Library Subscription: Guest
Catalysis in Green Chemistry and Engineering

Published 4 issues per year

ISSN Print: 2572-9896

ISSN Online: 2572-990X

H-Index: 2

Indexed in

NAPROXEN REMOVAL FROM WASTEWATER BY ENZYMATIC DEGRADATION USING LACCASE

Volume 3, Issue 1, 2020, pp. 45-56
DOI: 10.1615/CatalGreenChemEng.2020034601
Get accessGet access

ABSTRACT

The occurrence of naproxen (NAP) in aquatic environments constitutes a potential risk to the environment and human health, due to its phytotoxicity. This drug is not metabolized by humans and wastewater treatment plants at high efficiency. The aim of this work is to study genetically modified Aspergillus niger laccase enzyme for the acute removal of NAP. Here, the degradation of NAP was accessed utilizing industrial laccase (LT-100) with the impact of operating parameters such as enzyme loading (0.10-0.18% w/v of an enzyme to NAP), temperature (30-60°C), pH (4-6), and speed of agitation (0-300 rpm). The established optimum condition is temperature 40°C, pH 4.5, degradation time 5 h, and speed of agitation 200 rpm. Under these optimized conditions, 92% degradation was achieved. Further investigation on the degradation kinetics of NAP revealed that the degradation of NAP follows Michaelis-Menten kinetic behavior. The observed values of Vmax and Km are 4.48 × 10-5 M/min and 5.4 × 105 M, respectively. This study could provide useful information for the potential of genetically modified laccase enzyme produced on Aspergillus niger to treat water and wastewater containing NAP.

REFERENCES
  1. Adulkar, T. V. and Rathod, V.K., Ultrasound Assisted Enzymatic Pre-Treatment of High Fat Content Dairy Wastewater, Ultrason. Sonochem, vol. 21, no. 3, pp. 1083-1089,2014.

  2. Apriceno, A., Astolfi, M.L., Girelli, A.M., and Scuto, F.R., A New Laccase-Mediator System Facing the Biodegradation Challenge: Insight into the NSAIDs Removal, Chemosphere, vol. 215, pp. 535-542,2019.

  3. Aracagok, Y.D., Goker, H., and Cihangir, N., Biodegradation of Micropollutant Naproxen with a Selected Fungal Strain and Identification of Metabolites, Zeit. Naturforschung C, vol. 72, nos. 5-6, pp. 173-179,2017.

  4. Arany, E., Szabo, R.K., Apati, L., Alapi, T., Ilisz, I., Mazellier, P., and Gajda-Schrantz, K., Degradation of Naproxen by UV, VUV Photolysis and Their Combination, J. Hazard. Mater., vol. 262, pp. 151-157,2013.

  5. Baldrian, P., Purification and Characterization of Laccase from the White-Rot Fungus Daedalea Quercina and Decolorization of Synthetic Dyes by the Enzyme, Appl. Microbiol. Biotechnol., vol. 63, no. 5, pp. 560-563,2004.

  6. Bodin, H., Daneshvar, A., Gros, M., and Hultberg, M., Effects of Biopellets Composed of Microalgae and Fungi on Pharmaceuticals Present at Environmentally Relevant Levels in Water, Ecol. Eng., vol. 91, pp. 169-172,2016.

  7. Boyd, G.R., Zhang, S., and Grimm, D.A., Naproxen Removal from Water by Chlorination and Biofilm Processes, Water Res., vol. 39, no. 4, pp. 668-676,2005.

  8. Chauhan, P.S., Goradia, B., and Saxena, A., Bacterial Laccase: Recent Update on Production, Properties and Industrial Applications, 3Biotech., vol. 7, no. 5, pp. 1-20,2017.

  9. Chin, C . J. M. , Chen, T. Y. , Lee, M. , Chang, C .F. , Liu, Y. T. , and Kuo, Y. T. , Effective Anodic Oxidation of Naproxen by Platinum Nanoparticles Coated FTO Glass, J. Hazard. Materials, vol. 277, pp. 110-119,2014.

  10. Cruz-Morato, C., Ferrando-Climent, L., Rodriguez-Mozaz, S., Barcelo, D., Marco-Urrea, E., Vicent, T., and Sarra, M., Degradation of Pharmaceuticals in Non-Sterile Urban Wastewater by Trametes versicolor in a Fluidized Bed Bioreactor, Water Res., vol. 47, no. 14, pp. 5200-5210,2013.

  11. Cruz-Ornelas, R., Sanchez-Vazquez, J.E., Amaya-Delgado, L., Guillen-Navarro, K., and Calixto-Romo, A., Biodegradation of NSAIDs and Their Effect on the Activity of Ligninolytic Enzymes from Pleurotus djamor, 3 Biotech., vol. 9, no. 10, pp. 1-8, 2019.

  12. Dzionek, A., Guzik, U., Wojcieszynska, D., and Adamczyk-Habrajska, M., Enhanced Degradation of Naproxen by Immobilization of Bacillus ThuringiensisB1(2015b) on Loofah Sponge, Molecules, vol. 25, no. 4, p. 872,2020.

  13. Gagne, F., Blaise, C., Fournier, M., and Hansen, P.D., Effects of Selected Pharmaceutical Products on Phagocytic Activity in Elliptio complanata Mussels, Comparat. Biochem. Physiol.-C Toxicol. Pharmacol., vol. 143, no. 2, pp. 179-186,2006.

  14. Gahlout, M., Rudakiya, D.M., Gupte, S., and Gupte, A., Laccase-Conjugated Amino-Functionalized Nanosilica for Efficient Degradation of Reactive Violet 1 Dye, Int. Nano Lett., vol. 7, no. 3, pp. 195-208,2017.

  15. Gharat, N. and Rathod, V.K., Enzyme Catalyzed Transesterification of Waste Cooking Oil with Dimethyl Carbonate, J. Mol. Catal. B: Enzym., vol. 88, pp. 36-40,2013.

  16. Ghows, N. and Entezari, M.H., Kinetic Investigation on Sono-Degradation of Reactive Black 5 with Core-Shell Nanocrystal, Ultrason. Sonochem., vol. 20, pp. 386-394,2013.

  17. Grenni, P., Patrolecco, L., Ademollo, N., Tolomei, A., and Barra Caracciolo, A., Degradation of Gemfibrozil and Naproxen in a River Water Ecosystem, Microchem. J., vol. 107, pp. 158-164,2013.

  18. Hasan, Z., Jeon, J., and Jhung, S.H., Adsorptive Removal of Naproxen and Clofibric Acid from Water Using Metal-Organic Frameworks, J. Hazard. Mater, vols. 209-210, pp. 151-157,2012.

  19. Hashim, N.H., Nghiem, L.D., Stuetz, R.M., and Khan, S.J., Enantiospecific Fate of Ibuprofen, Ketoprofen and Naproxen in a Laboratory-Scale Membrane Bioreactor, Water Res., vol. 45, pp. 6249-6258,2011.

  20. Im, J.K., Heo, J., Boateng, L.K., Her, N., Flora, J.R.V., and Yoon, J., Ultrasonic Degradation of Acetaminophen and Naproxen in the Presence of Single-Walled Carbon Nanotubes, J. Hazard. Mater., vols. 254-255, pp. 284-292,2013.

  21. Isidori, M., Lavorgna, M., Nardelli, A., Parrella, A., Previtera, L., and Rubino, M., Ecotoxicity of Naproxen and Its Phototransformation Products, Sci. Total Environ., vol. 348, pp. 93-101,2005.

  22. Jallouli, N., Elghniji, K., Hentati, O., Ribeiro, A.R., Silva, A.M.T., and Ksibi, M.J., UV and Solar Photo-Degradation of Naproxen: TiO2 Catalyst Effect, Reaction Kinetics, Products Identification and Toxicity Assessment, J. Hazard. Mater., vol. 304, pp. 329-336,2016.

  23. Jelic, A., Cruz-Morato, C., Marco-Urrea, E., Sarra, M., Perez, S., Vicent, T., and Barcelo, D., Degradation of Carbamazepine by Trametes versicolor in an Air Pulsed Fluidized Bed Bioreactor and Identification of Intermediates, Water Res., vol. 46, no. 4, pp. 955-964,2012.

  24. Jones, S.M. and Solomon, E.I., Electron Transfer and Reaction Mechanism of Laccases, Cell. Mol. Life Sci., vol. 72, pp. 869-883, 2015.

  25. Karaca, M., Kiransan, M., Karaca, S., Khataee, A., and Karimi, A., Sonocatalytic Removal of Naproxen by Synthesized Zinc Oxide Nanoparticles on Montmorillonite, Ultrason. Sonochem, vol. 31, pp. 250-256,2016.

  26. Lanj ekar, K. and Rathod, V.K., Utilization of Glycerol for the Production of Glycerol Carbonate through Greener Route, J. Environmen. Chem. Eng., vol. 1, no. 4, pp. 1231-1236,2013.

  27. Mahindrakar, K.V. and Rathod,V.K., Utilization of Banana Peels for Removal of Strontium (II) from Water, Environ. Technol. Innovation, vol. 11, pp. 371-383,2018.

  28. Marco-Urrea, E., Perez-Trujillo, M., Blanquez, P., Vicent, T., and Caminal, G., Biodegradation of the Analgesic Naproxen by Trametes versicolor and Identification of Intermediates Using HPLC-DAD-MS and NMR, Bioresour. Technol, vol. 101, no. 7, pp. 2159-2166,2010.

  29. Mazlan, S.Z. and Hanifah, S.A., Effects of Temperature and p. on Immobilized Laccase Activity in Conjugated Methacrylate-Acrylate, Int. J. Polym. Sci., vol. 2017, no. 4, pp. 1-8,2017.

  30. Nadar, S.S. and Rathod, V.K., Ultrasound Assisted Intensification of Enzyme Activity and Its Properties: a Mini-Review, World J. Microbiol. Biotechnol., vol. 33, no. 9, p. 170,2017.

  31. Nadar, S.S. and Rathod, V.K., Amino Acid Induced Hyper Activation of Laccase and Its Application in Dye Degradation, Biocatal. Agric. Biotechnol, vol. 18, p. 101064,2019.

  32. Naghdi, M., Taheran, M., Brar, S.K., Kermanshahi-pour, A., Verma, M., and Surampalli, R.Y., Removal of Pharmaceutical Compounds in Water and Wastewater Using Fungal Oxidoreductase Enzymes, Environ. Pollut., vol. 234, pp. 190-213,2018.

  33. Nguyen, L .N. , Hai, F. I . , Price, W. E . , Leusch, F.D. L . , Roddick, F. , Ngo, H. H. , Guo, W. , Magram, S . F. , and Nghiem, L . D . , the Effects of Mediator and Granular Activated Carbon Addition on Degradation of Trace Organic Contaminants by an Enzymatic Membrane Reactor, Bioresour. Technol., vol. 167, pp. 169-177,2014.

  34. Nguyen, L.N., Hai, F.I., Yang, S., Kang, J., Leusch, F.D.L., Roddick, F., Price, W.E., and Nghiem, L.D., Removal of Trace Organic Contaminants by an MBR Comprising a Mixed Culture of Bacteria and White-Rot Fungi, Bioresour. Technol., vol. 148, pp. 234-241,2013.

  35. Ozbek, B. and Ulgen, K.O., the Stability of Enzymes after Sonication, Process Biochem., vol. 35, pp. 1037-1043,2000.

  36. Polat, M. and Korkmaz, M., Kinetics of the Radicals Induced in Gamma-Irradiated Naproxen Sodium and Apranax: Applicability of ESR Technique to Monitor Radiosterilization ofNaproxen Sodium-Containing Drugs, Int. J. Pharm., vol. 244, pp. 169-179, 2002.

  37. Senthivelan, T., Kanagaraj, J., and Panda, R.C., Recent Trends in Fungal Laccase for Various Industrial Applications: an Eco-Friendly Approach - a Review, Biotechnol. Bioprocess Eng., vol. 21, pp. 19-38,2016.

  38. Singh Arora, D. and Kumar, S., Ligninolytic Fungal Laccases and Their Biotechnological Applications, Appl. Biochem. Biotechnol., vol. 160, pp. 1760-1788,2010.

  39. Sutar, R.S. and Rathod, V.K., Ultrasound Assisted Enzymatic Degradation of Diclofenac Sodium: Optimization of Process Parameters and Kinetics, J. Water Process Eng., vol. 9, pp. e1-e6,2016.

  40. Sutar, R.S. and Rathod, V.K., Ultrasound Assisted Enzyme Catalyzed Degradation of Cetirizine Dihydrochloride, Ultrason. Sonochem., vol. 24, pp. 80-86,2015.

  41. Wang, S. and Gunsch, C.K., Effects of Selected Pharmaceutically Active Compounds on the Ammonia Oxidizing Bacterium Nitrosomonas Europaea, Chemosphere, vol. 82, pp. 565-572,2011.

  42. Weirick, T., Sahu, S.S., Mahalingam, R., and Kaundal, R., LacSubPred: Predicting Subtypes of Laccases, An Important Lignin Metabolism-Related Enzyme Class, Using In Silico Approaches, BMC Bioinf., vol. 15, no. 11, pp. 1-19,2014.

  43. Wojcieszynska, D., Domaradzka, D., Hupert-Kocurek, K., and Guzik, U., Bacterial Degradation ofNaproxen-Undisclosed Pollutant in the Environment, J. Environ. Manage., vol. 145, pp. 157-161,2014.

  44. Zdarta, J., Jankowska, K., Wyszowska, M., Kijenska-Gawronska, E., Zgola-Grzeskowiak, A., Pinelo, M., Meyer, A.S., Moszynski, D., and Jesionowski, T., Robust Biodegradation ofNaproxen and Diclofenac by Laccase Immobilized Using Electrospun Nanofibers with Enhanced Stability and Reusability, Mater. Sci. Eng., C, vol. 103, p. 109789,2019.

  45. Zhang, L., Hu, J., Zhu, R., Zhou, Q., and Chen, J., Degradation of Paracetamol by Pure Bacterial Cultures and Their Microbial Consortium, Appl. Microbiol. Biotechnol., vol. 97, no. 8, pp. 3687-3698,2013.

  46. Zhang, Y., Yang, Y., Zhang, Y., Zhang, T., and Ye, M., Heterogeneous Oxidation ofNaproxen in the Presence of a-MnO2 Nanostructures with Different Morphologies, Appl. Catal, B, vol. 127,pp. 182-189,2012.

  47. Zheng, B., Wang, J., Zheng, Z., Luo, X., Zhang, J., Wang, L., and Liu, Q., Degradation Kinetics and By-Products ofNaproxen in Aqueous Solutions by Gamma Irradiation, Environ. Eng. Sci., vol. 29, pp. 386-391,2011.

  48. Zheng, W. and Colosi, L.M., Peroxidase-Mediated Removal of Endocrine Disrupting Compound Mixtures from Water, Chemosphere, vol. 85, pp. 553-557,2011.

CITED BY
  1. Bilal Muhammad, Lam Su Shiung, Iqbal Hafiz M.N., Biocatalytic remediation of pharmaceutically active micropollutants for environmental sustainability, Environmental Pollution, 293, 2022. Crossref

1867 Article views 18 Article downloads Metrics
1867 VIEWS 18 DOWNLOADS 1 Crossref CITATIONS Google
Scholar
CITATIONS

Articles with similar content:

KINETICS AND OPTIMIZATION OF LIPASE-ASSISTED ESTERIFICATION OF ISOAMYL PROPIONATE IN SOLVENT-FREE SYSTEMS Catalysis in Green Chemistry and Engineering, Vol.5, 2022, issue 2
Virendra K. Rathod, Sneha R. Bansode
LIPASE-CATALYZED SYNTHESIS OF OCTYL ACETATE IN SOLVENT-FREE SYSTEM Catalysis in Green Chemistry and Engineering, Vol.3, 2020, issue 1
Virendra K. Rathod, Meera T. Sose
Effects of H2O2 and Low pH Produced by Gliding Arc Discharge on the Inactivation of Escherichia Coli in Water Plasma Medicine, Vol.1, 2011, issue 3-4
Hyoung-Sup Kim, Alexander A. Fridman, Alexander Rabinovich, Kamau C. Wright, In-Hwan Hwang, Young I. Cho, Dong-Hwan Lee
Determination of Zinc(II) Ions Released into Artificial Digestive Juices from Culinary-Medicinal Button Mushroom, Agaricus bisporus (Agaricomycetidae), Biomass of In Vitro Cultures Using an Anodic Stripping Voltammetry Method International Journal of Medicinal Mushrooms, Vol.18, 2016, issue 2
Magdalena Zajac, Wlodzimierz Opoka, Katarzyna Kala, Remigiusz Krezalek, Bozena Muszynska
Simple and Reproducible Two-Stage Agitation Speed Control Strategy for Enhanced Triterpene Production by Lingzhi or Reishi Medicinal Mushrooms, Ganoderma lucidum ACCC G0119 (Higher Basidiomycetes) Based on Submerged Liquid Fermentation International Journal of Medicinal Mushrooms, Vol.17, 2015, issue 12
Yan Yang, Fang Liu, Jingsong Zhang, Chi-Chung Lin, Wei Jia, Jie Feng, Na Feng
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain