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Multiple sources of errors and uncertainty arise in mechanics computational models and contribute to the uncertainty in
the final model prediction. This paper develops a systematic error quantification methodology for computational models.
Some types of errors are deterministic, and some are stochastic. Appropriate procedures are developed to either correct
the model prediction for deterministic errors or to account for the stochastic errors through sampling. First, input error,
discretization error in finite element analysis (FEA), surrogate model error, and output measurement error are consid-
ered. Next, uncertainty quantification error, which arises due to the use of sampling-based methods, is also investigated.
Model form error is estimated based on the comparison of corrected model prediction against physical observations and
after accounting for solution approximation errors, uncertainty quantification errors, and experimental errors (input
and output). Both local and global sensitivity measures are investigated to estimate and rank the contribution of each
source of error to the uncertainty in the final result. Two numerical examples are used to demonstrate the proposed
methodology by considering mechanical stress analysis and fatigue crack growth analysis.

KEY WORDS: error quantification, uncertainty quantification, sensitivity analysis, finite elements, dis-
cretization, surrogate model

1. INTRODUCTION

Computational models are widely used by engineers to capter behavior of physical systems. For large systems,
computational models are usually constructed based osespaperimental data, sometimes even with no full-scale
experiments. As a result, errors arise due to lack of datdautdof knowledge about system behavior. Numerical
approaches used to solve the model equations also produre due to various assumptions and approximations.
Natural variability in many physical variables, and dataenainty due to sparse data and measurement errors, add
further uncertainty in the model prediction.

The motivation of this paper is to develop a methodology firavides quantitative information regarding the
relative contribution of various sources of error and utaiety to the overall model prediction uncertainty. Such
information can guide decisions regarding model improverfeg., model refinement, additional data collection) so
as to enhance both accuracy and confidence in the predidt@ninformation sought is in the form of rankings of
the various errors and uncertainty sources that contriboutee model prediction uncertainty. It is more advantageou
to spend resources toward reducing an error with a highéirrgrihan one with a lower ranking. The rankings are
based on systematic sensitivity analysis, which is possibly after quantifying the effect of each error source @n th
model prediction uncertainty.

The error in a computational model prediction consists ofparts: model form errokg,qqe) and solution approx-
imation error or numerical erroefum) [1-4]. The model form error depends on whether the seleutadel| correctly
represents the real phenomenon (e.g., small deformatisnsé&arge deformation model, linear elastic versus elasto
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plastic model, or Euler versus Navier-Stokes equationg 3dlution approximation error arises when numerically
solving the model equations. In other words, the model famoras related to the question—Did | choose the correct
equation?—which is answered using validation experimeavitiie the solution approximation error is related to the
guestion—Did | solve the equation correctly?—which is amed through verification studies.

Mathematical theory and methods have been discussed ior[dlintifying numerical error and model form error
in computational mechanics models, but these methodsreeqacess to the original partial differential equations
(PDEs) of the system. A simplified approach to error quastiion using a commercial computational code as a black
box has been developed in [5]. If we dengpg.q andywue as model prediction and the true response of the physical
system, respectively, then we have

Ytrue = Ypred T €num + €model 1)

Note that the numerical error depends on the choice of theehfordn; thus, the two errors are not independent. The
numerical error,ym is a nonlinear combination of various components [5]. Tlapgy first considers three typical
numerical error components and their quantification andhipation, including input error, discretization error in
FEA, and surrogate model error.

Assumey. is the model prediction corrected for the numerical errarses, angyreqis the raw model prediction.
Besidesy, in order to quantify the model form error, observed dagtaJ are needed. However, there is a difference
betweeryqps andyiue, Which is called output measurement erreg(). Thus, we have

Ytrue = Yobs T €om 2

Model form error can be quantified based on Egs. (1) and (3ldmentation details are discussed in Section 4.

One concern in this paper is how to obtain a model predigiiororrected for numerical error sources. Among
all errors, some errors are stochastic, such as input encbs@rrogate model error, and some errors are deterministic
such as discretization error in FEA. In this paper, a simpleelficient approach is developed to obtain The basic
idea is to quantify and correct for each error where it ariSéschastic error is corrected for by adding its randomly
sampled values to the original result. Deterministic eisazorrected for by directly adding it to the corresponding
result. For example, to correct for the discretization eregery time a particular FEA result is obtained, the corre-
sponding discretization error is calculated, added to tiggral result, and the corrected FEA result is used in feirth
computation to obtainp..

In addition to the model form and solution approximatioroesrmentioned above, another error arises due to
Monte Carlo sampling used in the error quantification procedtself. This error is referred to here as uncertainty
guantification (UQ) error. For example, when estimating ¢henulative distribution function (CDF) of a random
variable from sparse data, there is error in the CDF valug nagthods to quantify this UQ error are available in [6].
Then, if more samples are generated by the inverse CDF megiog the CDF estimated from sparse data, then the
UQ error is propagated as sampling error to the newly geeérsamples. An approach is developed in Section 3 to
guantify this sampling error. This method is particularsetul in quantifying model form error (Section 4).

After a probabilistic framework to manage all sources ofartainty and error is established, sensitivity analyses
are performed in Section 5 to assess the contribution of satte of uncertainty and error to the overall uncertainty
in the corrected model prediction. The sensitivity analysisult can be used to guide resource allocation for diftere
activities, such as model fidelity improvement, data coitet; etc., according to the importance ranking of errors in
orders to trade off between accuracy and computationadtéxental effort. The proposed methods are demonstrated
using two numerical examples in Section 6.

The contributions of this paper can be summarized as follows

1. A systematic methodology for error and uncertainty gifiaation and propagation in computational mechan-
ics models is developed. Previous literature has developgtods to quantify the discretization error and to
propagate input randomness through computational mddelgever, the combination of various error and un-
certainty sources is not straightforward: some are adgifeme multiplicative, some nonlinear, and some even
nested. Also, some errors are deterministic and some arkasttic. The methodology in this paper provides a
template to track the propagation of various error and uatgy sources through the computational model.
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2. The error and uncertainty quantification methodologgffiteas an error due to the use of limited number of
samples when large finite element models are used; theréfiisdJQ error is quantified. A methodology is
proposed in this paper to also quantify the propagationiefWl® error through further calculations in model
prediction and assessment, and is used in the quantificaitimodel form error.

3. Sensitivity analysis methods are developed to identiéydontribution of each error and uncertainty source to
the overall uncertainty in the model prediction. Previdtesdture in global sensitivity analysis has only con-
sidered the effect of input random variables, and this paptends the methodology to include data uncertainty
and model errors. The sensitivity information is helpfuldentifying the dominant contributors to model pre-
diction uncertainty and in guiding resource allocationrfadel improvement. The sensitivity analysis method
is further enhanced to compare the contributions of bothrd@histic and stochastic errors on the same level,
in order to facilitate model improvement decision making.

2. NUMERICAL ERROR QUANTIFICATION (€num)

Three typical sources of numerical error (i.e., solutiopragimation error) and their quantification methods are
discussed in this section, namely, input error, discrétmaerror in FEA, and surrogate model error. In this paper,
to quantify the numerical error, instead of comparing thiginal model predictionypeq With known solutions, it
is compared to the corrected model predictighGenerally, if the error is deterministic, then it will beroected
by adding it to its corresponding quantity; if the error isdtastic, then it will be accounted for by including its
uncertainty in the output through sampling. After the coted model prediction is obtained, the numerical error can
be estimated as

€num = Yc — Ypred (3

The raw model predictiogyreq is either deterministic or stochastic, depending on theehoghuts. Howevery. and
€num are random variables even for deterministic input, if batitsastic and deterministic error sources contribute to
the overall numerical error and corrected model prediction

2.1 Input Error (ein)

In a validation exercise, the inputs to the computationatiehehould ideally have the same values as those to the
physical system. However, the inputs to the physical systerdel are subject to experimental variability and mea-
surement error; therefore, there is a discrepancy betwéat iw measured or reported as the input to the physical
system and its actual value. The use of this measured valine iocomputational model gives rise to an error in the
model prediction, because the model and the actual systdmiff@rent inputs.

If no prior information is available, then the input errore aepresented by random variables based on knowledge
about experimental variability, measurement processirestidiment errors. Usually, normal distributions with aame
value of zero or a constant bias are assumed. The input emndse accounted for by including its uncertainty in the
final model output (i.e., by propagating the randomnesspaftierror through the computational model). Suppose that
a computational model has the fotypled = f (21,22, ..., 2m), N Whicha, 22, - - -, 2, are model inputs angred
is model prediction. Then, the model output that accountthi®input errors is

Yprea = [ 21+ (€in)1, 22 + (€in)2, - - -, T + (€in)m] 4)
where are the (stochastic) input errors of each input veridmuation (4) is evaluated through Monte Carlo sampling
of the error terms.

2.2 Discretization Error (ey)

Many engineering problems involve solving differentiabatjons numerically using a discretization method, such as
the finite difference or finite element methods. The appratiom error due to coarse discretization of the domain is
denoted as discretization error. Different methods hawes lpeoposed for a posteriori error estimation in boundary
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value problems in mechanics, including explicit errorrastiion methods [7], element residual methods [8], recovery
based methods [9], and extrapolation methods [10]. A cohsarsive review of a posteriori error estimation is given
by Ainsworth and Oden [11]. But most methods provide re&gwor and are only useful for adaptive mesh refine-
ment, not for quantifying the actual error [4]. A conveniemgthod to approximate the actual error is the Richardson
extrapolation [12—15], especially when a commercial fielesment code is used.

In this paper, the Richardson extrapolation method is epgaldo quantify the discretization error for the sake of
illustration. The emphasis of this paper is more on error lwioation than on methods to quantify individual errors;
therefore, other preferred methods can also be used indipeged overall framework. The following concerns should
be noted while using the Richardson extrapolation methipd:ferforms well for one-dimensional cases, but is less
reliable for higher dimensions; (ii) it was first developed the finite difference method, and its result is less credib
for the finite element method; and (iii) it requires the moddult to be monotonically convergent as the mesh is
refined, while in many problems the result converges withtdiaton.

In the Richardson extrapolation method, in order to qugitié discretization errogy, in an FEA resulih; with
mesh sizéh,, two more FEA runs are needed to obtéinwith a finer mesthy andds with the finest meshgs. Then,
the discretization errogy, is given byen, = (b1 — ¢2) / (rP — 1). As a result, the exact solution can be expressed as

(b1 — d2)

Cbh:O:(bl‘i‘m

(®)

Here,r = ha/h1 = hs/ho is the mesh refinement ratio, and the order of converggrzan be estimated as =
In (b3 — d2)/ (b2 — d1)] /Inr.

As illustration, consider the deflection of a slender camér beam with a tip load” = 3.92 N at the free end.
The length of the beam i5 = 30 cm. The beam has a rectangular cross section of width3.04 cm and height
h = 0.0078 cm. The Young's modulus is 200 GPa, and Poisson’s ratio isl@ring the self-weight of the beam,
the theoretical result for the deflection at the free end &lable in [16] asy, = —12.16 cm. This theoretical result
has also been experimentally validated in [16].

Afinite element model is created for the beam in ANSYS, initigé large deflection effect. The problem s solved
with three mesh sizes (7.5, 3.75, and 1.875 cm) and the pameding deflections are 12.22, 12.17, and 12.16 cm,
respectively. The Richardson extrapolation method is tsextimate the exact solution. The mesh refinement ratio
r and the order of convergengeare calculated to be 0.5 and 2.32, respectively. The esinatact solution is
calculated using Eq. (5) to be —12.16 cm, which matches theréhical solution, thus illustrating the efficacy and
accuracy of the Richardson extrapolation method for qfiang discretization error.

2.3 Surrogate Model Prediction Error (eg,)

Some engineering analyses—uncertainty quantificatiorsjbéty analysis, optimization etc.,—require repeateals

of the finite element model, which can be prohibitively exgiea. Therefore, a surrogate model, which is usually
computationally much cheaper than FEA, is constructeddwige a closed-form relationship between the inputs and
outputs of the original model or system. The difference leetwsurrogate model prediction and the original model
prediction is denoted as surrogate model eer@r Because the true response of the original model is unkndan a
untrained point (within the bounds of the surrogate modahing), the surrogate model error is treated as a stochasti
guantity.

In this study, for the sake of illustration, a polynomial oBaexpansion (PCE) [17] is used as a surrogate to the
time-consuming finite element analysis in order to genexateigh Monte Carlo samples needed for quantifying the
uncertainty in the model output. PCE is a regression-basedgate model that represents the output of a model
with a series expansion in terms of standard random vasgBIRVs). Consider a modgl= f (x) in whichy is the
output from a numerical simulatiofi(x) and x= [z1, z2, ..., z}]" is a vector of input variables that follow certain
probability distributions. Suppose PCE is constructe@fdacef () usingn multidimensional Hermite polynomials
as basis functions:

y=30,0, () = OT(&) + exs (6)
j=0
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whereé is a vector of independent standard normal random varigitéesre corresponding to the original input [18].
o) ={dbo("), b1("),..., d)n(-)}T are the Hermite basis functions, a@d= {0y, 61, .. ., en}T are the corresponding
coefficients that can be estimated by the least-square®oheittollocation point method can be used to efficiently se-
lect training points where the original model is evaluate®] [ Suppose that training points(&;, y;),i = 1,2,...,m

are available. Under the Gauss-Markov assumption [20]stineogate model errars, asymptotically follows a nor-
mal distribution with zero mean and variance given by

Varles] ~ 52 + >0 (£)T (¥T®) " ¢(£) @)

where® = {@(&1), @(&2), ..., @(Em)} ands® = L= 5" [y — OTo(&:)]”.

As illustration, consider the slender cantilever beam [gnombdescribed in Section 2.2. Assume the concentrated
force follows a normal distribution with mean 3.5 N and stmtideviation 0.4 N. Fifteen samplesiBfare generated
and 15 corresponding beam tip deflections are calculateg tise finite element model with mesh size= 7.5 cm.

The first nine results are used to construct a first-order R€EBGate model, and the last six are used to verify the
PCE model, which is then used to predict the beam tip deflecti@r the range of force from 3 to 4.5 N. The error
associated with each prediction is calculated based onhw8086 confidence bounds are constructed. The results
are plotted in Fig. 1, showing excellent agreement betwhenstirrogate model prediction and the original FEA
predictions at the validation points.

In order to account for the surrogate model error, randonpgesrofe, are generated and added to the surrogate
model prediction. As a result, instead of only one, a nhumliesample values of surrogate model predictions are
obtained for a single input and all sample values should led usthe succeeding analyses to obtain a number of
sample values of the final model prediction. This approadictmunt for the surrogate model prediction error also
works for other stochastic surrogate models such as thesaugrocess model [21], which provide an estimate of
the variance of prediction.

3. UNCERTAINTY QUANTIFICATION ERROR (eyq)

Section 2 discussed errors that arise in the solution proeeahd methods to quantify them. Even the error quan-
tification process, which requires uncertainty propagedioalysis (e.g., Monte Carlo sampling), has error due to the
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FIG. 1: Surrogate model prediction and confidence bounds
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limited number of samples in practical analysis. We denweuncertainty quantification erreq as the difference
between the empirical CDF value and the “true” CDF valuehls section, first an error estimation method is devel-
oped to quantifyeyq. Then the propagation ef,q is studied when samples are generated using the empiridale@
used in further analysis.

3.1 Error in Empirical CDF

Suppose that an empirical CDF(z) is constructed fromN, samples of a random variahle. Let Fi () refer to
the corrected CDF that includes the error in the empiricaFObr Monte Carlo samples are smaller than a specific
valuez, thenn follows a binomial distribution [22}» ~ B [NS, Fx (:c)}, considering that the value of each sample
is a result of Bernoulli trial. The binomial distribution pgaches the normal distribution &5 increases. Whew,

> 20, the normal distribution ~ N {NSFX (z), /NsFx (x)[1 — Fx(x)]} is a good approximation to the original
binomial distribution [6]. Noting thaF’, (x) = n/N, we have

Fx (z)[1 = Fx(x)]

- ®)

Fy(z) = % ~N Fx(x),\/

Thereforee,q, the error associated with the CDF valfig (x) can be represented as a normal random variable
with zero mean and varian@@, which can be estimated from

s ©

Note that the variance of this error is actually a functiom odind it goes to zero at both ends of the CDF curve. Or we
can directly treafy () as a random variable with the empirical CDF value as the medwvariances? as in Eq. (9).

For example, supposk& ~ N (0, 1) and 21 samples oX are available. The empirical CDF and the 90% confi-
dence bounds are constructed using the above method. Tieisesompared to the true CDF curve in Fig. 2, and
shows that the CDF curve lies between the confidence bounds.

CDF

Empirical CDF
90% confidence bounds
True CDF

FIG. 2: Empirical CDF with 90% confidence bounds versus true CDF
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3.2 Propagation of eyq

If more realizations ofc are generated from the empirical CDF to calculate the Bigtion of another variablg =
g(z) , theneyq is propagated through the sampling procedure and resusnpling erroks in the new samples of
z. If an inverse CDF method is used for sampling, then an apprate method for quantifying the sampling ereqr
is proposed.

In Fig. 3, let(eyq); and(euq)i/ be the errors corresponding to the CDF values;andz; + (es);, respectively.
From Eq. (9), we know thateyq); ~ N0, o(z;)] and(euq)i’ ~ N {0, 0[z; + (es);]}. If we let (eyq); and(euq)i/
have the same percentile value [assuniiey; is very small], then we have

o[ e (o) e e a0

In Eq. (10),(es); is the unknown quantity to be estimated. By using Eq. (10§ cen calculatées); for a given
(eug)i- That is, samples dfes); can be obtained by samplir{g.q);. Thus, the corrected value of is [z; + (es)i],
which includes the sampling err¢¢s);. Nowy = g(z) is calculated using the corrected realization.
In the context of this paper, the model form error statistits obtained through Eqg. (10), using samples of cor-
rected model predictiof. and observationggps (details in Section 4). The method developed in this seatifers
a generic approach to resampling from sparse data and exling extra uncertainty due to UQ error in the new
samples. A kernel density may be used to obtain a smootheitieah€DF before applying this method, if desired.
In Section 4, the proposed method is used in model form estimation to include the error caused by a limited
number of experimental observationgs and samples of the corrected model output

4. MODEL FORM ERROR ESTIMATION

As mentioned in Section 1, model form error is calculatedgi§tgs. (1) and (2), by comparing model predictions
against experimental observations of the same output iydot the “same” set of inputs. In this case, output mea-
surement error needs to be taken into account.

From Egs. (1) and (2), we have

Ypred + €num +E€model = Yobs + €om (11)
—_——
Ye
Rearranging the terms gives
€model = Yobs T €om — Yc (12)

CDF

Fx (x) Actual CDF

A
(ew)i _ Fy (x) Empirical CDF

u; (es)i \v/

4
/

x; + (€s)i T

FIG. 3: Sampling error quantification
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Equation (12) is evaluated by sampling each of the threesemthe right-hand side, and samplesgfqe are then
obtained. The output measurement errgy, is commonly assumed to be a normal random variable with zex@nm
and an assumed variance [20], based on the measuremergpaockequipment.

However, in most cases only the distribution &f, might be available, and only a few point-valued data are
available fory,ps Moreover, if the procedure of computiggrequires considerable computational effort, then only a
limited number of samples can be obtained. A resamplingaggtris needed to generate more sampleggfaindy.
from sparse data, but resampling could also cause anotiwer €Enerefore, the approach developed in Section 3 for
quantifying the sampling error is used. Then, Eq. (12) bexom

€model = [?/obs"’ (es)obs] + €om — [?/c + (€s)c] (13)

where(es)obs and (es)c are the errors due to the limited number of sampleg,gfandyc, respectively; these errors
are calculated using Eq. (10).

After the model form error statistics are calculated usimg E.3), for future prediction purposes, the overall
corrected prediction that includes both solution appration error and model form error may be computegas
€moder IN this expressiony. includes the contributions of various solution approximaerrors and input error, and
€model iNCludes the contributions of model form error, UQ error anitbut measurement error.

5. SENSITIVITY ANALYSIS

The previous sections developed a methodology to quaniifgreint errors in model prediction. In this section,
sensitivity analysis is performed to estimate the contiisuof each error source to the model prediction unceraint
Previous studies in stochastic sensitivity analysis hale @onsidered the effect of input random variables; thizgra
extends those methods to include sources of solution ajppadion error. The sensitivity analysis is done in terms of
the contribution to the uncertainty in the corrected modebjrtionyye [defined in Eq. (3)]. Because the UQ error
and model form error are computed only after the computatfap, this sensitivity analysis is only with respect to
solution approximation errors and does not include UQ asranodel form error.

Two local and two global sensitivity measures are studighligssection. A generic expressidi= f (X1,X3,...,X,)
is used in the discussion below, wheXe can be either model input, error, or model parameter wittettamnty, and
Y refers to the corrected model outpgtthat considers all the contributing error sources.

5.1 Local Sensitivity Analysis

Two local sensitivity analysis methods are considered.flfseone is variance-based, and the second one is entropy-
based.

5.1.1 Change in Variance

The change of variance in the model prediction due tattmhénput is defined as

(Ao®), = Var(Y) — Var(Y|X; = z;) (14)
Equation (14) provides a measure of the change in variangefahe ith input is ignored. Ignorind’; means fixing

it at its mean value (usually zero) for a stochastic erronaircorrecting for a deterministic error. The second term in
the right-hand side of Eq. (14) is the conditional variant® @iven X;, and is calculated oveX . ; (i.e., all X except

X;). The greater the value ((ﬂGQ)i is, the more the importanc¥; is. However, this measure is only in terms of
variance and ignores other uncertainty information, swamean, skewness, kurtosis, etc. Also, the result depends on
whereX; is fixed, and in occasional cases, it is possible that¥WpK; = z;) > Var(Y) [23]. But due to its simplicity,
change of varianc(eAaQ)i is still an applicable scalar measurement of the effect dweath contributing source of
uncertainty. Becasu¥; is fixed at a single value, the change of variance is a localigety index.
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5.1.2 Kullback-Leibler Divergence

The Kullback-Leibler divergence (K-L divergence) [24],aqded from information theory, measures the difference
between two probability density functiop&z) andg(x), in the sense of the relative information entropy (uncatjgi
of p(x) with respect tg;(z). Itis defined as

D (PIQ) = [ pla)iog B a 15)
—o0 q(x)
The K-L divergence is non-negative, and it is zero if and ohjy(x) andg(z) are exactly the same. It is sensitive to
both differences in mean value and in variance.

The K-L divergence has been use in sensitivity analysistf@&jeasure the contribution of an individual source to
the uncertainty in the model prediction. In this paper, thie ivergenceDg, x, [(Y|X; = Z;)||Y] is used to compare
the difference over the entire distributionsiéfand the conditional’| X; = z;) , in which X is fixed at a particular
value (zero for deterministic error and mean value for sastib error). A larger value of the KL divergence implies
thatY is more sensitive td(;.

5.2 Global Sensitivity Analysis

Instead of fixingX; at a single value, we can average the conditional variancg V&'| X;) over the entire distri-
bution of X;. This is denoted a&x, [Varx _, (Y| X;)], and it no longer depends on whekg is fixed, so that it is
“global” over the range of;. Starting with this and based on variance decompositioh {6 variance ol can be
decomposed into two terms, with respectgf [23],

Var(Y) = Ex, [Varx_.(Y|X;)] + Varx, [Ex_,(Y|X})] (16)

Here both terms are complementary to each other. Either Besrfiest term or a bigger second term indicates a more
importantX;. By normalizing the second term, we obtain the main effeasiiwity index,
g — Vaer. [EXML(Y|X1)]

! Var(Y)

(17)

which is always between 0 and 1. The main effect is also refeto as first-order effect. Note that a low main
effect index does not imply that the variable is not importéanvariable with a low main effect might make a bigger
contribution to the model output through interaction wither variables. Therefore, a more comprehensive semngitivi
measure that includes the main effect and the interacti@ctdf the total effect index. If we swali; and X; in
Eq. (16), another way of decomposing the varianc¥ o

Var(Y) = Ex_, [Vary, (Y|X ;)] + Varx_, [Ex, (Y|X ;)] (18)

By normalizing the first term, we obtain the total effect stivisy index,

S — Ex_, [VarXi (Y|X~l)]

Var(Y) (19)

The total effect index becomes valuable when the sum of iddal main effectindices is not close to 1, which implies
that strong interaction effects exist among variables.
5.3 Deterministic and Stochastic Errors in Sensitivity Analysis

It was mentioned in Section 2 that deterministic errorstisagdiscretization error) are corrected, whereas stachast
errors are accounted for through sampling, in order to cdetine corrected model predictign With such a strategy,
only local sensitivity measures can be calculated cormeding to deterministic errors, which obviously have only
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fixed values for fixed model inputs. The corrected model ptemt is calculated with and without correcting for the
deterministic error, and the corresponding change in magar K-L distance can be computed.

For stochastic errors, it is more appropriate to computedllsensitivity measures instead of at one particular value
(typically, the mean). However, this creates a difficultycmmparing the relative contributions of the deterministic
versus stochastic errors to the overall model predictiacettainty, when resource allocation decisions are needed
for activities such as model refinement and data colleclitverefore, an approximate approach is proposed below to
compute global sensitivity measures for even determaéstiors.

In global sensitivity analysis with stochastic variablesmples of the variables are generated based on their dis-
tributions. But deterministic variables do not have a distiion to sample from, such as discretization ergrAn
approximate approach is to obtain samplegptorresponding to randomly sampled stochastic inputs td-thé
model; these samples of are used to construct the distributionepf

Another interesting problem occurs in calculating gloteisivity measures with respect to the surrogate model
erroreg, , even though it is stochastic. This is because the distobutf e, is local at a particular prediction of the
surrogate model, which depends on the input. The overdtildigion of e, is not available over the entire range of
the input, thus hindering global sensivity analysis. Torowene this difficulty, an approximate approach is to obtain
samples ok, corresponding to sample inputs to the surrogate modeletbasples o€, are used to construct the
overall distribution ofegy,.

In summary, the need to compare the various sources of eittothve same sensitivity measure creates two issues.
Local sensitivity measures are not appropriate for std@hasors, and calculation of global sensitivity measuses
not straightforward for deterministic errors. The appmoation in this section offers a convenient way of including
discretization error and surrogate model error into glaeisitivity analysis, thus making the various error sosirce
comparable under the same sensitivity measure.

6. NUMERICAL EXAMPLES
6.1 Cantilever Beam

The tip deflectiond of a cantilever beam shown in Fig. 4 is of interest. The beamlé&agthL = 192 in., cross-
sectional moment of inertid = 300 in.> and Poissons ratio = 0.3. The Young’s modulug is assumed to be a
normal random variable with mean val@8000 Ksi and COV 0.06. The self-weight(x) is assumed to be a one-
dimensional Gaussian random field, with mean value 75 lbafid. COV 0.05, as well as an exponential covariance
function defined byC(Az) = 0% exp(—|Az|/b) , in which ¢? is the variance andlis the correlation length of the
random field. In this examplé,is assumed to be equal to the length of the beam. The contshivadP at the beam

tip is the input to the model, which is a normal random vagakith mean 1000 Ib and COW.16.

For the sake of illustration, assume that an eegoarises when measuring the inpgitwhich is also a normal ran-
dom variable with zero mean and a variance equalf@ of variance ofP [27]. Similarly, the output (i.e., deflection)
measurement error is also assumed to be a normal randorbleasiith zero mean and standard deviation of 0.0 lin.

A finite element model is constructed with four beam elemehéxjual length, and a first-order polynomial chaos
expansion with Hermite bases is constructed as the sueregatputational model,

Spred = PCE(P, E, w) (20)
/__ i %) _4 e

g P T

//—' x

FIG. 4: Cantilever beam
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Nine training points are selected by the collocation metoadn the FEA model for training the surrogate model [19].
Then, the surrogate model is used to generate samples of prediéctions by sampling the inputs. The distribution
of model prediction is estimated from the samples to have annvalue of —1.74 and standard deviation of 1:23
10~. This is the raw model prediction.

6.1.1 Numerical Errors and Sensitivity

In this example, the numerical error in the model prediciscassumed to come from three error sources: discretization
error in FEAep, surrogate model errars,, and input errokp. First, the Richardson extrapolation technique is used
to correct the discretization error in FEA. For each of theerfraining points, two more FEM runs are made with
eight elements and 16 elements, respectively (originalrermof elements is four) to calculatg. A new set of nine
training points is obtained by adding the discretizatioweto the original training points and a new surrogate model
PCE, is built with the corrected training data. Thety andeg, are also included and, finally, the corrected model
predictiond. is given by

¢ =PCE\(P + ep, E,w) + €sy (21)

The numerical error can be calculatedeagn = dc — Spreds Wheredpreq is the raw model prediction. By randomly
generating samples ef,n, the mean and standard deviationegf, are estimated to be —4.04 10~3 and 1.78x
1071, respectively.

Using the corrected model predictidpall four sensitivity analyses are performed on the threersriThe results
are shown in Table 1. The first two sensitivity indices arealpand the next two are global. From the sensitivity
ranking in Table 1, it is seen that the global measures itglitet the discretization error affects the model solution
the most, whereas the local measures give the input measntemor the highest rank.

6.1.2 Model Form Error and UQ Error Estimation

Model form error can be estimated using Eq. (13); this alsedado take the uncertainty quantification errors into
account. Assume nine experimental observations of bearcatiefhd,,s are available, and assume 20 samples;of
are taken from the error quantification procedure for redamp.. Further assume that the output measurement error
€om follows a normal distribution with zero mean and standardat®n 0.01. For comparison, samples of model
form error without considering the uncertainty quantificaterror are also generated by ignoring the sampling errors
in Eq. (13). The CDFs of model form error with and without cidlesing uncertainty quantification error are plotted
in Fig. 5a. One-thousand samples of model form error werermgged for each case. The PDFs of sampling error for
dobs and b are also plotted in Fig. 5b. Statistical results are summadrin Table 2. Because less data is available
for dops thand, the variance of sampling error by is significantly greater than ib. It is noted that including the
UQ error (due to limited sampling) resulted in an increast@variance of the estimated model form error because
more randomness was introduced. Finally, because the melaragance ot mogel With €q are estimated from 1000
samples, errors arise in their estimates; these erroreayesinall and are ignored.

6.2 Crack Growth in an Airplane Wing Spar

In this example, quantification and sensitivity analysiswbrs in crack growth prediction in part of an airplane wing
is of interest. In crack growth analysis, sensitivity arségyof errors faces a major difficulty because different damp

TABLE 1: Sensitivity analysis

Change of Variance KL Distance Main Effect Total Effect
Error Index Ranking | Index | Ranking| Index | Ranking| Index | Ranking
ep | 5.35x 1073 1 10.44 1 0.0296 2 0.104 3
en | 2.11x 10°° 2 5.48 2 0.1614 1 0.131 1
€su | 1.60x 1076 3 3.50 3 0.0115 3 0.126 2
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FIG. 5: Statistics of model form error and sampling errors

TABLE 2: Statistics of model form error and sampling errors

Variable Mean Variance

€model Without eq 3.44x 1073 5.19x 102
€model With €yq 2.74x 1073 5.76x 1072
€s for dops —7.21x 104 1.09x 102
€ for & —0.20x 104 5.52x 10°°

values of the same error are input into the analysis in eacle cJhis issue will be discussed in detail later. The wing
spar plays a key role in connecting the wing to the fuselagesaubjected to cyclic loading during flight. The final
crack sizen y that grows from an initial size, = 0.05 in. under a given load history is studied. Because of various
uncertainties and errors arising in the analysjg,is a random variable.

The analysis consists of two modules: structural streslkysisaand fatigue crack growth analysis, as shown in
Fig. 6. The errors and uncertainty considered in this exarap input error, discretization error in FEA, surrogate
model error, and uncertainty in the crack growth law paramet

The loadsB andP are inputs to the structural model. The output of structanallysis is the first-principals stress
in the critical region (hot spot). The analysis is carried oy finite element analysis. To quantify the discretization
errors in the finite element analysis using Richardsonspgtation, for each of the training points the finite element

(Z‘.1‘.ac-k ¢
Size
Y

Crack
Load Structral , o
- — . > Stress —»{ Growth
History Analysis _ e
’ - Analysis

* Input error * Discretization error ¢ Uncertainty in Paris’s
+ Surrogate model error Law parameter

FIG. 6: Component analyses and associated sources of error andaimiye
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analysis is repeated with finer meshes with two levels of egfient. The refinement ratio is 0.75, which means the
element size is multiplied by 0.75 in each refinement.

A surrogate model is constructed using a first-order polyinbamaos expansion with Hermite polynomial bases.
The surrogate model is trained using FEA results and is usegplace the FEA in further analysis. The associated
surrogate model error is stochastic.

Before proceeding with the crack growth analysis, the sti@nsity factor is calculated first from the structural
analysis result (in the context of linear elastic fractuechmanics). This is given by

AK = BAsyra (22)

wheres is the stress at crack tip,is the crack length, anfl depends on geometry and crack length. In this example,
(3 available from [28]. The Paris’ law is used here to illustrtite crack growth calculation

da

— =C(AK)" 23
The parameten is assumed to be deterministic at 3.2. Because of fittingehre paramete€' is assumed to be a
random variable that follows a lognormal distribution, lwit mean value of 1.8 10~ and COV of 0.24.

6.2.1 Correction of Errors

The following states the procedure of calculatingthat is corrected for all error. At the beginning, a randompgke

of C is generated, which stays constant throughout all cyciesath cycle, first the mean values®fand P are
obtained from a given variable amplitude load history. Randsamples otg andep are generated and added to
B and P, respectively. The corrected and P are then fed into the surrogate model, which is built withenifEA
results corrected for discretization error using the Ridban extrapolation. The surrogate model outputs thesstres
predictions, as well as the associated prediction error. Next Eq. (28%é& to calculate the stress intensity factor,
which is input to the crack growth law. To accelerate the cotaton, the increment of crack length is calculated

in blocks of every 10 cycles [i.edN is set to 10 in Eq. (23)]. Finally, the crack length is updaiatll the end of the
load history. The analysis is repeated to generate 10,000samples of: .

6.2.2 Results and Sensitivity Analysis

Thea obtained in Section 6.2.1 that is corrected for all errodeisoted ag.. in the following discussion. However,
the structure of the crack growth problem is not like thathaf previous example due to the cycle-by-cycle analysis.
A small example would explain this special case. &gt; = g(a;) + € be a crack growth model, in whiay and
a;4+1 are the crack sizes in thth and(i + 1)th cycles, ana is a random error. If the crack grows from sizgto as

in three cycles, then we have

as = g{glg(ao) + €M+ €@} +e® (24)

in which e, e ande(® are three samples of the erretbut are generated independently. Or we can®aig
function of four input variabless = gs[ao, eV, e(?, ¢®)]. The existing sensitivity methods are only able to estimate
the sensitivity ofas with respect to each of(!), ¢(®), ande®, individually. However, the sensitivity afs to the
overall errore is what we are actually interested in. An approximate apgraa overcome this hurdle is to assume
that all samples of the same error have the same value thoatigh cycles. This makes it possible to compute the
sensitivity with respect to a single error teenover all cycles.

The results in Table 3 show that all four sensitivity measune able to indicate that the final crack size is most
sensitive to the parametérin Paris law and is least sensitive to the discretizatioararr FEA. This implies that in
order to achieve a more accurate prediction of the final csaek a more precise parametéfi.e., narrower scatter)
is needed. In contrast, the discretization error in FEA igimsmaller.
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TABLE 3: Sensitivity analysis results

Change of variance KL distance Main effect Total effect
Error Index Ranking | Index | Ranking Index Ranking Index Ranking
eg | 0.17x 1073 4 6.85 3 4.69x 1072 4 8.36x 107! 4
ep | 0.32x 1073 3 6.29 4 4.18x 107! 2 9.13x 107! 2
C 2.95x 1073 1 37.54 1 9.69x 107! 1 9.88x 107! 1
€su | 2.82x 1073 2 36.63 2 3.80x 107! 3 9.09x 107! 3
en | 8.36x 107° 5 6.15 5 1.07x 1073 5 2.48x 107! 5

7. CONCLUSION

This paper studied some of the errors that arise in mechanimputational models. There are three major contri-
butions in this paper. The first is that the errors are cleselyarated, and a quantification method is developed for
each of the errors, including model form error, uncertagquigintification error, and three typical sources of numérica
(solution approximation) error. Some of these errors angloen and some are deterministic. Deterministic error is
corrected by adding it to the prediction, and random errordiided in the model output through sampling. By cor-
recting or accounting for all the errors the corrected madéput is obtained. The corrected model outputs together
with observed data are used to estimate model form errougifirgampling, where uncertainty quantification error
arises. Therefore, a methodology to quantify the UQ errdeigloped (this is the second contribution). The error in
the CDF from limited samples is first quantified; then the jggtion of this error due to further sampling from the
approximate CDF is also quantified.

The third major contribution of this paper is the extensibaansitivity analysis methods to rank the contribution
of each error. Past work in global sensitivity analysis haly @onsidered the influence of input random variables
on output uncertainty; this paper extends the methods fodecmodel errors. Methods for computing both local
and global sensitivity measures are developed. Approximatpproaches are developed for fatigue crack growth
analysis that requires repetition of error terms in eaclecyihe proposed error quantification and sensitivity asialy
framework helps guide resource allocation for model refimehand data collection, balancing computational effort
and prediction accuracy. The framework is general and caaxtended to include other sources of error and other
methods of quantifying individual errors.
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