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Multiple sources of errors and uncertainty arise in mechanics computational models and contribute to the uncertainty in
the final model prediction. This paper develops a systematic error quantification methodology for computational models.
Some types of errors are deterministic, and some are stochastic. Appropriate procedures are developed to either correct
the model prediction for deterministic errors or to account for the stochastic errors through sampling. First, input error,
discretization error in finite element analysis (FEA), surrogate model error, and output measurement error are consid-
ered. Next, uncertainty quantification error, which arises due to the use of sampling-based methods, is also investigated.
Model form error is estimated based on the comparison of corrected model prediction against physical observations and
after accounting for solution approximation errors, uncertainty quantification errors, and experimental errors (input
and output). Both local and global sensitivity measures are investigated to estimate and rank the contribution of each
source of error to the uncertainty in the final result. Two numerical examples are used to demonstrate the proposed
methodology by considering mechanical stress analysis and fatigue crack growth analysis.

KEY WORDS: error quantification, uncertainty quantification, sensitivity analysis, finite elements, dis-
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1. INTRODUCTION

Computational models are widely used by engineers to capture the behavior of physical systems. For large systems,
computational models are usually constructed based on sparse experimental data, sometimes even with no full-scale
experiments. As a result, errors arise due to lack of data andlack of knowledge about system behavior. Numerical
approaches used to solve the model equations also produce errors due to various assumptions and approximations.
Natural variability in many physical variables, and data uncertainty due to sparse data and measurement errors, add
further uncertainty in the model prediction.

The motivation of this paper is to develop a methodology thatprovides quantitative information regarding the
relative contribution of various sources of error and uncertainty to the overall model prediction uncertainty. Such
information can guide decisions regarding model improvement (e.g., model refinement, additional data collection) so
as to enhance both accuracy and confidence in the prediction.The information sought is in the form of rankings of
the various errors and uncertainty sources that contributeto the model prediction uncertainty. It is more advantageous
to spend resources toward reducing an error with a higher ranking than one with a lower ranking. The rankings are
based on systematic sensitivity analysis, which is possible only after quantifying the effect of each error source on the
model prediction uncertainty.

The error in a computational model prediction consists of two parts: model form error (εmodel) and solution approx-
imation error or numerical error (εnum) [1–4]. The model form error depends on whether the selectedmodel correctly
represents the real phenomenon (e.g., small deformation versus large deformation model, linear elastic versus elasto-
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plastic model, or Euler versus Navier-Stokes equation). The solution approximation error arises when numerically
solving the model equations. In other words, the model form error is related to the question—Did I choose the correct
equation?—which is answered using validation experiments, while the solution approximation error is related to the
question—Did I solve the equation correctly?—which is answered through verification studies.

Mathematical theory and methods have been discussed in [1] for quantifying numerical error and model form error
in computational mechanics models, but these methods require access to the original partial differential equations
(PDEs) of the system. A simplified approach to error quantification using a commercial computational code as a black
box has been developed in [5]. If we denoteypred andytrue as model prediction and the true response of the physical
system, respectively, then we have

ytrue = ypred+ εnum + εmodel (1)

Note that the numerical error depends on the choice of the model form; thus, the two errors are not independent. The
numerical errorεnum is a nonlinear combination of various components [5]. This paper first considers three typical
numerical error components and their quantification and combination, including input error, discretization error in
FEA, and surrogate model error.

Assumeyc is the model prediction corrected for the numerical error sources, andypred is the raw model prediction.
Besidesyc, in order to quantify the model form error, observed data (yobs) are needed. However, there is a difference
betweenyobs andytrue, which is called output measurement error (εom). Thus, we have

ytrue = yobs+ εom (2)

Model form error can be quantified based on Eqs. (1) and (2). Implementation details are discussed in Section 4.
One concern in this paper is how to obtain a model predictionyc corrected for numerical error sources. Among

all errors, some errors are stochastic, such as input error and surrogate model error, and some errors are deterministic,
such as discretization error in FEA. In this paper, a simple but efficient approach is developed to obtainyc. The basic
idea is to quantify and correct for each error where it arises. Stochastic error is corrected for by adding its randomly
sampled values to the original result. Deterministic erroris corrected for by directly adding it to the corresponding
result. For example, to correct for the discretization error, every time a particular FEA result is obtained, the corre-
sponding discretization error is calculated, added to the original result, and the corrected FEA result is used in further
computation to obtainyc.

In addition to the model form and solution approximation errors mentioned above, another error arises due to
Monte Carlo sampling used in the error quantification procedure itself. This error is referred to here as uncertainty
quantification (UQ) error. For example, when estimating thecumulative distribution function (CDF) of a random
variable from sparse data, there is error in the CDF value, and methods to quantify this UQ error are available in [6].
Then, if more samples are generated by the inverse CDF methodusing the CDF estimated from sparse data, then the
UQ error is propagated as sampling error to the newly generated samples. An approach is developed in Section 3 to
quantify this sampling error. This method is particularly useful in quantifying model form error (Section 4).

