, pp. 2538-2544, 2008.

  36. Sakthivel, A., Pedro, F.E., Chiang, A.S., and Kuehn, F.E., Heterogenization of (rI5-C5Me5)Ru(PPh3)2Cl and Its Catalytic Application for Cyclopropanation of Styrene Using Ethyl Diazoacetate, Synthesis, vol. 2006, no. 10, pp. 1682-1688,2006c.

  37. Sakthivel, A., Pedro, F.M., Chiang, A.S., and Kuhn, F.E., Grafting of Cyclopentadienyl Ruthenium Complexes on Aminosilane Linker Modified Mesoporous SBA-15 Silicates, Dalton Trans., no. 3, pp. 320-326,2007.

  38. Sakthivel, A., Raudaschl-Sieber, G., and Kuhn, F.E., Heterogenization of an Organorhenium(VII) Oxide on a Modified Mesoporous Molecular Sieve, Dalton Trans., no. 3, pp. 468-472,2006d.

  39. Sakthivel, A., Sun, W., Raudaschl-Sieber, G., Chiang, A.S., Hanzlik, M., and Kuhn, F.E., Grafting of a Tetrahydro-Salen Copper (II) Complex on Surface Modified Mesoporous Materials and Its Catalytic Behaviour, Catal. Commun., vol. 7, no. 5, pp. 302.

  40. Sakthivel, A., Zhao, J., and Kuhn, F.E., Grafting of the ri5-CpMo(CO)3 Moiety on Pure and Surface Modified SBA-15 Molecular Sieves, Microporous Mesoporous Mater., vol. 86, nos. 1-3, pp. 341-348,2005.

  41. Seehra, M. and Bristow, A., Eds., Noble and Precious Metals: Properties, Nanoscale Effects and Applications, Norderstedt, Germany: BoD-Books on Demand, 2018.

  42. Singh, A.K., Kondamudi, K., Yadav, R., Upadhyayula, S., and Sakthivel, A., Uniform Mesoporous Silicoaluminophosphate Derived by Vapor Phase Treatment: Its Catalytic and Kinetic Studies in Hydroisomerization of 1-Octene, J. Phys. Chem., vol. 118, no. 48, pp. 27961-27972,2014.

  43. Sreenavya, A., Sahu, A., and Sakthwel, A., Hydrogenation of Lignin-Derived Phenolic Compound Eugenol over NiRu-HT-Type Materials, Ind. Eng. Chem. Res, vol. 59, no. 26, pp. 11979-11990,2020.

  44. Syukri, S., Sakthivel, A., Sun, W., and Kuhn, F.E., Immobilization of Ru (II)(salen)(PPh3)2 on Mesoporous MCM-41/SBA-15: Characterization and Catalytic Applications, Catal. Lett., vol. 128, nos. 1-2, pp. 18-24,2009.

  45. Usman, M., Chen, H., Chen, K., Ren, S., Clark, J.H., Fan, J., Luo, G., and Zhang, S., Characterization and Utilization of Aqueous Products from Hydrothermal Conversion of Biomass for Bio-Oil and Hydro-Char Production: A Review, Green Chem., vol. 21, no. 7, pp. 1553-1572,2019.

  46. Varma, R.S., Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications, ACS Sustainable Chem. Eng., vol. 7, no. 7, pp. 6458-6470,2019.

  47. Vinodu, M.V., Enzyme Model Catalytic Studies Based on Polymer-Supported Metalloporphyrins, PhD, Mahatma Gandhi University, 2000.

  48. Wang, Y., Zhao, D., Rodriguez-Padron, D., and Len, C., Recent Advances in Catalytic Hydrogenation of Furfural, Catalysts, vol. 9, no. 10, p. 796,2019.

  49. Yadav, R., Baskaran, T., Anjali, K., Ahmed, M., Bhosale, S.V., Joseph, S., Al-Muhtaseb, A.H., Singh, G., Sakthivel, A., and Vinu, A., Recent Advances in the Preparation and Applications of Organo-Functionalized Porous Materials, Chem. Asian J, 2020.

  50. Yadav, R. and Sakthivel, A., Silicoaluminophosphate Molecular Sieves as Potential Catalysts for Hydroisomerization of Alkanes andAlkenes, Appl. Catal, A, vol. 481, pp. 143-160,2014.

  51. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, vol. 279, no. 5350, pp. 548-552,1998a.

  52. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., and Stucky, G.D., Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc., vol. 120, no. 24, pp. 6024-6036,1998b.

  53. Zhao, J., Sakthivel, A., Santos, A.M., and Kuhn, F.E., Siloxane Functionalized Cyclopentadienyl-MolybdenumComplexes: Synthesis, Characterization and Catalytic Application, Inorg. Chim. Acta, vol. 358, no. 14, pp. 4201-4207,2005.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain