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A framework is described for convergence and validation of nonintrusive uncertainty quantification (UQ) methods; the
relationship between deterministic verification and validation (V&V) and stochastic UQ is studied, and an example
is provided for a unit problem. Convergence procedures are developed for Monte Carlo (MC) without and with meta-
models, showing that in addition to the usual user-defined acceptable confidence intervals, convergence studies with
systematic refinement ratio are required. A UQ validation procedure is developed using the benchmark UQ results
and defining the comparison error and its uncertainty to evaluate validation. A stochastic influence factor is defined to
evaluate the effects of input variability on the performance expectation and four possibilities are identified in making
design decisions. The unit problem studies a two-dimensional airfoil with variable Re and normal distribution using
high-fidelity Reynolds-averaged Navier–Stokes (RANS) simulations. Deterministic V&V studies achieve monotonic
grid convergence and validation at the validation uncertainty interval of 2.2% D, averaged between lift and drag, with
an average error of 0.25% D. For MC with Latin hypercube sampling the converged results are obtained with 400
computational fluid dynamics (CFD) simulations and are used as validation benchmark in the absence of experimental
UQ. The stochastic influence factor is small such that the output expected value is not distinguishable from the de-
terministic solution. The output uncertainty is one order of magnitude smaller for lift than drag, implying that lift is
only weakly dependent on Re. Several metamodels are used with MC, reducing the number of CFD simulations to a
minimum of 4. The results are converged and validated at the average intervals of 0.1% for expected value (EV) and
10.7% for standard deviation (SD). The Gauss quadrature and the polynomial chaos (PC) method are validated using
8 and 7 CFD simulations, respectively, at the average intervals of 0.08% for EV and 7.5% for SD. The error values are
smallest for the metamodels, followed by the PC method and then the Gauss quadratures.

KEY WORDS: deterministic verification and validation, nonintrusive stochastic uncertainty quantifica-
tion, convergence criteria, UQ validation, RANS CFD simulation

1. INTRODUCTION

Uncertainty analysis is essential to guarantee and evaluate the fidelity of simulation-based design (SBD). Herein
the focus is physic-based SBD using high-fidelity computational fluid dynamics (CFD). Until recently, uncertainty
analysis focused on deterministic verification and validation (V&V) for deterministic numerical and modeling un-
certainties. Recent focus has been stochastic uncertainty quantification (UQ) as an essential first step for robust and
reliability-based design optimization. These methods focus on stochastic-based uncertainties, assessing the stochastic
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properties of simulation outputs including expected value (EV), standard deviation (SD), and cumulative distribution
function (CDF) or probability density function (PDF) with respect to a set of uncertain input variables with known dis-
tribution functions (aleatory). For this purpose, the uncertain input variables for CFD are categorized as geometrical,
operational, and numerical/modeling uncertainties [1]. Most studies are carried out for geometrical and operational
uncertainties, while some consider numerical/modeling uncertainties, e.g., [2, 3]. Some studies (e.g., [4]) have consid-
ered both deterministic V&V and stochastic UQ. For complete reviews of the applications of UQ methods (intrusive
and nonintrusive) in fluids refer to [5, 6].

The Mach number (Ma) variability is studied for NACA0012 airfoil at 3◦ angle of attack (AoA) [1]. The in-
put distribution is truncated Gaussian distribution (99% interval) with the input mean and standard deviations of
µMa = 0.3 (Reynolds number Re = 3M) andσMa = 5% µMa, respectively. The Reynolds-averaged Navier–Stokes
(RANS) solver FINE/Hexa with Spalart–Allmaras turbulence model is used on a 50K grid. A probabilistic collo-
cation method is used with five deterministic CFD solutions. The results show SD = 10% EV for both drag coef-
ficient (CD) and lift coefficient (CL). The pressure and skin friction distributions on the airfoil surface are plotted
along with 99% confidence level uncertainty bars. Transonic RAE 2822 airfoil at AoA = 2.79◦ with variable Ma,
µMa = 0.734,σMa = 0.68%µMa (Re = 6.5M), and uniform distribution is studied [7]. The in-house RANS solverJoe
with the Spalart–Allmaras turbulence model is used on a 112K grid. A stochastic collocation UQ method based on
quadrature and polynomial interpolation is used with a maximum of 10 deterministic CFD simulations. The percent
differences of EV versus deterministic solution at mean Ma are 0.5 for CD and 0.3 for CL. SD values for CD and CL
are 4.06 and 0.7% EV, respectively. NACA0012 airfoil with variable AoA,µAoA = 3◦, σAoA = 1.7%µAoA , and beta
distribution is studied at high Ma = 0.73 (Re = 6M) [8]. The RANS solverelsAis used for deterministic simulations.
The Monte Carlo (MC) method withN = 100 CFD solutions is used, and then improved by using a metamodel gen-
erating up toNM = 1M points. The polynomial chaos (PC) method is also used for 2, 3, 4, and 5 deterministic points.
EV and SD values for CL with their 90%, 95%, and 99% confidence intervals from the metamodel are shown versus
NM and compared against MC results withN = 100. The difference between MC withN = 100 and the metamodel
with NM = 1M is 0.08% for EV and 0.96% for SD. The SD value forNM = 1M is 1.04% EV for CL. PC results are
closer toNM = 1M results than MC withN = 100 for both EV and SD.

Multivariable studies are carried out in [1], and further in [9, 10] for the same problem. Truncated Gaussian dis-
tributions (99% interval) are assumed for all variables. The first multivariable study considers two geometrical input
uncertainties at 3◦ AoA: relative thickness and maximum camber with 0.425% and 0.4472% coefficients of variation,
respectively. The second study considers four joint UQ variables: Ma, AoA, relative thickness, and maximum camber
on a 80K grid. The same conditions as the first study are considered for geometrical uncertainties, withµMa = 0.3,
σMa = 10%µMa, µAoA = 5◦, andσAoA = 10%µAoA . The UQ method uses 35 deterministic solutions based on the
four-dimensional Halton sequence for probabilistic radial function approach. The EV for CL/CD is 1% lower than
the deterministic value. For the surface pressure distribution, EV values with one SD upper and lower uncertainty
bars are shown. The single-variable study in [7] is also extended to include a multivariable UQ for Ma (µMa = 0.734,
σMa = 0.68% µMa), AoA (µAoA = 2.79◦, σAoA = 3.58% µAoA), and thickness-to-chord ratio (µt/c = 0.1211,
σt/c = 4.12%µt/c) with uniform distributions. The mean and variations are stated to be selected “based on ex-
pert opinions of realistic variations in practical operating conditions” [7]. A maximum of 93 = 729 deterministic CFD
using 9 points for each variable is used. The PDFs are obtained and are nonuniform. The 95% uncertainty bars for
surface pressure coefficient are shown, with asymmetric upper and lower bounds. The relative importance of each
variable on EV and SD is also evaluated. Another study considered the same problem with normal distribution and
two variables, Ma and AoA, using the RANS solver TAU with thek–ω turbulence model [11]. Additionally, a second
strategy is considered where Ma and AoA variability are obtained based on two turbulent velocity vectors with normal
distributions. Both MC and sparse Gauss–Hermite grid methods are used. MC results are obtained for up toN = 1500
(almost 39 points for each variable) for the first strategy andN = 17,000 (almost 130 points for each variable) for the
second. SD values for CD and CL, respectively, are 14.6 and 2.0% EV for the first strategy and 15.9 and 1.4% EV for
the second strategy. The sparse grid method does not converge for up to 647 deterministic simulations for the second
strategy with error up to 190% against MC withN = 17,000 for SD of CL.

The AGARD 445.6 transonic wing is studied solving the inviscid steady Euler equations with the finite vol-
ume code CFL3D [12]. A C-H topology grid with 527K points is used. Two joint input variables are considered:
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Ma with uniform distribution between 0.8 and 1.1 (mean Ma = 0.95, coefficient of variation 9.1%) and AoA with
uniform distribution between –2.0◦ and 2.0◦ (mean AoA = 0.0, standard deviation = 1.155). MC-LHS (Latin hy-
percube sampling) results are obtained with 1000 deterministic CFD solutions and the EV and SD of CD and CL
are calculated with 95% confidence intervals using the Bootstrap method. PC results are then obtained for up to 5th
degree (42 deterministic CFD solutions) with a point-collocation method and Hammersley sampling using twice the
minimum number of points required and the least-squares method. The 5th degree PC results are within the 95%
confidence interval of MC-LHS results. The authors later extended their work to study uncertainty on the first aeroe-
lastic mode of the wing due to the same input variables and conditions [13]. A linear structural mode is considered
for the modal aeroelastic analysis built in to the CFD code, and the uncertainty is evaluated for the damping factor
used to reconstruct the transient aeroelastic response. PC results are obtained for up to 8th degree (90 determinis-
tic simulations) and are within 95% confidence intervals of MC-LHS results with 1000 deterministic simulations.
The same transonic aeroelastic wing with random free stream velocity is studied for unsteadiness extending the un-
steady adaptive stochastic finite elements approach to resolve the effects of randomness [14]. The inviscid Euler
equations were solved using an unstructured hexahedral mesh. The free stream velocity was assumed to follow a
beta distribution. The results showed that although the mean free stream velocity was a safety margin of 5% be-
low the deterministic flutter velocity, a 3.5% coefficient of variation still resulted in a nonzero flutter probability of
6.19%.

The convergence and validation of UQ results are not addressed quantitatively in the previous studies. In [8] the
confidence intervals of EV and SD versus the number of MC samples are plotted and it is shown that the confidence
intervals become negligible for very large samples. It is also shown that the results for MC with metamodels fall in
the confidence intervals of MC with CFD points/items, without defining the error values or discussing the validation.
For the MC method, quantitative convergence is defined in the literature as achieving an “acceptable” confidence
interval for EV with a user-defined confidence level [15]. The random errors/uncertainties are estimated for certain
metamodels/surrogate models using the training points [16]. For the PC method, seven different metrics are used to
evaluate the accuracy of PC approximations against the exact solutions for the designed examples with analytical
functions [17]. The accuracy of PC improved in some metrics as additional terms were retained, but did not exhibit
this behavior in all metrics.

The relationship between CFD deterministic V&V and stochastic UQ is rarely studied. An error quantification
procedure is developed in which both deterministic and stochastic errors are identified and evaluated, with sensitivity
analysis to rank the contribution of each [16]. Three sources of error are recognized as numerical, model form, and
uncertainty quantification errors, with the numerical error consisting of input, discretization, and surrogate model
prediction errors. The deterministic errors are corrected by adding its value to the prediction, and the random errors
are included in the model output through sampling. The corrected model outputs together with observed data are then
used to estimate model form error through MC sampling, where MC error is also considered. The sensitivity analysis
methods are provided for both local and global sensitivity measures.

The objective of the present research is to address issues of convergence and validation of UQ results and the
relationship between CFD deterministic V&V and stochastic UQ and present an example for a unit problem. A frame-
work is described that can be used for the convergence and validation of nonintrusive UQ methods. In addition to the
usual statistical criteria of acceptable user-defined confidence intervals, convergence studies with systematic refine-
ment ratio are included, similar to those in the deterministic verification [18]. Convergence procedures are provided
for MC methods with and without metamodels focusing on EV, SD, CDF, their uncertainties, and the significance
level of the chi-square test if the type of the output distribution is identifiable. For other UQ methods, the procedure
simply studies the convergence of EV and SD versus the number of deterministic simulations. The UQ validation uses
benchmark UQ results and defines the comparison error and its uncertainty to evaluate validation similar to the deter-
ministic studies [19]. The procedure can be applied both to validate the UQ results from different methods against a
benchmark result at the simulation or experimental level, and to validate the simulation-based UQ solutions against
experimental UQ data. The relationship between the deterministic V&V and the stochastic UQ is studied in terms of
a stochastic influence factor and its uncertainty. Four possibilities are identified in making design decisions. The unit
problem is high-fidelity RANS simulation of the NACA0012 airfoil at 3◦ AoA and variable Re with normal input
distribution.
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2. DETERMINISTIC V&V METHODS

Deterministic verification and validation of CFD simulations is conducted at the individual user, code, model, grid
type, etc. level for specified applications with available benchmark experimental validation data and uncertainties. It
is assumed that all input variables/models are deterministic. The error estimates in deterministic V&V are based on
fixed values; thus, the uncertainty estimates at the 95% level of confidence require similar reasoning as used for single
realizations and zero-order-replication level systematic uncertainty estimation in experimental fluid dynamics (EFD).
This is the smallest uncertainty interval that could be achieved with the CFD code for the specified application. For
multiple realizations andNth-order replication level uncertainty analysis in EFD, the systematic uncertainty is root
sum squared (RSS) with the random uncertainty and multiplied by the coverage factor to obtain the total uncertainty.
Note however that recent verification procedures have provided statistical evidence for the 95% level of confidence
[20], and validation procedures take into consideration the numerical and experimental uncertainties.

Herein, the overall V&V approach in [18] along with detailed procedures for verification and validation in [20, 19],
respectively, are followed. The methodology and resulting definitions are based on equations derived for deterministic
simulation numerical and modeling errors and uncertainties, which provide the overall mathematical framework.
Deterministic simulation modeling and numerical errors are assumed additive such that simulation uncertainties are
root sum squared. For solutions in the asymptotic range, the estimated numerical error and its estimated error are used
to obtain a corrected solution (numerical benchmark) and its uncertainty. Verification procedures identify the most
important numerical error sources (such as iterative, grid size, and time-step errors) and provide error and uncertainty
estimates. Validation methodology and procedures use benchmark experimental data and properly take into account
both deterministic numerical and experimental uncertainties in estimating deterministic modeling errors and validation
uncertainty, including the option of using corrected solutions. Simulation-based design requires verification of all
simulations, but hopefully validation only for the final or unusual designs.

Verification procedures estimate numerical uncertainties (USN ) based on iterative (UI ), grid (UG), and time-step
(UT ) uncertainties:

USN =
√

U2
I + U2

G + U2
T (1)

UI is evaluated using the procedures described in [21]. Iterative convergence requiresUI to be at least one order of
magnitude smaller thanUG andUT . Grid and time-step convergence studies are carried out for three solutions (S)
with systematic refinement ratio

r =
∆x2

∆x1
=

∆x3

∆x2
(2)

where 3, 2, and 1 represent the coarse, medium, and fine grids, respectively. A sufficiently large refinement ratio
should be chosen since for small values (i.e., very close to 1.0) solution changes are small and sensitivity may be
difficult to identify compared to iterative errors. Solution changesε and the convergence ratioRare defined by

ε21 = S2 − S1

ε32 = S3 − S2 (3)

R =
ε21

ε32

The convergence is evaluated as
0 < R < 1: monotonic convergence

−1 < R < 0: oscillatory convergence (4)

R > 1: monotonic divergence

R < −1: oscillatory divergence

When monotonic convergence is achieved, the Richardson extrapolation (RE) is used to estimate the order of accuracy
pRE and error estimateδRE:

pRE =
ln (1/R)

ln (r)
(5)
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δRE =
ε21

rPRE − 1
The factor of safety method [20] is used for estimations ofUG and UT . For the solutions to be close to the

asymptotic range,pRE needs to be close to the theoretical order of accuracy. However, the criteria for attainment of
the asymptotic range are lacking. A possible criterion is that monotonic convergence should be established based on
the convergence ratioR for S1 (towardSc, the corrected solution),P (toward 1),UG, andUT for multiple (at least
three) grid/time-step triplets with the same refinement rationr along withUI ¿ UG. In some cases it may be that
damped oscillatory convergence is deemed acceptable forS1, P, UG, and/orUT , although this would require many
grid triplets [22].

For oscillatory convergence, uncertainties are estimated simply based on oscillation maxima and minima, provided
that the mean value is not drifting [18]. For nonsmooth or nonmonotonic convergence, the least-squares [23] or
response-surface [24] methods may be used, which require solutions for more than three grids. However, there are
some issues in using these methods as discussed in [20].

A validation procedure defines the comparison error (E) and the validation uncertainty (UV ) using experimental
benchmark data (D) and its uncertainty (UD). If UV boundsE, the combination of all the errors inD andS is smaller
thanUV and validation is achieved at theUV interval, which is a more stringent requirement than|E| ≤ UE :

E = D − S

UV =
√

U2
SN + U2

D (6)

|E| ≤ UV

If UV ¿ |E|, the sign and magnitude ofE ≈ δSM can be used to make modeling improvements, whereδSM is
simulation modeling error.

3. STOCHASTIC UQ METHODS

3.1 Introduction

Stochastic UQ methods using CFD simulations are also conducted at the individual user, code, model, grid type, etc.
level for specified applications, but in this case for stochastic input variables with known distributions (aleatoric) and
typically without available benchmark EFD validation data and uncertainties. The focus is typically on output variable
distribution parameters, namely EV, SD, and possibly CDF, along in some cases with their confidence intervals.
Typical input variables are for geometrical and operational uncertainties, although some models may have stochastic
numerical/modeling input variables [1].

The set of independent input stochastic variables is denoted by the vectorξ, with probability density function
P(ξ). The stochastic properties of interest for the output functionJ(ξ) are [25]

EV (J) =
∫

J (ξ)P (ξ) dξ (7)

SD(J) =
√

EV
{

[J (ξ)− EV]2
}

=

√∫
[J (ξ)− EV]2 P (ξ) dξ (8)

CDF(y) = prob(J ≤ y) =
∫

δ [y − J(ξ)] P (ξ)dξ (9)

where

δ (z) =
{

1 if z > 0
0 otherwise

(10)

The PDF is obtained from CDF as

PDF(y) =
d

dy
CDF(y) (11)
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In general, output functions evaluated using CFD (S) have deterministic (systematic) modeling and numerical
errors (δS). Output functions evaluated using EFD (D) have both systematic and random error components (δD). For
CFD solutions in the asymptotic range a corrected solutionSC can be used along with its error estimateδSC

[21].
The corrected values are used in the procedures and applications to the mechanical stress UQ study in [16], but the
corrected solution error estimate is not included. Thus in general we have

J (ξ) = J∗ (ξ) + δJ∗ (ξ) (12)

whereJ∗ andδJ∗ represent the corrected or uncorrected CFD or the uncorrected EFD value and its error, respectively.
Substituting Eq. (12) in Eqs. (7) and (8) and assuming thatJ∗ andδJ∗ are uncorrelated:

EV (J) =
∫

J∗ (ξ)P (ξ) dξ +
∫

δJ∗ (ξ)P (ξ) dξ = EV (J∗) + EV (δJ∗) (13)

SD2 (J)=
∫

[J∗ (ξ)− EV (J∗)]2 P (ξ) dξ +
∫

[δJ∗ (ξ)− EV (δJ∗)]
2
P (ξ) dξ

= SD2 (J∗) + SD2 (δJ∗)
(14)

The UQ methods in Section 3 are described generally for any deterministic function ofξ, simply denoted as
J , and may be applied straightforwardly when theδJ∗ are systematic (epistemic) errors. For random (aleatoric)
errors/uncertainties, the distribution parameters ofδJ∗ may be used at eachξ to generate samples based on the distri-
bution function, and the methods of Section 3 may be then applied (see, e.g., [26]). Equations (13) and (14) indicate
that a separate UQ procedure could be pursued for the error terms than the procedure for the output function itself. In
that case, different number of items at differentξ values may be used forδJ∗ thanJ∗, depending on the UQ methods
chosen.

CFD deterministic numerical and modeling errors/uncertainties are systematic in nature and may or may not
depend on the UQ independent variableξ. For cases such as the present unit problem where they only weakly depend
on ξ, their stochastic effects may be neglected. For other cases, Section 2 methods may be used to estimateδJ∗(ξ)
values. EFD deterministic systematic and random errors also may or may not depend onξ. For the random errors,
however, the stochastic effects may not be neglected even if uncertainties are independent ofξ. Again the usual EFD
uncertainty assessment procedures could be used to estimateδJ∗(ξ).

For the unit problem with RANS simulations, various nonintrusive UQ methods are employed as described in
the following. Nonintrusive approaches are most attractive for high-fidelity computations since they require little
modifications to the existing simulation code, and allow the deterministic simulations to run in parallel.

3.2 Monte Carlo with Latin Hypercube Sampling

The MC-LHS methodology follows [25, 27]. In MC analysis, a sampling procedure is used to construct a set of
independent realizations ofξ from P (ξ). The collocation of the corresponding unique solutions is called the sample
solution set: [

ξi, J
(
ξi

)]
, i = 1, 2, . . . , N (15)

The convergence rate of MC method for a randomly selected sample set is small,1/
√

N . Latin hypercube sampling
improves convergence by sampling from equiprobable bins in the parameter range

ξn = µ + σΦ−1
( n

N

)
(16)

whereΦ−1 is the inverse of the CDF function called the quantile function, andµ and σ are mean and standard
deviation of the input variable, respectively.

The integrals in Eqs. (7)–(9) for an unbiased sampling, including random and LHS, can be approximated by

EV (J) =
1
N

N∑

i=1

J
(
ξi

)
(17)
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SD(J) =

√√√√ 1
N − 1

N∑

i=1

[J (ξi)− EV]2 (18)

CDF(y) =
1
N

N∑

i=1

δ
[
y − J(ξi)

]
(19)

The y values in the current study are determined usingk =
√

N number of bins in the sample range. After the
cumulative histogram is calculated, PDF is obtained by numerical differentiation using a simple three-point finite
difference formula.

The output distribution obtained by Eq. (19) needs to be identified since it is generally not the same as the input
distribution. The chi-square (χ2) test may be used to identify the type of output distribution from well-known distri-
butions such as normal, beta, gamma, etc. The test procedure is based on multinomial distribution, i.e., the number
of deterministic solutions in theith bin, denoted byxi, is the product of the probability of theith group from the
well-known distribution,pi, and the total number of simulations,N [28]. The quantityχ2 defined as

χ2 =
k∑

i=1

(xi −Npi)
2

Npi
(20)

is shown to have the chi-square distribution with (k−1) degrees of freedom. The hypothesized distribution is accepted
if theχ2 value from Eq. (20) is smaller than or equal to the critical value,χ2

k−1(αcritical). The most usual value to assign
αcritical is 0.05, that is, the test is conducted with 5% risk [28]. It is recommended thatNpi should be at least as large
as 5. For the current study,k =

√
N number of bins is considered initially, and then several groups with smaller

probabilities are combined to satisfy the requirement if needed. If the test is passed, the actual significance levelα is
determined from the chi-square distribution with (k − 1) degrees of freedom using theχ2 value from Eq. (20).

After the type of output distribution is identified, one can estimate the 95% confidence interval ofJ, herein called
output stochastic uncertaintyUJ

Lower UJ = CL × SD

UpperUJ = CU × SD
(21)

whereCL andCU are the lower and upper coverage factors and SD is the standard deviation of the output function
obtained from Eq. (18).UJ is the uncertainty propagated to the output from the input stochastic uncertaintyUξ,
which can be obtained similarly using Eq. (21) with input standard deviationσ. For normal distribution and large
N, for example, the symmetric 95% confidence intervals are obtained withCU = CL = 2.0. If the type of output
distribution cannot be identified, the coverage factors may be obtained using the Chebyshev inequality [29].

3.3 MC-LHS with Metamodels

A limited number of deterministic CFD solutions,M, are used to build the metamodels. Herein theM points are
chosen from the deterministic solutions used for MC-LHS and therefore follow the LHS sample set as per Eq. (16).
The sample solution set in Eq. (15) is then predicted by the metamodels. The MC-LHS procedure is used to obtain
the UQ results following Eqs. (16)–(19).

Three global metamodels are used for this single-variable unit problem which show good results; therefore no local
metamodels are employed. Two response surface functions, polynomials and power law, and a polynomial kernel-
based learning model, least-squares support vector machines (LS-SVM), are used. The polynomial metamodels are
used without least-squares fitting, while the other two metamodels are based on least-squares methods.

Polynomial metamodels with degreed are used with the following form:

JM (x) = a0 + a1x + a2x
2 + · · ·+ adx

d (22)

For each polynomial degree,M = d + 1 deterministic points are used to obtain the coefficients in Eq. (22).
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The power law response surface metamodel has the following form:

JM (x) = axk + o(xk) (23)

wherea andk are constant, ando(xk) is an asymptotically small function ofxk. A least-squares fitting is used to find
a andk usingM > 2 samples.

LS-SVM methodology follows [30], which finds the solution for support vector machines (SVMs) by solving a set
of linear equations. SVMs basically map design variablesx to a higher dimensional space by defining kernel function.
The LS-SVM model for function estimation using a training set{xk, yk} is

JM (x) =
M∑

k=1

αkK (x, xk) + b (24)

whereK(x, xk) is kernel function, herein a polynomial kernel ofK(x, xk) = (xT
k · x + 1)d with d a tuning parameter,

andαk andb solutions from the following system:
[

0 1T
v

1v Ω + γ−1I

]
·
[

b
α

]
=

[
0
y

]
(25)

wherey = [y1,. . . ,yM ], 1v = [1,. . . ,1],α = [α1,. . . ,αM ], Ωkl = K (xk, xl) : k, l = 1, . . . , M , andγ is an additional
tuning parameter.

Note that the selection of metamodels depends on the specific problem as a large number of choices are available.
For complex problems with a large number of uncertain variables, the construction of certain metamodels may be
more expensive than the computational cost of a direct MC-LHS approach.

3.4 Quadrature Formulas

For estimation of the integrals in Eqs. (7) and (8), numerical integration techniques can be used based on a number
of collocation points,I. Gauss quadrature, trapezoidal, and Simpson’s integration methods are used. For the current
untruncated problem, good results are not expected with trapezoidal and Simpson’s, but these methods may be useful
for finite functions such as truncated input distributions.

Gauss quadratures provide high-order accuracy for the integrations, with the only drawback requiring a node
distribution that depends onI. This means that the deterministic solutions obtained for the MC-LHS method cannot
be used for Gauss quadrature evaluations, and that a different set of CFD simulations is required for eachI. The Gauss
quadrature estimation in the case of normal distribution is

1√
2π

∞∫

−∞
J (ξ) exp

(−ξ2/2
)
dξ ≈

I∑

i=1

J
(
ξi

)
wi (26)

whereξi andwi are the quadrature nodes and the corresponding weights of the Gauss–Hermite polynomials, which
can be found in [27] for example.

3.5 Polynomial Chaos Method

The PC methodology used herein follows [31]. One-dimensional PC expansion of orderP is

J (ξ) ≈ JP (ξ) =
P∑

k=0

ukΨk(ξ) (27)

whereuk are the deterministic PC coefficients andΨk(ξ) are the PC basis functions corresponding to thekth mode.
For the basis functions, Hermite polynomials which are orthogonal in the random space are used. To find theuk
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values with a given PC orderP, P + 1 deterministic simulations are used to form a linear system of equations based
on Eq. (27). TheP + 1 points are chosen from the deterministic points used for MC-LHS and therefore follow the
LHS rule as per Eq. (16). After the polynomial coefficients are determined, the evaluations of statistical properties are
carried out onJP instead ofJ as

EV (J) = u0

SD(J) =

√√√√
P∑

k=1

u2
k

(28)

4. FRAMEWORK FOR CONVERGENCE AND VALIDATION OF UQ METHODS

4.1 Convergence Studies for MC Results

For EV and SD estimates from MC method, their respective uncertaintiesUEV andUSD are estimated at the 95% level
of confidence. The confidence intervals are evaluated based on the methodology and procedures summarized in [32]
assuming normal distribution. The procedure for EV assumes that the true value at theε confidence level is bounded
by EV –UEV and EV +UEV such that

Pr(EV− UEV ≤ EVtrue≤ EV + UEV) ≥ ε (29)

UEV is evaluated using the Student’st-distribution with (N − 1) degree of freedom:

UEV =
t(N−1);ε√

N
SD (30)

The confidence level in the current framework is considered to beε = 95%. For largeN, t-distribution converges to
normal distribution such thatUEV = (2/

√
N)SD.

For SD, the confidence interval is evaluated using the chi-square distribution such that for the 95% confidence
level we have

Pr

(√
(N − 1)

χ2
(N−1);0.025

SD≤ SDtrue≤
√

(N − 1)
χ2

(N−1);0.975

SD

)
≥ 0.95 (31)

whereχ2
(N−1);0.025 andχ2

(N−1);0.975 are the 2.5% and 97.5% percentiles, respectively, of theχ2 distribution with

(N – 1) degree of freedom. Note that since theχ2 distribution is nonsymmetric, the upper and lower limits of the
interval have different values:

USD,U =

(√
(N − 1)

χ2
(N−1);0.975

− 1

)
SD and USD,L =

(
1−

√
(N − 1)

χ2
(N−1);0.025

)
SD (32)

The upper bound is larger for smallN and converges to the lower bound value for largeN. For the current study, the
upper bound value is considered as the uncertainty, assuming largeN:

USD =

(√
(N − 1)

χ2
(N−1);0.975

− 1

)
SD (33)

Note that the procedures in Eqs. (30) and (33) are obtained assuming normal distribution. However, in general, the
following conditions are possible:

1. Normal distribution with large or smallN: the procedures may be applied regardless ofN.
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2. Non-normal distribution with largeN: the procedures can be still used according to the central limit theorem. If
the skewness of the distribution is small, at leastN = 20 should be used forUEV andN = 50 forUSD [32]. For
the purpose of the current framework the central limit theorem is expected to almost always hold true since the
χ2 test is not valid for small samples and the convergence criteria described later usually require a large number
of samples.

3. Non-normal distribution with smallN: for this unlikely case, the Chebyshev inequality can be used which
provides the confidence interval of expected value only [29].

The uncertainty in the empirical CDF is evaluated following [16]. The MC estimate of the empirical CDF from
Eq. (19) follows a binomial distribution for any specific valuey. The binomial distribution approaches the normal
distribution for largeN, e.g.,N > 20. Now the 95% confidence bounds are evaluated similar to Eq. (21), which for
normal distribution gives

UCDF (y) = 2

√
CDF(y) [1− CDF(y)]

N
(34)

Note that the CDF uncertainty is a function ofy, and it goes to zero at both ends of the CDF curve. The maximum
valuemax(UCDF) for CDF(y) = 0.5 is

max(UCDF) =
1√
N

(35)

In addition to the usual statistical criteria of acceptable user-defined confidence intervals, convergence studies are
required similar to deterministic studies described in Eq. (3). The convergence studies are deemed necessary since
UEV% EV1 could be very small before the solutions are converged as shown later for the current unit problem, and
USD% SD1 andmax(UCDF) are only functions ofN and not sensitive to the solution changes.

For a single triplet convergence study, the MC samples for large, medium, and smallN values are denoted asN1,
N2, andN3, respectively, with a systematic refinement ratio:

r =
N1

N2
=

N2

N3
(36)

Ther value should be sufficiently large since for small values very close to 1.0 solution changes are small and sensi-
tivity may be difficult to identify. According to the experience from deterministic grid studies,r = 2 or 21/2 is usually
reasonable. The corresponding EV, SD, andα values estimated from the MC analyses are used to determine the con-
vergence ratios. For EV, for example, we will have

ε21 = EV2 − EV1

ε32 = EV3 − EV2 (37)

R =
ε21

ε32

The convergence criteria are described based on the four possible convergence conditions in Eq. (4) for a single
triplet study as a minimum requirement, although multiple triplet study is desirable to establish asymptotic range.
Divergence (monotonic or oscillatory) is not acceptable, i.e., when the absolute value of the convergence ratioR
is larger than 1.0. Monotonic convergence (0< R < 1) is preferred as a precondition to approaching asymptotic
range, but ifε21 is very small (usually a couple of magnitudes smaller than the value itself), oscillatory convergence
(–1< R< 0) may have to be accepted. This provides the MC convergence criteria as

UEV, USD, and max(UCDF) < user-defined values (38a)

0 < R < 1 for EV, SD, andα versusN

OR ε21 ¿ V1 if − 1 < R < 0, whereV = EV, SD, or α (38b)
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For the user-defined values, the choices are associated with the degree of risk considered acceptable for each
problem. For the current unit problem for example,UEV% EV1 smaller than 1% andUSD% SD1 andmax (UCDF)×100
values smaller than 10% are specified.

Note that if some of the criteria in Eq. (38) are not applicable, for example when the output distribution does not
follow any standard distribution andα is not available, the convergence is still evaluated based on the other criteria.

4.2 Convergence for MC with Metamodels

Since metamodels are used to predict the output functions using a limited number of deterministic pointsM, the
goodness of predictions needs to be evaluated. A few metrics are used in the literature to study the fitting accuracy
[33]. Herein the unbiased average absolute error is used:

|E| = 1
l

l∑

i=1

∣∣∣∣∣
UM

(
ξi

)− U
(
ξi

)

U (ξi)

∣∣∣∣∣ (39)

wherel is the cross-validation set excluding the training points. If the total number of deterministic simulation points
areT, M of which used to train the metamodel, the number of points for the cross-validation set isl = T – M. The
training points are excluded in the cross validation to avoid a favorable bias. Acceptably small|E|, for example 0.01
(less than 1% prediction error) for the current unit problem, is required for all metamodels. Also, convergence of|E|
versusM needs to be studied following Eqs. (36) and (37). After a good fit is obtained, convergence of MC results
versusN is required following the criteria in Eq. (38). Finally, convergence studies of EV, SD, andα estimates versus
M are carried out following Eqs. (36) and (37).

In summary, the procedure for convergence studies of MC with metamodels requires a minimum of three training
sets based onM1, M2, andM3 number of points, each with a minimum of three predicted MC pointsN1, N2, andN3.
However, note that again multiple triplet studies are desirable to establish asymptotic range. The minimum conver-
gence criteria for MC with metamodels include

|E| < user-defined value(for M1) (40a)

0 < R < 1 for |E| versusM

OR ε21 ¿ |E| from M1, if − 1 < R < 0 (40b)

Equation (38) forM1, M2, andM3 versusN (40c)

0 < R < 1 for EV, SD, andα versusM for N1

OR ε21 ¿ V1 if − 1 < R < 0, whereV = EV, SD, orα with M1 (40d)

Note that similar to Eq. (38), if some criteria are not applicable the convergence is still evaluated based on the
remaining criteria. For the current unit problem, for example, each polynomial degree (d) is trained with a constant
number of points (M = d + 1) and the criteria for convergence versusM, i.e., Eqs. (40b) and (40d), are not applicable.
For some problems, evaluation of a fitting error may not be feasible due to the computational costs. The random
uncertainty may be estimated for some metamodels (see, e.g., [16]) and used to evaluate the goodness of predictions.

4.3 Validation of UQ Results

Validation is evaluated for EV and SD using benchmark resultsEVB and SDB . The comparison error values are
defined as

E =

{
EVB − EV for EV

SDB − SD for SD
(41)
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Similar to Eq. (6) for deterministic V&V studies, the uncertainties in the comparison error values in Eq. (41) are
obtained and used as validation uncertainties:

UV
EV =

√
(UB

EV)2 + (UEV)2

UV
SD =

√
(UB

SD)2 + (USD)2
(42)

Note that for smallN, the upper and lower bounds ofUSD are different, as per Eq. (32). For convergence studies, the
upper bound is considered since it is larger. For validation studies, however, the smaller bound may be used to impose
more strict criteria ifN is small.

Validation is achieved at the “noise level”UV imposed by both benchmark and solution uncertainties, if the
absolute value ofE is less thanUV :

|E| ≤ UV (43)

Ideally we would have the converged experimental UQ values as a benchmark to validate CFD UQ results in-
cluding MC. However, since experimental UQ is typically not available, the converged MC results may be used as a
benchmark to evaluate the other UQ methods. For MC with metamodels,UEV andUSD are estimated along withUB

EV
andUB

SD to obtain the validation uncertainties. For quadrature formulas and PC, confidence intervals are not defined
and validation is carried out only based on benchmark uncertainties. This results in smallerUV and therefore more
stringent validation criteria, as per Eq. (43).

5. RELATIONSHIP BETWEEN DETERMINISTIC V&V AND STOCHASTIC UQ

Deterministic V&V and stochastic UQ using CFD simulations are different since the former is based on fixed input
and output values with focus on simulationS and its comparison errorE and numericalUSN and validationUV

uncertainties, whereas the latter is based on stochastic input and output values with the usual focus on EV, SD, and
CDF. Additionally, for stochastic UQ Section 4 describes a framework for evaluating convergence and validation of
UQ methods.

The relationship between deterministic V&V and stochastic UQ can be assessed in terms of a stochastic influence
factorλ and its uncertaintyUλ:

λ = EV− S (44)

Uλ =
√

U2
EV + U2

S (45)

The simulation uncertaintyUS can be estimated byUSN or UV depending on whether deterministic modeling un-
certainties are considered or not. Note thatUEV and US are independently evaluated using different uncorrelated
procedures such that even if the same CFD code or experimental equipment is used for both of their evaluations there
is no cancellation of errors.

In making design decisions there are several possibilities of interest:

1. |λ| < Uλ

a. Uλ < user-defined value:Uλ acceptable and negligible stochastic influence on the performance expecta-
tion

b. Uλ > user-defined value:Uλ needs to be reduced in order to insure negligible stochastic influence on the
performance expectation

2. |λ| > Uλ

a. Uλ < user-defined value:Uλ acceptable and UQ needed, i.e., EV is a better estimate of performance than
S

b. Uλ > user-defined value: UQ needed butUλ needs to be reduced

International Journal for Uncertainty Quantification



Framework for Convergence and Validation of Stochastic Uncertainty Quantification and Relationship 383

Reductions inUλ must consider the relative importance ofUEV versusUS and additionally confidence issues asso-
ciated with levels of convergence and validation as discussed in Section 4. The assessment will most likely be done
using simulations; since UQ experiments are largely not available. As discussed in Section 3.1, if the error valuesδJ∗

are included thenλ, EV, andUEV would include additional terms resulting from Eqs. (12)–(14). In particular,UEV

would include a contribution from the stochastic numerical and modeling errors/uncertainties.

6. UNIT PROBLEM

The unit UQ problem studies the effects of stochastic Re variations at AoA = 3◦ on CD and CL output variables for
NACA0012. The mean Re value isµRe = 1.7 M, according to the tripped experimental data, with a standard deviation
of σRe = 10%µRe and nontruncated normal distribution.

Tripped [34] and untripped [35] wind tunnel experimental studies are available. The results show limited transition
effects at AoA = 3◦ while variations are large and nonlinear at high AoA (especially around critical AoA). Small
AoA = 3◦ is selected to avoid the critical conditions and reduce deterministic computational costs accordance with
previous UQ studies. The tripped data are applicable for the current study since no transition model is used in the CFD
code and the small Ma = 0.3 ensures negligible compressible effects.

7. CFD METHODS

Incompressible RANS computations are performed in the relative inertial coordinates with the CFDShip-Iowa code
[36] using a blendedk-ε/k-ω shear stress transport (SST) turbulence model for fully turbulent simulations according
to the tripped data. The grid used for the UQ simulations has 357K grid points withy+ = 0.35 at the mean Re.
Numerical methods incorporate finite difference discretization, with a second-order upwind scheme for convection
terms and second-order centered for viscous terms. Temporal terms are discretized using a second-order backward
Euler scheme. Incompressibility is enforced by strong pressure/velocity coupling, using a projection algorithm. Each
deterministic CFD run takes 20 min clock time and 10 CPU hours on the HPCMP IBM Power 6 machine.

To accomplish the large number of high-fidelity simulations required by UQ methods, a Python program is de-
veloped to automate and parallelize the CFD simulations. The program creates directory, name-list file, boundary
condition file, and job submission file and then submits the job for each simulation by reading Re values from an input
file. A separate Python program is developed for postprocessing the CFD results and is run after all deterministic
simulations are completed. This program modifies, compiles, and runs a Fortran code for each simulation to calculate
the converged force components.

8. RESULTS

8.1 Deterministic V&V

Deterministic V&V is performed at the mean Re = 1.7M. Grid convergence studies are conducted for five grids (three
grid triplets) ranging from 22.2K to 5.67M grid points with a grid refinement ratio ofr = 2.0. An O-type grid topology
is used and the grid extends to 15 times the chord length in each direction, as shown in Fig. 1. They+ values for
all grids are reported in Table 1. To achieve two-dimensional results, five grid points are specified in thez direction
extending one chord length. Zero-gradient boundary conditions are used for lateral boundaries and far-field boundary
conditions are specified for the far-field boundaries.

Iterative convergence studies are conducted with the flow traveling 50 chord lengths. TheUI values for all triplets
are at least one order of magnitude smaller thanε12. TheUI /UG ratios are small (between 0.007 and 0.054) such that
the iterative uncertainties are negligible compared with the grid uncertainties and are not considered in the validation
studies.

Grid verification studies show that for both CD and CL monotonic convergence is achieved for all grid triplets,
as per Table 2. The solutions are closer to the asymptotic range (P = 1) and grid uncertainties are smaller (between
0.3 and 1.6%S1) compared to the authors’ experience for most of the previous ship hydrodynamics problems. The
multiple grid-triplet results are studied consideringRS1, RP , andRUG. ForS1, monotonic convergence is achieved for
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FIG. 1: O-type grid design for NACA0012 shown for grid #3.

TABLE 1: Summary of grids used for the deterministic V&V study at AoA = 3◦

Grid
Dimensions

y+ Computation time (min)
on IBM P6 32 processors

CD CL E% D
x× y× z Size D = 0.0128 D = 0.303 CD CL

1 1610× 704× 5 5.67M 0.1 750 0.0128 0.304 0.20 0.30
2 805× 352× 5 1.42M 0.18 110 0.0129 0.305 0.61 0.63
3 405× 176× 5 356.4K 0.35 20 0.0130 0.308 1.63 1.59
4 201×88× 5 88.4K 0.7 4 0.0132 0.312 3.09 2.81
5 101× 44× 5 22.2K 1.4 2 0.0151 0.350 18.51 15.51

TABLE 2: Deterministic grid verification and validation results

Parameter Grids Refinement
ratio

UI /ε21 R P RP UG% S1 RUG UI /UG UD% D UV % D E% D

CD
3, 4, 5 2 0.096 0.08 1.80

0.94
1.47

6.58
0.007 2.28 2.71 1.63

2, 3, 4 2 0.164 0.17 1.27 1.50 0.013 2.28 2.73 0.61
1, 2, 3 2 0.203 0.34 0.77 0.38 0.022 2.28 2.36 0.20

CL
3, 4, 5 2 0.103 0.10 1.69

1.14
1.60

1.86
0.008 1.99 2.55 1.59

2, 3, 4 2 0.483 0.18 1.26 1.18 0.039 1.99 2.32 0.63
1, 2, 3 2 0.505 0.34 0.77 0.31 0.054 1.99 2.02 0.30

both CD and CL, i.e., the grid triplet (1, 2, 3). TheP values monotonically converge for CD, but are monotonically
divergent for CL. TheUG values monotonically diverge for both CD and CL. Therefore the asymptotic range is not
yet established and finer grids are required, as can also be seen in Fig. 2. The grid convergence studies are also carried
out for the minimum and the maximum Re in theN = 400 LHS range, using the grid triplet (3, 4, 5). The results (not
included) show thatR, P, andUG versus Re are almost constant (less than 1% variation). The reason is perhaps that
for this thin boundary layer and lift dominated problem with no transition effects, the flow physics does not change
significantly in the current range of Re. This verifies that neglectingδJ∗(ξ) in Eq. (12) is a reasonable assumption for
this unit problem.

The validation results show that validation is achieved for all grid triplets. The comparison error values averaged
between CD and CL are 1.61%D for (3, 4, 5), 0.62%D for (2, 3, 4), and 0.25%D for (1, 2, 3). The averageUV

intervals are 2.63%D for (3, 4, 5), 2.52%D for (2, 3, 4), and 2.19%D for (1, 2, 3). The averageUD/UG ratio is
1.4 for the grid triplet (3, 4, 5) and increases to 6.2 for (1, 2, 3), such that reducingUV requires a reduction inUD.
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FIG. 2: Grid convergence results at Re = 1.7M and AoA = 3◦.

Nonetheless, theUD values are relatively small (average 2.1%) compared to the ship hydrodynamics experiments in
the recent G2010 workshop [37]. The velocity and pressure contours obtained with grid #3 are shown in Fig. 3.

8.2 MC-LHS Results

The convergence is studied for MC-LHS results by systematically increasing the number of deterministic simulations
N with r = 2 until the convergence criteria in Eq. (38) are satisfied. The results are shown in Table 3 forN ≥ 50. The

FIG. 3: Pressure (left) and velocity (right) contours at Re = 1.7M and AoA = 3◦.

TABLE 3: Convergence studies for the MC-LHS results

Output
function

N
Values Uncertainties

Convergence Studies

EV SD α

EV SD%EV UEV%EV USD%SD max(UCDF)% R E%EVB R E%SDB α R E%αB

CD

50 0.013154 1.35 0.38 25.49 14.14 0.49 0.011 0.51 5.92 96.55 0.99

100 0.013155 1.40 0.28 16.53 10.0 –0.97 0.005 –0.67 2.89 96.87 0.67

200 0.013156 1.42 0.20 11.05 7.07 0.60 0.002 0.59 1.09 97.35 1.50 0.17

400 0.013156 1.44 0.14 7.53 5.0 0.59 0.000 0.60 0.00 97.52 0.35 0.00

CL

50 0.307914 0.17 0.05 25.49 14.14 0.47 –0.0014 0.51 5.83 94.73 0.90

100 0.307912 0.18 0.04 16.53 10.0 –1.02 –0.0007 –0.65 2.84 94.65 0.98

200 0.307911 0.18 0.03 11.05 7.07 0.56 –0.0002 0.59 1.06 95.23 –7.25 0.38

400 0.30791 0.18 0.02 7.53 5.0 0.61 0.0000 0.60 0.00 95.59 0.62 0.00

Volume 3, Number 5, 2013



386 Mousaviraad et al.

usual criteria of reasonably small uncertainties are studied first as per Eq. (38a). As mentioned earlier, theUSD% SD
and max(UCDF)% values are only functions ofN and do not depend on the solutions, withUSD% SD always being
greater than max(UCDF)%. TheUSD% SD values are 25.5% forN = 50 and 7.53% forN = 400 for both CD and CL.
The values for max(UCDF)% are 14% forN = 50 and 5% forN = 400. TheUEV% EV values are reasonably small for
all MC-LHS studies withN ≥ 50. The averageUEV% EV values are 0.2% forN = 50 and 0.08% forN = 400. The
convergence studies are conducted based on Eq. (38b) and theR values are reported in Table 3. TheR value for each
N corresponds to the triplet for whichN is the largest number of deterministic points. Note thatχ2 tests could not be
performed for smallN < 50. For EV and SD, monotonic convergence is achieved forN ≥ 200 deterministic CFD
simulations, whileχ2 test results monotonically converge forN = 400. Since monotonic convergence is achieved, the
ε12 values do not need to be examined.

The convergence trends for EV, SD, andα versusN are plotted in Fig. 4 for CD and CL. Although monotonic
convergence is achieved, the solutions are still changing versusN for SD and more significantly forα. Therefore the
asymptotic values are not reached yet and largerN is required. The average difference forN = 200 versus 400 is
0.001% for EV, 1.07% for SD, and 0.28% forα.

For output distributions, the histogram analysis results and theNpi values for each bin of theχ2 tests are shown
in Fig. 5. Both CD and CL distributions are found closest to normal, although not exactly normal since the average
confidence level isα = 96%. The normal input and output distributions for this single-variable problem imply that the
output functions are close to linear, as will be shown later with the metamodels. Studies of the other force components
are carried out (not included) and show thatCfx, Cpx, andCpyare close to the normal, whileCfy is close to the gamma
distribution.
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FIG. 4: UQ convergence trends for MC-LHS results.
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FIG. 5: Histogram andNpi values (normal distribution) for MC-LHSχ2 test withN = 400.

The relationship between deterministic V&V and MC-LHS stochastic UQ results is studied in Table 4. Since the
UQ simulations are performed with grid #3, the grid triplet (3, 4, 5) is selected for the relationship studies. Theλ

values are 0.09%S for CD and –0.01%S for CL, implying that the Re variability causes an increase in CD and a
decrease in CL. For both CD and CL, theλ values are smaller than bothUEV andUSN and therefore|λ| < Uλ, i.e.,
condition 1a or 1b. The averageUλ values are 1.5%S for US = USN and 2.6%S for US = UV , which are reasonably
small. This implies condition 1a, i.e., negligible stochastic influence on the performance expectation.USN/UEV ratios
are 10.5 for CD and 80 for CL, such that reduction inUSN is required to reduceUλ whenUS = USN. Similarly, UV

needs to be reduced for reduction inUλ whenUS = UV , i.e., bothUD andUSN need to be reduced. Comparing CD
and CL, theλ andUEV values are one order of magnitude smaller for CL, while theUSN, UV , andUλ values are of
the same order. The smallerUEV for CL is correlated to its smallerUJ , which implies that CL is less dependent on
Re variations than CD. This is consistent with findings of [7] for Ma variability. The opposite is expected for variable
AoA.

Figure 6 shows the deterministic V&V and stochastic UQ results. Deterministic values include theN = 400 CFD
solutions used for MC-LHS with grid #3 (S3), CFD solution at the mean Re with grid #1 (S1), and EFD (D) value at
the mean Re, with the deterministic uncertainty boundsUSN−3, USN−1, andUV . The figure shows that theUV bars
(for S3) bound theD points such that validation is achieved for both CD and CL. TheS1 solutions are closer to the
D values, with an average error of 0.25%D between CD and CL, thanS3 solutions with an average error of 1.61%
D. The uncertainties are also smaller forS1 with an averageUG1 = 0.3%S1 thanS3 with an averageUG3 = 1.5%S3.
The stochastic UQ results include EV, its uncertaintyUEV, and output uncertaintyUJ . TheUEV values are very small
compared to theUS values such thatUλ is almost the same asUSN or UV (average 0.05% difference) and are not
shown in Fig. 6. The EV andS3 values are very close with averageλ = 0.05%S. TheUλ bounds are obviously much
larger, with average 1.5%S for US = USN and 2.6%S for US = UV . The stochastic influence on the performance
expectation is therefore insignificant for this unit problem. It is expected as per the V&V studies at the minimum and
maximum Re that if grid #1 was used for the UQ studies, the EV values would still be close to the deterministic values
such that the same condition 1a is obtained. TheS3 values versus Re show that the output function is steeper for CD
than for CL. TheUJ bound is 2.9%Sfor CD, almost the same order asUV , while for CL it is only 0.4%Sand is 86%
smaller thanUV . Therefore for CL, the output uncertainties due to the input Re variations are less significant than the
deterministic numerical and modeling uncertainties.

TABLE 4: Relationship between deterministic V&V and stochastic UQ with converged MC-LHS

λ%S UEV%S USN%S UD%S UV %S Uλ =
(√

U2
EV + U2

SN

)
%S Uλ =

(√
U2

EV + U2
V

)
%S UJ%EV

CD 0.09 0.14 1.47 2.28 2.71 1.48 2.72 2.88
CL –0.01 0.02 1.60 1.99 2.55 1.60 2.55 0.37
Avg. 0.05 0.08 1.53 2.13 2.63 1.54 2.63 1.63
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FIG. 6: Deterministic V&V and stochastic UQ results: MC-LHS for CD and CL of NACA0012 at 3◦ AoA and
variable Re withµRe = 1.7M andσRe = 10% µRe.

8.3 MC-LHS with Metamodels Results

The results for polynomial metamodels are shown in Table 5. Convergence studies are conducted based on Eq. (40)
excluding the convergence versusM, i.e., Eqs. (40b) and (40d), since each polynomial degree (d) is trained with a
constant number of points (M = d + 1). The|E| values are smallest for 3rd to 6th degree polynomials with average
|E| = 0.001, while for 1st degree (linear) for example the average is|E| = 0.34. The MC-LHS analyses require
N = 400 prediction points with all polynomials to satisfy the convergence criteria, as expected. The resultingUEV and
USD values are comparable to the benchmark valuesUB

EV andUB
SD. The validation studies show that the 1st degree

polynomial is not validated for EV, while all other polynomials are validated at the average intervals ofUV
EV = 0.2%

EVB for CD, UV
EV = 0.025%EVB for CL, andUV

SD = 10.6%SDB for both CD and CL. The error values are larger for
SD than EV, with an averageEEV = 0.04% EVB andESD = 0.9% SDB . The UQ errors are almost correlated with the
fitting errors, i.e., smallest for 3rd to 6th degree polynomials.

Results for the power law and the LS-SVM metamodels are shown in Table 6. For the|E| values, monotonic
convergence versusM requires at leastM = 16 training points for the power law andM = 28 for the LS-SVM. The
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TABLE 5: Validation studies for polynomial metamodels

Output
function

Polynomial
degree

M |E| N
EV SD

UEV% EV UV
EV% EVB E% EVB USD% SD UV

SD% SDB E% EVB

CD

1 2 0.6418 400 0.1458 0.2050 –0.63878 7.53 10.65 –1.89
2 3 0.0305 400 0.1473 0.2060 –0.00291 7.53 10.65 –2.24
3 4 0.0024 400 0.1441 0.2037 –0.00217 7.53 10.65 –0.03
4 5 0.0004 400 0.1441 0.2037 0.000001 7.53 10.65 –0.02
5 6 0.001 400 0.1444 0.2039 0.00011 7.53 10.65 –0.22
6 7 0.0026 400 0.1438 0.2036 0.00158 7.53 10.65 0.14
7 8 0.0025 400 0.1436 0.2034 0.00026 7.53 10.65 0.32
8 9 0.0102 400 0.1422 0.2024 –0.00016 7.53 10.65 1.31

CL

1 2 0.0769 400 0.01859 0.02612 0.07653 7.53 10.65 –1.20
2 3 0.0028 400 0.01863 0.02615 –0.00019 7.53 10.65 –1.52
3 4 0.0004 400 0.01834 0.02595 –0.00031 7.53 10.65 0.05
4 5 0.0003 400 0.01832 0.02593 0.00005 7.53 10.65 0.16
5 6 0.0005 400 0.01832 0.02593 –0.00015 7.53 10.65 0.14
6 7 0.0009 400 0.01831 0.02592 0.00074 7.53 10.65 0.22
7 8 0.0038 400 0.01908 0.02647 –0.00003 7.53 10.65 –3.95
8 9 0.0007 400 0.01826 0.02589 –0.00058 7.53 10.65 0.50

TABLE 6: Convergence and validation studies for power law and LS-SVM metamodels

Metamodel Output
function

M
Fitting

N
EV SD

|E| R R UEV% EV UV
EV% EVB E% EVB R USD% SD UV

SD% SDB E% SDB

Power law

CD

3 0.027 400 0.14404 0.20370 –0.027 7.53 10.65 –0.03
7 0.012 400 0.14409 0.20374 –0.010 7.53 10.65 –0.05
16 0.01 0.19 400 0.25 0.14408 0.20373 –0.006 –0.58 7.53 10.65 –0.04
28 0.008 0.6 400 0.74 0.14405 0.20373 –0.003 0.92 7.53 10.65 –0.02

CL

3 0.007 400 0.01832 0.02593 0.0071 7.53 10.65 0.177
7 0.003 400 0.01834 0.02594 0.0025 7.53 10.65 0.080
16 0.003 0.14 400 0.20 0.01835 0.02595 0.0016 0.96 7.53 10.65 –0.013
28 0.002 0.79 400 0.97 0.01835 0.02595 0.0007 0.02 7.53 10.65 –0.015

LS-SVM

CD

3 0.03 400 0.1473 0.2060 –0.0028 7.53 10.65 –2.24
7 0.026 400 0.1467 0.2056 –0.0012 7.53 10.65 –1.85
16 0.02 1.63 400 0.50 0.1458 0.2049 –0.0004 1.70 7.53 10.65 –1.20
28 0.016 0.53 400 0.06 0.1452 0.2045 –0.0003 0.60 7.53 10.65 –0.81

CL

3 0.0028 400 0.01863 0.02615 –0.00021 7.53 10.65 –1.52
7 0.0024 400 0.01858 0.02611 –0.00018 7.53 10.65 –1.24
16 0.002 1.25 400 4.69 0.01851 0.02606 –0.00003 1.36 7.53 10.65 –0.85
28 0.0017 0.61 400 0.17 0.01846 0.02603 –0.00006 0.72 7.53 10.65 –0.58

average fitting errors with the sameM = 28 points are 0.005 for the power law and 0.009 for the LS-SVM. The
MC-LHS analyses requireN = 400 predictions to achieve convergence, similar to the polynomial metamodels. The
EV values monotonically converge withM = 16, except for CL with the LS-SVM metamodel, which requires at
leastM = 28. The SD values require at leastM = 28 to achieve monotonic convergence, except for CL with the
power law metamodel, which converges withM = 16. The converged results are validated at the average intervals
of UV

EV = 0.2%EVB for CD, UV
EV = 0.02%EVB for CL, andUV

SD = 10.6%SDB for both CD and CL. The average
error for EV is 0.01% EVB , while the average error for SD is 0.3% SDB . Comparing the two metamodels, the EV
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values are better predicted with the LS-SVM, while the SD results are closer to the benchmark with the power law
metamodel.

Overall the smallest fitting error with metamodels is obtained for the 4th degree polynomials with the following
equations:

ĈD = −0.15x + 0.009x2 − 0.0007x3 + 0.0002x4 + 0.42

ĈL = 0.16x− 0.0102x2 + 0.0005x3 + 0.0002x4 + 0.58 (46)

wherex = (Re− 1.7× 106)/(1.7× 106), CD = (ĈD + 10.1)/800, andCL = (ĈL + 87.4) × 0.0035. The higher
order terms in Eq. (46) are very small compared with the first orders, such that the functions are close to linear, as
can also be seen in Fig. 6. This explains the results of theχ2 tests showing that output distributions are close to the
normal.

8.4 Quadrature Results

The validation studies for the Gauss quadratures are shown in Table 7. Note that LHS points cannot be used and addi-
tional CFD simulations are carried out for eachI. Validation is achieved at the same intervals ofUV

EV = 0.14% EVB

for CD, UV
EV = 0.02% EVB for CL, andUV

SD = 7.53% SDB for both CD and CL, for all the quadrature rules. The
error values are of the same order for allI values, with an averageEEV = 0.001% EVB andESD = 1.1% SDB .

The Gauss quadrature integrations are also carried out using the LS-SVM metamodel withM = 28 to predict the
integral points (not included). The average error values are 7.06% larger for the SD of CD and 0.54% larger for the
SD of CL than without the metamodel; while for EV the differences are not significant.

The trapezoidal integrations are carried out (not included) with the systematic refinement ratior = 2 for I. The
results show that monotonic convergence is achieved withI = 200. The error values, however, are relatively large
especially for the SD of CL withE = 77% SDB . The errors remain large forI = 400, where validation is achieved
only for the SD of CD with 7.5% interval.

For the standard Simpson’s integration, LHS points cannot be used since equally spaced abscissas are required.
To avoid additional CFD simulations, the LS-SVM metamodel withM = 28 is used to predict the required points. The
convergence studies withr = 2 show the same trend as for the trapezoidal integrations, i.e., monotonic convergence
is achieved (withI = 33), but the error values are relatively large especially for SD of CL (withE = 90% SDB). The

TABLE 7: Validation studies for Gauss quadratures

Output function I
EV SD

E% EVB UV
EV% EVB E% SDB UV

SD% SDB

CD

2 –0.00128 0.14 –0.03 7.53
3 –0.00230 0.14 –1.31 7.53
4 –0.00224 0.14 –1.34 7.53
5 –0.00210 0.14 –1.32 7.53
6 –0.00233 0.14 –1.31 7.53
7 –0.00232 0.14 –1.34 7.53
8 –0.00224 0.14 –1.30 7.53

CL

2 0.00007 0.02 –0.32 7.53
3 0.00025 0.02 –1.39 7.53
4 0.00028 0.02 –1.29 7.53
5 0.00028 0.02 –1.21 7.53
6 0.00032 0.02 –1.23 7.53
7 0.00027 0.02 –1.28 7.53
8 0.00039 0.02 –1.30 7.53
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errors remain large forI values up to 513, where validation is achieved only for the SD of CD with 7.5% interval. This
is perhaps due to the finite integration range neglecting the tails of the infinite functions.

8.5 PC Results

The PC validation results forP = 2–10 are presented in Table 8. Validation is achieved for all PC orders except for EV
with P = 10 and SD withP = 9 and 10. Similar to the Gauss quadratures, the validation intervals are the same for all
PC orders, i.e.,UV

EV = 0.14% EVB for CD, UV
EV = 0.02% EVB for CL, andUV

SD = 7.53% SDB for both CD and CL.
The error values for both CD and CL are smallest forP = 6, with the averageEEV = 0.001% EVB andESD = 1.2%
SDB . This shows that higher order PC may not always achieve more accurate results, consistent with the polynomial
metamodels in Table 5.

8.6 Comparison of UQ Methods

Table 9 summarizes the results of the different UQ methods for the current unit problem. For the polynomial meta-
models, the same degree as PC (6th degree) is selected for comparison even though the 4th degree polynomial is
slightly better. For the Gauss quadratures, the results forI = 8 are selected, sinceI = 2 seems unreasonably small. For
the Simpson’s integrations, the results forI = 33 are selected after which the errors remain almost constant.

For the MC-LHS results with different metamodels, the sameN = 400 is required for MC convergence. The
convergence studies versusM are conducted for the power law and the LS-SVM metamodels, for both of which at
leastM = 28 training points are required.

Validation is achieved for all the methods except for the trapezoidal and Simpson’s integrations, which are there-
fore excluded in the comparison discussions hereafter. The error values are relatively smaller for the metamodels, but
none of them can be considered superior. For EV the average error values are 0.00019% for the LS-SVM and 0.001%
EVB for the other two metamodels. For SD the average error values are 0.02% for the power law, 0.18% for the

TABLE 8: Validation studies for polynomial chaos

Output function P No. det. CFD
EV SD

E% EVB UV
EV% EVB .5 E% SDB UV

SD% SDB

CD

2 3 –0.0053 0.14 –3.48 7.53
3 4 –0.0045 0.14 –1.36 7.53
4 5 –0.0024 0.14 –1.35 7.53
5 6 –0.0023 0.14 –1.51 7.53
6 7 –0.0011 0.14 –1.23 7.53
7 8 –0.0022 0.14 –1.35 7.53
8 9 –0.0025 0.14 –1.99 7.53
9 10 –0.0018 0.14 –302.02 7.53
10 11 0.3528 0.14 –2355.32 7.53

CL

2 3 0.00010 0.02 –2.75 7.53
3 4 –0.00003 0.02 –1.24 7.53
4 5 0.00033 0.02 –1.13 7.53
5 6 0.00014 0.02 –1.15 7.53
6 7 0.00084 0.02 –1.09 7.53
7 8 0.00025 0.02 -7.70 7.53
8 9 –0.00012 0.02 –1.72 7.53
9 10 0.00015 0.02 –292.51 7.53
10 11 0.25881 0.02 –13706.16 7.53
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TABLE 9: Validation studies for polynomial chaos

UQ method No. det.
CFD

EV SD
|E|% EVB |E|% SDB

CD CL Avg. CD CL Avg.
MC-LHS N = 400 400 0.0 0.0 0.0 0.0 0.0 0.0
MC-LHS with polynomial
metamodel

M = 7, N = 400 7 0.0016 0.0007 0.0012 0.14 0.22 0.18

MC-LHS with power law
metamodel

M = 28,N = 400 28 0.0028 0.0007 0.0018 0.02 0.02 0.02

MC-LHS with LS-SVM
metamodel

M = 28,N = 400 28 0.0003 0.0001 0.0002 0.81 0.58 0.70

Average for metamodels — — 0.0016 0.0005 0.0010 0.32 0.27 0.30
Polynomial chaos method P = 6 7 0.0011 0.0008 0.0010 1.23 1.09 1.16
Gauss quadratures I = 8 8 0.0022 0.0004 0.0013 1.3 1.3 1.30
Trapezoidal integration I = 400 400 0.4787 0.4768 0.4778 4.02 177.46 90.74
Simpson’s integration with
LS-SVM metamodel

I = 33,M = 28 28 0.5032 0.5015 0.5024 5.35 190.25 97.80

polynomial, and 0.7% SDB for the LS-SVM. The average error values between the metamodels are considered for
the following comparisons. For EV the average error values are 0.001% for the metamodels and the PC method and
0.0013% EVB for the Gauss quadratures. For SD the average error values are 0.3% for the metamodels, 1.2% for the
PC method, and 1.3% SDB for the Gauss quadratures.

Overall, the error values for the unit problem are smallest for the metamodels, followed by the PC method and
then the Gauss quadratures. The numbers of CFD simulations are 7 for the polynomial metamodel and the PC method,
8 for the Gauss quadratures, and 28 for the power law and the LS-SVM metamodels.

9. CONCLUSIONS AND FUTURE WORK

A framework is described for convergence and validation of nonintrusive UQ methods, the relationship between deter-
ministic V&V and stochastic UQ is studied, and an example is provided for a unit problem. Convergence procedures
are developed for MC without and with metamodels, showing that in addition to the usual user-defined acceptable
confidence intervals, convergence studies with systematic refinement ratio is required. A UQ validation procedure is
developed using benchmark UQ results and defining the comparison error and its uncertainty to evaluate validation
similar to deterministic studies. In the absence of experimental UQ, the converged simulation-based MC results may
be used as the validation benchmark.

Deterministic V&V is appropriate for estimating iterative and grid numerical errors/uncertainties and deterministic
modeling errors/uncertainties due, e.g., to turbulence models. Stochastic UQ methods are appropriate for estimating
output uncertainties due to geometrical and operational stochastic input variables. The variations of the deterministic
errors with respect to the input variables contribute to the stochastic UQ results and are considered if significant.
A stochastic influence factor is defined to evaluate the effects of the stochastic input variability on the performance
expectation, and four possibilities in making design decisions are identified.

The unit problem is high-fidelity RANS simulations of NACA0012 airfoil at AoA = 3◦ and variable Re with
normal distribution, mean Re = 1.7M, and 10% variation coefficient. Deterministic V&V is conducted for the mean
Re. Monotonic convergence is achieved for three grid triplets with the grids ranging from 22.2K to 5.67M grid points.
The numerical uncertainties for this unit problem are relatively small compared with the previous ship hydrodynamics
problems. However, the multiple grid-triplet studies show that the asymptotic range is not yet established and requires
finer grids. Validation is achieved at an average validation uncertainty interval of 2.2%D, averaged between lift and
drag coefficients, with an average error value of 0.25%D. The grid convergence studies are also conducted for the
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minimum and maximum Re and it is verified that the variations of the deterministic V&V results are negligible. For
the MC-LHS results it is shown that theUEV values could be reasonably small before the solutions are convergent.
The MC convergence criteria are satisfied withN = 400 deterministic CFD simulations. The distributions for CD and
CL output functions are closest to the normal with an average 96% significance level of the chi-square test, implying
weakly nonlinear outputs. The stochastic influence factors are smaller than theUλ values of 1.5%S for US = USN

and 2.6%S for US = UV . The condition 1a is determined, i.e., stochastic effects are negligible on the performance
expectation. TheUJ values are relatively small for this unit problem, but in general can be large. TheUJ value is
2.88%Sfor CD, while it is only 0.37%Sfor CL, implying that CL is only weakly dependent on Re. For the MC-LHS
with metamodels, at leastN = 400 for all metamodels andM = 28 for the power law and the LS-SVM metamodels are
required to satisfy the convergence criteria. Validation is achieved for the metamodels, the Gauss quadratures, and the
PC method against the benchmark solution, i.e., the converged MC results. Future work should consider finer grids to
establish the asymptotic range and obtain the numerical benchmark solution for the deterministic studies. Similarly,
the asymptotic solution for the MC-LHS method should be obtained as a numerical benchmark for UQ validations.

Note that some of the methods used for the unit problem may not be feasible for the industrial applications. The
sources of complexity could be large number of input variables, nonmonotonic and/or nonsmooth output functions,
significantδJ∗ variations versusξ, or large metamodel prediction errors which need to be considered in the UQ
evaluations. For some problems the computational resources may not allow a direct MC, or obtaining converged MC
results may not be possible. The construction of certain metamodels may be more expensive than a direct MC and
therefore unreasonable.

Currently work is underway to extend the framework and the relationship studies for an industrial problem with
both single and multivariable UQ input variables. A Delft catamaran free to sinkage and trim in calm water with speed,
geometry, and speed and geometry input variables is studied using high-fidelity unsteady Reynolds averaged Navier-
Stokes (URANS) and lower fidelity potential flow. The output functions are more challenging than the unit problem
such that more robust metamodels are included. The two-variable study requires efficient sampling methods with
minimum correlation between the variables. The preliminary results show that the current framework is applicable
and the convergence and validation criteria are mostly met. The stochastic influence factor is found significant, unlike
the unit problem, with combined 2a and 2b conditions. For some of the outputs theχ2 tests do not pass for the
well-known distributions and thereforeα is not available. For the geometric variations the outputs are noisy and
convergence is not always easy to achieve. The dependence of the V&V results to the input variables are found
significant such that the simulation numerical errors should be considered in the UQ studies. The next step will
include added-resistance/powering in regular and irregular waves for the Delft catamaran. Also it will be considered
to carry out UQ experiments for validations, if possible. Finally, the UQ results will be used as the precursory step to
robust and reliability-based design optimization applications.
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