After a probabilistic framework to manage all sources of uncertainty and error is established, sensitivity analyses
are performed in Section 5 to assess the contribution of eachsource of uncertainty and error to the overall uncertainty
in the corrected model prediction. The sensitivity analysis result can be used to guide resource allocation for different
activities, such as model fidelity improvement, data collection, etc., according to the importance ranking of errors in
orders to trade off between accuracy and computational/experimental effort. The proposed methods are demonstrated
using two numerical examples in Section 6.

The contributions of this paper can be summarized as follows:

1. A systematic methodology for error and uncertainty quantification and propagation in computational mechan-
ics models is developed. Previous literature has developedmethods to quantify the discretization error and to
propagate input randomness through computational models.However, the combination of various error and un-
certainty sources is not straightforward: some are additive, some multiplicative, some nonlinear, and some even
nested. Also, some errors are deterministic and some are stochastic. The methodology in this paper provides a
template to track the propagation of various error and uncertainty sources through the computational model.
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2. The error and uncertainty quantification methodology itself has an error due to the use of limited number of
samples when large finite element models are used; therefore, this UQ error is quantified. A methodology is
proposed in this paper to also quantify the propagation of this UQ error through further calculations in model
prediction and assessment, and is used in the quantificationof model form error.

3. Sensitivity analysis methods are developed to identify the contribution of each error and uncertainty source to
the overall uncertainty in the model prediction. Previous literature in global sensitivity analysis has only con-
sidered the effect of input random variables, and this paperextends the methodology to include data uncertainty
and model errors. The sensitivity information is helpful inidentifying the dominant contributors to model pre-
diction uncertainty and in guiding resource allocation formodel improvement. The sensitivity analysis method
is further enhanced to compare the contributions of both deterministic and stochastic errors on the same level,
in order to facilitate model improvement decision making.

2. NUMERICAL ERROR QUANTIFICATION (εnum)

Three typical sources of numerical error (i.e., solution approximation error) and their quantification methods are
discussed in this section, namely, input error, discretization error in FEA, and surrogate model error. In this paper,
to quantify the numerical error, instead of comparing the original model predictionypred with known solutions, it
is compared to the corrected model predictionyc. Generally, if the error is deterministic, then it will be corrected
by adding it to its corresponding quantity; if the error is stochastic, then it will be accounted for by including its
uncertainty in the output through sampling. After the corrected model prediction is obtained, the numerical error can
be estimated as

εnum = yc − ypred (3)

The raw model predictionypred is either deterministic or stochastic, depending on the model inputs. However,yc and
εnum are random variables even for deterministic input, if both stochastic and deterministic error sources contribute to
the overall numerical error and corrected model prediction.

2.1 Input Error (εin)

In a validation exercise, the inputs to the computational model should ideally have the same values as those to the
physical system. However, the inputs to the physical systemmodel are subject to experimental variability and mea-
surement error; therefore, there is a discrepancy between what is measured or reported as the input to the physical
system and its actual value. The use of this measured value inthe computational model gives rise to an error in the
model prediction, because the model and the actual system had different inputs.

If no prior information is available, then the input errors are represented by random variables based on knowledge
about experimental variability, measurement process, andinstrument errors. Usually, normal distributions with a mean
value of zero or a constant bias are assumed. The input error can be accounted for by including its uncertainty in the
final model output (i.e., by propagating the randomness of input error through the computational model). Suppose that
a computational model has the formypred = f (x1, x2, . . . , xm), in whichx1, x2, · · · , xm are model inputs andypred

is model prediction. Then, the model output that accounts for the input errors is

y′

pred = f [x1 + (εin)1, x2 + (εin)2, . . . , xm + (εin)m] (4)

where are the (stochastic) input errors of each input variable. Equation (4) is evaluated through Monte Carlo sampling
of the error terms.

2.2 Discretization Error (εh)

Many engineering problems involve solving differential equations numerically using a discretization method, such as
the finite difference or finite element methods. The approximation error due to coarse discretization of the domain is
denoted as discretization error. Different methods have been proposed for a posteriori error estimation in boundary
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value problems in mechanics, including explicit error estimation methods [7], element residual methods [8], recovery
based methods [9], and extrapolation methods [10]. A comprehensive review of a posteriori error estimation is given
by Ainsworth and Oden [11]. But most methods provide relative error and are only useful for adaptive mesh refine-
ment, not for quantifying the actual error [4]. A convenientmethod to approximate the actual error is the Richardson
extrapolation [12–15], especially when a commercial finiteelement code is used.

In this paper, the Richardson extrapolation method is employed to quantify the discretization error for the sake of
illustration. The emphasis of this paper is more on error combination than on methods to quantify individual errors;
therefore, other preferred methods can also be used in the proposed overall framework. The following concerns should
be noted while using the Richardson extrapolation method: (i) it performs well for one-dimensional cases, but is less
reliable for higher dimensions; (ii) it was first developed for the finite difference method, and its result is less credible
for the finite element method; and (iii) it requires the modelresult to be monotonically convergent as the mesh is
refined, while in many problems the result converges with fluctuation.

In the Richardson extrapolation method, in order to quantify the discretization errorεh in an FEA resultφ1 with
mesh sizeh1, two more FEA runs are needed to obtainφ2 with a finer meshh2 andφ3 with the finest meshh3. Then,
the discretization errorεh is given byεh = (φ1 − φ2) / (rp − 1). As a result, the exact solution can be expressed as

φh=0 = φ1 +
(φ1 − φ2)

(rp − 1)
(5)

Here,r = h2/h1 = h3/h2 is the mesh refinement ratio, and the order of convergencep can be estimated asp =
ln [(φ3 − φ2)/(φ2 − φ1)] / ln r.

As illustration, consider the deflection of a slender cantilever beam with a tip loadF = 3.92 N at the free end.
The length of the beam isL = 30 cm. The beam has a rectangular cross section of widthb = 3.04 cm and height
h = 0.0078 cm. The Young’s modulus is 200 GPa, and Poisson’s ratio is 0.3. Ignoring the self-weight of the beam,
the theoretical result for the deflection at the free end is available in [16] asyth = −12.16 cm. This theoretical result
has also been experimentally validated in [16].

A finite element model is created for the beam in ANSYS, including a large deflection effect. The problem is solved
with three mesh sizes (7.5, 3.75, and 1.875 cm) and the corresponding deflections are 12.22, 12.17, and 12.16 cm,
respectively. The Richardson extrapolation method is usedto estimate the exact solution. The mesh refinement ratio
r and the order of convergencep are calculated to be 0.5 and 2.32, respectively. The estimated exact solution is
calculated using Eq. (5) to be –12.16 cm, which matches the theoretical solution, thus illustrating the efficacy and
accuracy of the Richardson extrapolation method for quantifying discretization error.

2.3 Surrogate Model Prediction Error (εsu)

Some engineering analyses—uncertainty quantification, sensitivity analysis, optimization etc.,—require repeatedruns
of the finite element model, which can be prohibitively expensive. Therefore, a surrogate model, which is usually
computationally much cheaper than FEA, is constructed to provide a closed-form relationship between the inputs and
outputs of the original model or system. The difference between surrogate model prediction and the original model
prediction is denoted as surrogate model errorεsu. Because the true response of the original model is unknown at an
untrained point (within the bounds of the surrogate model training), the surrogate model error is treated as a stochastic
quantity.

In this study, for the sake of illustration, a polynomial chaos expansion (PCE) [17] is used as a surrogate to the
time-consuming finite element analysis in order to generateenough Monte Carlo samples needed for quantifying the
uncertainty in the model output. PCE is a regression-based surrogate model that represents the output of a model
with a series expansion in terms of standard random variables (SRVs). Consider a modely = f (x) in whichy is the
output from a numerical simulationf (x) and x= [x1, x2, . . . , xk]T is a vector of input variables that follow certain
probability distributions. Suppose PCE is constructed to replacef (x) usingn multidimensional Hermite polynomials
as basis functions:

y =

n∑

j=0

θjφj (ξ) = ΘTϕ(ξ) + εsu (6)
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whereξ is a vector of independent standard normal random variablesthat are corresponding to the original input [18].
ϕ(·) = {φ0(·), φ1(·), . . . , φn(·)}T are the Hermite basis functions, andΘ = {θ0, θ1, . . . , θn}T are the corresponding
coefficients that can be estimated by the least-squares method. A collocation point method can be used to efficiently se-
lect training points where the original model is evaluated [19]. Suppose thatm training points(ξi, yi), i = 1, 2, . . . , m
are available. Under the Gauss-Markov assumption [20], thesurrogate model errorεsu asymptotically follows a nor-
mal distribution with zero mean and variance given by

Var[εsu] ≈ s2 + s2ϕ(ξ)T
(
Ψ

T
Ψ

)−1
ϕ(ξ) (7)

whereΨ = {ϕ(ξ1), ϕ(ξ2), . . . , ϕ(ξm)}T ands2 = 1
m−n

∑m

i=1

[
yi − ΘTϕ(ξi)

]2
.

As illustration, consider the slender cantilever beam problem described in Section 2.2. Assume the concentrated
force follows a normal distribution with mean 3.5 N and standard deviation 0.4 N. Fifteen samples ofF are generated
and 15 corresponding beam tip deflections are calculated using the finite element model with mesh sizeh = 7.5 cm.
The first nine results are used to construct a first-order PCE surrogate model, and the last six are used to verify the
PCE model, which is then used to predict the beam tip deflection over the range of force from 3 to 4.5 N. The error
associated with each prediction is calculated based on which 90% confidence bounds are constructed. The results
are plotted in Fig. 1, showing excellent agreement between the surrogate model prediction and the original FEA
predictions at the validation points.

In order to account for the surrogate model error, random samples ofεsu are generated and added to the surrogate
model prediction. As a result, instead of only one, a number of sample values of surrogate model predictions are
obtained for a single input and all sample values should be used in the succeeding analyses to obtain a number of
sample values of the final model prediction. This approach toaccount for the surrogate model prediction error also
works for other stochastic surrogate models such as the Gaussian process model [21], which provide an estimate of
the variance of prediction.

3. UNCERTAINTY QUANTIFICATION ERROR (εuq)

Section 2 discussed errors that arise in the solution procedure and methods to quantify them. Even the error quan-
tification process, which requires uncertainty propagation analysis (e.g., Monte Carlo sampling), has error due to the
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FIG. 1: Surrogate model prediction and confidence bounds

Volume 1, Number 2, 2011



152 Liang & Mahadevan

limited number of samples in practical analysis. We denote the uncertainty quantification errorεuq as the difference
between the empirical CDF value and the “true” CDF value. In this section, first an error estimation method is devel-
oped to quantifyεuq. Then the propagation ofεuq is studied when samples are generated using the empirical CDF and
used in further analysis.

3.1 Error in Empirical CDF

Suppose that an empirical CDF̄F (x) is constructed fromNs samples of a random variableX . Let FX(x) refer to
the corrected CDF that includes the error in the empirical CDF. If n Monte Carlo samples are smaller than a specific
valuex, thenn follows a binomial distribution [22]n ∼ B

[
Ns, F̄X(x)

]
, considering that the value of each sample

is a result of Bernoulli trial. The binomial distribution approaches the normal distribution asNs increases. WhenNs

> 20, the normal distributionn ∼ N
{

NsF̄X(x),
√

NsF̄X(x)[1 − F̄X(x)]
}

is a good approximation to the original

binomial distribution [6]. Noting thatFx(x) = n/N , we have

Fx(x) =
n

N
∼ N






F̄X(x),

√

F̄X(x)[1 − F̄X(x)]

Ns






(8)

Thereforeεuq, the error associated with the CDF valueF̄X(x) can be represented as a normal random variable
with zero mean and varianceσ2, which can be estimated from

σ2 =

[
1 − F̄X(x)

]
F̄X(x)

Ns

(9)

Note that the variance of this error is actually a function ofx, and it goes to zero at both ends of the CDF curve. Or we
can directly treatFX(x) as a random variable with the empirical CDF value as the mean and varianceσ2 as in Eq. (9).

For example, supposeX ∼ N(0, 1) and 21 samples ofX are available. The empirical CDF and the 90% confi-
dence bounds are constructed using the above method. The result is compared to the true CDF curve in Fig. 2, and
shows that the CDF curve lies between the confidence bounds.
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FIG. 2: Empirical CDF with 90% confidence bounds versus true CDF
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3.2 Propagation of εuq

If more realizations ofx are generated from the empirical CDF to calculate the distribution of another variabley =
g(x) , thenεuq is propagated through the sampling procedure and results insampling errorεs in the new samples of
x. If an inverse CDF method is used for sampling, then an approximate method for quantifying the sampling errorεs

is proposed.
In Fig. 3, let(εuq)i and(εuq)i′ be the errors corresponding to the CDF values atxi andxi + (εs)i, respectively.

From Eq. (9), we know that(εuq)i ∼ N [0, σ(xi)] and(εuq)i′ ∼ N {0, σ[xi + (εs)i]}. If we let (εuq)i and(εuq)i′
have the same percentile value [assuming(εs)i is very small], then we have

Φ

[
(εuq)i − 0

σ(xi)

]

= Φ

{
(εuq)i′ − 0

σ[xi + (εs)i]

}

= Φ

{
ui − FX [xi + (εs)i]

σ[xi + (εs)i]

]

(10)

In Eq. (10),(εs)i is the unknown quantity to be estimated. By using Eq. (10), one can calculate(εs)i for a given
(εuq)i. That is, samples of(εs)i can be obtained by sampling(εuq)i. Thus, the corrected value ofxi is [xi + (εs)i],
which includes the sampling error(εs)i. Now y = g(x) is calculated using the corrected realization.

In the context of this paper, the model form error statisticsare obtained through Eq. (10), using samples of cor-
rected model predictionyc and observationsyobs (details in Section 4). The method developed in this sectionoffers
a generic approach to resampling from sparse data and includes the extra uncertainty due to UQ error in the new
samples. A kernel density may be used to obtain a smoothed empirical CDF before applying this method, if desired.

In Section 4, the proposed method is used in model form error estimation to include the error caused by a limited
number of experimental observationsyobs and samples of the corrected model outputyc.

4. MODEL FORM ERROR ESTIMATION

As mentioned in Section 1, model form error is calculated using Eqs. (1) and (2), by comparing model predictions
against experimental observations of the same output quantity, for the “same” set of inputs. In this case, output mea-
surement error needs to be taken into account.

From Eqs. (1) and (2), we have
ypred+ εnum
︸ ︷︷ ︸

yc

+εmodel = yobs+ εom (11)

Rearranging the terms gives
εmodel = yobs+ εom − yc (12)
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FIG. 3: Sampling error quantification
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Equation (12) is evaluated by sampling each of the three terms on the right-hand side, and samples ofεmodel are then
obtained. The output measurement errorεom is commonly assumed to be a normal random variable with zero mean
and an assumed variance [20], based on the measurement process and equipment.

However, in most cases only the distribution ofεom might be available, and only a few point-valued data are
available foryobs. Moreover, if the procedure of computingyc requires considerable computational effort, then only a
limited number of samples can be obtained. A resampling approach is needed to generate more samples ofyobs andyc

from sparse data, but resampling could also cause another error. Therefore, the approach developed in Section 3 for
quantifying the sampling error is used. Then, Eq. (12) becomes

εmodel = [yobs+ (εs)obs] + εom − [yc + (εs)c] (13)

where(εs)obs and(εs)c are the errors due to the limited number of samples ofyobs andyc, respectively; these errors
are calculated using Eq. (10).

After the model form error statistics are calculated using Eq. (13), for future prediction purposes, the overall
corrected prediction that includes both solution approximation error and model form error may be computed asyc +
εmodel. In this expression,yc includes the contributions of various solution approximation errors and input error, and
εmodel includes the contributions of model form error, UQ error andoutput measurement error.

5. SENSITIVITY ANALYSIS

The previous sections developed a methodology to quantify different errors in model prediction. In this section,
sensitivity analysis is performed to estimate the contribution of each error source to the model prediction uncertainty.
Previous studies in stochastic sensitivity analysis have only considered the effect of input random variables; this paper
extends those methods to include sources of solution approximation error. The sensitivity analysis is done in terms of
the contribution to the uncertainty in the corrected model predictionytrue [defined in Eq. (3)]. Because the UQ error
and model form error are computed only after the computationof yc, this sensitivity analysis is only with respect to
solution approximation errors and does not include UQ erroror model form error.

Two local and two global sensitivity measures are studied inthis section. A generic expressionY=f(X1,X2,...,Xn)
is used in the discussion below, whereXi can be either model input, error, or model parameter with uncertainty, and
Y refers to the corrected model outputyc that considers all the contributing error sources.

5.1 Local Sensitivity Analysis

Two local sensitivity analysis methods are considered. Thefirst one is variance-based, and the second one is entropy-
based.

5.1.1 Change in Variance

The change of variance in the model prediction due to theith input is defined as

(
∆σ2

)

i
= Var(Y ) − Var(Y |Xi = x̄i) (14)

Equation (14) provides a measure of the change in variance ofY if the ith input is ignored. IgnoringXi means fixing
it at its mean value (usually zero) for a stochastic error, ornot correcting for a deterministic error. The second term in
the right-hand side of Eq. (14) is the conditional variance of Y givenXi, and is calculated overX∼i (i.e., allX except
Xi). The greater the value of

(
∆σ2

)

i
is, the more the importanceXi is. However, this measure is only in terms of

variance and ignores other uncertainty information, such as mean, skewness, kurtosis, etc. Also, the result depends on
whereXi is fixed, and in occasional cases, it is possible that Var(Y |Xi = x̄i) > Var(Y ) [23]. But due to its simplicity,
change of variance

(
∆σ2

)

i
is still an applicable scalar measurement of the effect due to each contributing source of

uncertainty. BecasueXi is fixed at a single value, the change of variance is a local sensitivity index.
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5.1.2 Kullback-Leibler Divergence

The Kullback-Leibler divergence (K-L divergence) [24], adapted from information theory, measures the difference
between two probability density functionsp(x) andq(x), in the sense of the relative information entropy (uncertainty)
of p(x) with respect toq(x). It is defined as

DKL (P‖Q) =

∫
∞

−∞

p(x) log
p(x)

q(x)
dx (15)

The K-L divergence is non-negative, and it is zero if and onlyif p(x) andq(x) are exactly the same. It is sensitive to
both differences in mean value and in variance.

The K-L divergence has been use in sensitivity analysis [25]to measure the contribution of an individual source to
the uncertainty in the model prediction. In this paper, the K-L divergenceDKL Xi

[(Y |Xi = x̄i)‖Y ] is used to compare
the difference over the entire distributions ofY and the conditionalY |Xi = x̄i) , in whichXi is fixed at a particular
value (zero for deterministic error and mean value for stochastic error). A larger value of the KL divergence implies
thatY is more sensitive toXi.

5.2 Global Sensitivity Analysis

Instead of fixingXi at a single value, we can average the conditional variance VarX∼i
(Y |Xi) over the entire distri-

bution of Xi. This is denoted asEXi
[VarX∼i

(Y |Xi)], and it no longer depends on whereXi is fixed, so that it is
“global” over the range ofXi. Starting with this and based on variance decomposition [26], the variance ofY can be
decomposed into two terms, with respect ofXi [23],

Var(Y ) = EXi
[VarX∼i

(Y |Xi)] + VarXi
[EX∼i

(Y |Xi)] (16)

Here both terms are complementary to each other. Either a smaller first term or a bigger second term indicates a more
importantXi. By normalizing the second term, we obtain the main effect sensitivity index,

Si =
VarXi

[EX∼i
(Y |Xi)]

Var(Y )
(17)

which is always between 0 and 1. The main effect is also referred to as first-order effect. Note that a low main
effect index does not imply that the variable is not important. A variable with a low main effect might make a bigger
contribution to the model output through interaction with other variables. Therefore, a more comprehensive sensitivity
measure that includes the main effect and the interaction effect is the total effect index. If we swapXi andX∼i in
Eq. (16), another way of decomposing the variance ofY is

Var(Y ) = EX∼i
[VarXi

(Y |X∼i)] + VarX∼i
[EXi

(Y |X∼i)] (18)

By normalizing the first term, we obtain the total effect sensitivity index,

Si =
EX∼i

[VarXi
(Y |X∼i)]

Var(Y )
(19)

The total effect index becomes valuable when the sum of individual main effect indices is not close to 1, which implies
that strong interaction effects exist among variables.

5.3 Deterministic and Stochastic Errors in Sensitivity Analysis

It was mentioned in Section 2 that deterministic errors (such as discretization error) are corrected, whereas stochastic
errors are accounted for through sampling, in order to compute the corrected model predictionyc. With such a strategy,
only local sensitivity measures can be calculated corresponding to deterministic errors, which obviously have only
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fixed values for fixed model inputs. The corrected model prediction is calculated with and without correcting for the
deterministic error, and the corresponding change in variance or K-L distance can be computed.

For stochastic errors, it is more appropriate to compute global sensitivity measures instead of at one particular value
(typically, the mean). However, this creates a difficulty incomparing the relative contributions of the deterministic
versus stochastic errors to the overall model prediction uncertainty, when resource allocation decisions are needed
for activities such as model refinement and data collection.Therefore, an approximate approach is proposed below to
compute global sensitivity measures for even deterministic errors.

In global sensitivity analysis with stochastic variables,samples of the variables are generated based on their dis-
tributions. But deterministic variables do not have a distribution to sample from, such as discretization errorεh. An
approximate approach is to obtain samples ofεh corresponding to randomly sampled stochastic inputs to theFEA
model; these samples ofεh are used to construct the distribution ofεh.

Another interesting problem occurs in calculating global sensivity measures with respect to the surrogate model
errorεsu , even though it is stochastic. This is because the distribution of εsu is local at a particular prediction of the
surrogate model, which depends on the input. The overall distribution of εsu is not available over the entire range of
the input, thus hindering global sensivity analysis. To overcome this difficulty, an approximate approach is to obtain
samples ofεsu corresponding to sample inputs to the surrogate model; these samples ofεsu are used to construct the
overall distribution ofεsu.

In summary, the need to compare the various sources of error with the same sensitivity measure creates two issues.
Local sensitivity measures are not appropriate for stochastic errors, and calculation of global sensitivity measuresis
not straightforward for deterministic errors. The approximation in this section offers a convenient way of including
discretization error and surrogate model error into globalsensitivity analysis, thus making the various error sources
comparable under the same sensitivity measure.

6. NUMERICAL EXAMPLES

6.1 Cantilever Beam

The tip deflectionδ of a cantilever beam shown in Fig. 4 is of interest. The beam has lengthL = 192 in., cross-
sectional moment of inertiaI = 300 in.3 and Poissons ratioυ = 0.3. The Young’s modulusE is assumed to be a
normal random variable with mean value29000 Ksi and COV 0.06. The self-weightw(x) is assumed to be a one-
dimensional Gaussian random field, with mean value 75 lb/in.and COV 0.05, as well as an exponential covariance
function defined byC(∆x) = σ2 exp(−|∆x|/b) , in whichσ2 is the variance andb is the correlation length of the
random field. In this example,b is assumed to be equal to the length of the beam. The concentrated loadP at the beam
tip is the input to the model, which is a normal random variable with mean 1000 lb and COV0.16.

For the sake of illustration, assume that an errorεP arises when measuring the inputP , which is also a normal ran-
dom variable with zero mean and a variance equal to20% of variance ofP [27]. Similarly, the output (i.e., deflection)
measurement error is also assumed to be a normal random variable with zero mean and standard deviation of 0.0 1in.

A finite element model is constructed with four beam elementsof equal length, and a first-order polynomial chaos
expansion with Hermite bases is constructed as the surrogate computational model,

δpred = PCE(P, E, w) (20)

FIG. 4: Cantilever beam
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Nine training points are selected by the collocation methodto run the FEA model for training the surrogate model [19].
Then, the surrogate model is used to generate samples of model predictions by sampling the inputs. The distribution
of model prediction is estimated from the samples to have a mean value of –1.74 and standard deviation of 1.23×
10−1. This is the raw model prediction.

6.1.1 Numerical Errors and Sensitivity

In this example, the numerical error in the model predictionis assumed to come from three error sources: discretization
error in FEAεh, surrogate model errorεsu, and input errorεP. First, the Richardson extrapolation technique is used
to correct the discretization error in FEA. For each of the nine training points, two more FEM runs are made with
eight elements and 16 elements, respectively (original number of elements is four) to calculateεh. A new set of nine
training points is obtained by adding the discretization error to the original training points and a new surrogate model
PCEh is built with the corrected training data. Then,εP andεsu are also included and, finally, the corrected model
predictionδc is given by

δc = PCEh(P + εP, E, w) + εsu (21)

The numerical error can be calculated asεnum = δc − δpred, whereδpred is the raw model prediction. By randomly
generating samples ofεnum, the mean and standard deviation ofεnum are estimated to be –4.01× 10−3 and 1.78×
10−1, respectively.

Using the corrected model predictionδc all four sensitivity analyses are performed on the three errors. The results
are shown in Table 1. The first two sensitivity indices are local, and the next two are global. From the sensitivity
ranking in Table 1, it is seen that the global measures indicate that the discretization error affects the model solution
the most, whereas the local measures give the input measurement error the highest rank.

6.1.2 Model Form Error and UQ Error Estimation

Model form error can be estimated using Eq. (13); this also needs to take the uncertainty quantification errors into
account. Assume nine experimental observations of beam deflectionδobs are available, and assume 20 samples ofδc

are taken from the error quantification procedure for resampling δc. Further assume that the output measurement error
εom follows a normal distribution with zero mean and standard deviation 0.01. For comparison, samples of model
form error without considering the uncertainty quantification error are also generated by ignoring the sampling errors
in Eq. (13). The CDFs of model form error with and without considering uncertainty quantification error are plotted
in Fig. 5a. One-thousand samples of model form error were generated for each case. The PDFs of sampling error for
δobs andδc are also plotted in Fig. 5b. Statistical results are summarized in Table 2. Because less data is available
for δobs thanδc, the variance of sampling error inδobs is significantly greater than inδc. It is noted that including the
UQ error (due to limited sampling) resulted in an increase inthe variance of the estimated model form error because
more randomness was introduced. Finally, because the mean and variance ofεmodel with εuq are estimated from 1000
samples, errors arise in their estimates; these errors are very small and are ignored.

6.2 Crack Growth in an Airplane Wing Spar

In this example, quantification and sensitivity analysis oferrors in crack growth prediction in part of an airplane wing
is of interest. In crack growth analysis, sensitivity analysis of errors faces a major difficulty because different sample

TABLE 1: Sensitivity analysis

Change of Variance KL Distance Main Effect Total Effect
Error Index Ranking Index Ranking Index Ranking Index Ranking
εP 5.35× 10−3 1 10.44 1 0.0296 2 0.104 3
εh 2.11× 10−5 2 5.48 2 0.1614 1 0.131 1
εsu 1.60× 10−6 3 3.50 3 0.0115 3 0.126 2
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FIG. 5: Statistics of model form error and sampling errors

TABLE 2: Statistics of model form error and sampling errors

Variable Mean Variance
εmodel withoutεuq 3.44× 10−3 5.19× 10−2

εmodel with εuq 2.74× 10−3 5.76× 10−2

εs for δobs –7.21× 10−4 1.09× 10−2

εs for δc –0.20× 10−4 5.52× 10−5

values of the same error are input into the analysis in each cycle. This issue will be discussed in detail later. The wing
spar plays a key role in connecting the wing to the fuselage and is subjected to cyclic loading during flight. The final
crack sizeaN that grows from an initial sizea0 = 0.05 in. under a given load history is studied. Because of various
uncertainties and errors arising in the analysis,aN is a random variable.

The analysis consists of two modules: structural stress analysis and fatigue crack growth analysis, as shown in
Fig. 6. The errors and uncertainty considered in this example are input error, discretization error in FEA, surrogate
model error, and uncertainty in the crack growth law parameter.

The loadsB andP are inputs to the structural model. The output of structuralanalysis is the first-principals stress
in the critical region (hot spot). The analysis is carried out by finite element analysis. To quantify the discretization
errors in the finite element analysis using Richardsons extrapolation, for each of the training points the finite element

FIG. 6: Component analyses and associated sources of error and uncertainty
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analysis is repeated with finer meshes with two levels of refinement. The refinement ratio is 0.75, which means the
element size is multiplied by 0.75 in each refinement.

A surrogate model is constructed using a first-order polynomial chaos expansion with Hermite polynomial bases.
The surrogate model is trained using FEA results and is used to replace the FEA in further analysis. The associated
surrogate model error is stochastic.

Before proceeding with the crack growth analysis, the stress intensity factor is calculated first from the structural
analysis result (in the context of linear elastic fracture mechanics). This is given by

∆K = β∆s
√

πa (22)

wheres is the stress at crack tip,a is the crack length, andβ depends on geometry and crack length. In this example,
β available from [28]. The Paris’ law is used here to illustrate the crack growth calculation

da

dN
= C(∆K)n (23)

The parametern is assumed to be deterministic at 3.2. Because of fitting error, the parameterC is assumed to be a
random variable that follows a lognormal distribution, with a mean value of 1.0× 10−7 and COV of 0.24.

6.2.1 Correction of Errors

The following states the procedure of calculatingaN that is corrected for all error. At the beginning, a random sample
of C is generated, which stays constant throughout all cycles. In each cycle, first the mean values ofB andP are
obtained from a given variable amplitude load history. Random samples ofεB andεP are generated and added to
B andP , respectively. The correctedB andP are then fed into the surrogate model, which is built with nine FEA
results corrected for discretization error using the Richardson extrapolation. The surrogate model outputs the stress
predictions, as well as the associated prediction error. Next Eq. (22) isused to calculate the stress intensity factor,
which is input to the crack growth law. To accelerate the computation, the increment of crack lengthda is calculated
in blocks of every 10 cycles [i.e.,dN is set to 10 in Eq. (23)]. Finally, the crack length is updateduntil the end of the
load history. The analysis is repeated to generate 10,000 such samples ofaN .

6.2.2 Results and Sensitivity Analysis

TheaN obtained in Section 6.2.1 that is corrected for all errors isdenoted asac in the following discussion. However,
the structure of the crack growth problem is not like that of the previous example due to the cycle-by-cycle analysis.
A small example would explain this special case. Letai+1 = g(ai) + ε be a crack growth model, in whichai and
ai+1 are the crack sizes in theith and(i + 1)th cycles, andε is a random error. If the crack grows from sizea0 to a3

in three cycles, then we have

a3 = g{g[g(a0) + ε(1)] + ε(2)} + ε(3) (24)

in which ε(1), ε(2), andε(3) are three samples of the errorε but are generated independently. Or we can saya3 is
function of four input variablesa3 = g3[a0, ε

(1), ε(2), ε(3)]. The existing sensitivity methods are only able to estimate
the sensitivity ofa3 with respect to each ofε(1), ε(2), andε(3), individually. However, the sensitivity ofa3 to the
overall errorε is what we are actually interested in. An approximate approach to overcome this hurdle is to assume
that all samples of the same error have the same value throughout all cycles. This makes it possible to compute the
sensitivity with respect to a single error termε over all cycles.

The results in Table 3 show that all four sensitivity measures are able to indicate that the final crack size is most
sensitive to the parameterC in Paris law and is least sensitive to the discretization error in FEA. This implies that in
order to achieve a more accurate prediction of the final cracksize, a more precise parameterC (i.e., narrower scatter)
is needed. In contrast, the discretization error in FEA is much smaller.
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TABLE 3: Sensitivity analysis results

Change of variance KL distance Main effect Total effect
Error Index Ranking Index Ranking Index Ranking Index Ranking
εB 0.17× 10−3 4 6.85 3 4.69× 10−2 4 8.36× 10−1 4
εP 0.32× 10−3 3 6.29 4 4.18× 10−1 2 9.13× 10−1 2
C 2.95× 10−3 1 37.54 1 9.69× 10−1 1 9.88× 10−1 1
εsu 2.82× 10−3 2 36.63 2 3.80× 10−1 3 9.09× 10−1 3
εh 8.36× 10−5 5 6.15 5 1.07× 10−3 5 2.48× 10−1 5

7. CONCLUSION

This paper studied some of the errors that arise in mechanicscomputational models. There are three major contri-
butions in this paper. The first is that the errors are clearlyseparated, and a quantification method is developed for
each of the errors, including model form error, uncertaintyquantification error, and three typical sources of numerical
(solution approximation) error. Some of these errors are random and some are deterministic. Deterministic error is
corrected by adding it to the prediction, and random error isincluded in the model output through sampling. By cor-
recting or accounting for all the errors the corrected modeloutput is obtained. The corrected model outputs together
with observed data are used to estimate model form error through sampling, where uncertainty quantification error
arises. Therefore, a methodology to quantify the UQ error isdeveloped (this is the second contribution). The error in
the CDF from limited samples is first quantified; then the propagation of this error due to further sampling from the
approximate CDF is also quantified.

The third major contribution of this paper is the extension of sensitivity analysis methods to rank the contribution
of each error. Past work in global sensitivity analysis has only considered the influence of input random variables
on output uncertainty; this paper extends the methods to include model errors. Methods for computing both local
and global sensitivity measures are developed. Approximation approaches are developed for fatigue crack growth
analysis that requires repetition of error terms in each cycle. The proposed error quantification and sensitivity analysis
framework helps guide resource allocation for model refinement and data collection, balancing computational effort
and prediction accuracy. The framework is general and can beextended to include other sources of error and other
methods of quantifying individual errors.
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