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In recent years, Bayesian model updating techniques based on measured data have been applied to many engineering
and applied science problems. At the same time, parallel computational platforms are becoming increasingly more pow-
erful and are being used more frequently by the engineering and scientific communities. Bayesian techniques usually
require the evaluation of multi-dimensional integrals related to the posterior probability density function (PDF) of
uncertain model parameters. The fact that such integrals cannot be computed analytically motivates the research of
stochastic simulation methods for sampling posterior PDFs. One such algorithm is the adaptive multilevel stochastic
simulation algorithm (AMSSA). In this paper we discuss the parallelization of AMSSA, formulating the necessary
load balancing step as a binary integer programming problem. We present a variety of results showing the effectiveness
of load balancing on the overall performance of AMSSA in a parallel computational environment.
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1. INTRODUCTION

As computational power has been increasing for the last decades, and as parallel computing has become pervasive in
the scientific and engineering communities, so has the applicability of Bayesian assessment of complex mathemati-
cal models and the use of companion Markov chain Monte Carlo (MCMC) [1–5] algorithms for sampling posterior
probability density functions (PDFs). As the adoption of these algorithms becomes more popular, they tend natu-
rally to migrate from uniprocessor to parallel computational environments, where many chains can be run at the
same time, improving the statistical exploration of parameter spaces. However, such migration often has to be made
with care in order to avoid computational load unbalancing; that is, in order to use parallel computational platforms
efficiently.

Mathematical models serve two main purposes: representing a phenomenon and predicting the behavior of a sys-
tem. The representation of a phenomenon usually involves (a) the comparison of model outputs and data measured at
experimental scenarios from the phenomenon being modeled, as well as (b) the calibration of model parameters so
that the agreement between model outputs and measured data is improved in some sense. Such calibrations involve the
solution of so-called inverse problems [5–11]. The prediction of the behavior of a system, on the other hand, involves
the solution of forward problems [12–18]: given (c) a model, eventually with calibrated parameters, and (d) a predic-
tion scenario, what does the model tell us about the behavior of the modeled system and about the values of certain
quantities of interest (QoIs)? Both inverse and forward problems can be treated deterministically or stochastically. In
this paper we deal with stochastic treatments only.
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During model construction, errors due to imperfect modeling and uncertainties due to incomplete information
about the system and its environment always exist. Probability logic together with a Bayesian model updating ap-
proach provides a robust and rigorous framework for dealing with uncertainties. Probability logic [19, 20] is a multi-
valued logic that extends Boolean propositional logic to the case of incomplete information [21]. It is consistent
with the Bayesian point of view that probability represents a degree of belief in a proposition. Kolmogorov’s axioms
[22, 23], which are neutral with respect to the interpretation of probability, can be viewed as a special case where
statements refer to uncertain membership of an object in a set [21]. A stochastic system based Bayesian framework
for model updating was presented in [24, 25]. A key concept is a stochastic system model class (“model class” for
short), which consists of a chosen set of probabilistic input-output models for a system and a chosen prior PDF. The
prior PDF quantifies the initial probability of each predictive model in the set based on expert knowledge or past
knowledge obtained from data. The probabilistic models represent a state of knowledge about the system, conditional
on available information [1, 21, 24–27]. A model class can be viewed as a hypothesis that uses stochastic models and
includes all assumptions and mathematical statements involved in the system modeling.

Let Mj be one model class. Bayes’ theorem allows the update of the probability of each predictive model inMj

by combining measured dataD with the prior PDF into the posterior PDF

πposterior(θ|D, Mj) =
f(D|θ,Mj) · πprior(θ|Mj)

π(D|Mj)
=

f(D|θ,Mj) · πprior(θ|Mj)∫
f(D|θ,Mj) · πprior(θ|Mj) dθ

,

where the denominator expresses the probability of getting the dataD based onMj and is called the evidence for
Mj provided byD; πprior(θ|Mj) is the prior PDF of the predictive modelθ within Mj ; and the likelihood function
f(D|θ,Mj) expresses the probability of gettingD given the predictive modelθ within Mj . Stochastic models inside
a model classMj , therefore, can be compared. From now on we will omit the subscriptj on the vectorθ of parameters
for simplicity.

Different model choices that lead to different posterior PDFs also lead to different model classes. A multiple-
stochastic system based Bayesian framework for model updating has been proposed in [1]. One can construct a set

M = {Mj , j = 1, . . . , m}

of candidate model classesand compare them with Bayes’ theorem as well. Given the dataD and the prior plausibility
pprior(Mj |M) of Mj within M, the posterior plausibility of such a model class is (e.g. [28])

pposterior(Mj |D,M) =
π(D|Mj) · pprior(Mj |M)∑m

j=1 π(D|Mj) · pprior(Mj |M)
.

The evidence ofMj thus influences its posterior plausibility. Also, the log evidence can be expressed as [28–30]

ln[π(D|Mj)] = E[ln(f(D|θ,Mj)]− E

[
ln

πposterior(θ|D, Mj)
πprior(θ|Mj)

]
, (1)

where the expectation is with respect to the posteriorπposterior(θ|D,Mj) [1, 21, 26–30]. The posterior mean of the
log likelihood is subtracted by the Kullback-Leibler divergence [31], which is always non-negative and measures the
information gained aboutMj fromD. Equation (1) expresses a trade-off between the data fitness and the “complexity”
of Mj and gives a quantitative information-theoretic version of the principle of model parsimony (Ockham’s razor)
[28–30]: simpler models that reasonably fit the data should be preferred over more complex models that only lead to
slightly improved data fitness [32].

Bayesian model updating also allows us to make robust predictions [1, 21, 26, 27, 33], as follows. Given a can-
didate model classMj , dataD (e.g., past measurements on a data assimilation process) a vectorq of QoIs, and a
conditional PDFπ(q|θ, D, Mj) of q, the predictive PDF ofq is [1, 30]

πpredicted(q|D, Mj) =
∫

π(q|θ, D,Mj) · πposterior(θ|D, Mj) dθ.
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Given the setM of candidate model classes, the probabilistic information forq is [1, 28, 34, 35]

π(q|D,M) =
m∑

j=1

π(q|D,Mj) · pposterior(Mj |D,M),

an equation referred to as posterior model averaging in the Bayesian literature.
If a modeler (researcher, engineer, decision maker) has only one model class available (in the definition adopted

above), has experimental data, and needs to make predictions, then her/his activities can be summarized as in Fig. 1:
first she/he calibrates the model (that is, solves an inverse problem), and then makes predictions with it (that is, solves
a forward problem).

On the other hand, if more than one model class is available, then it might be helpful to be able to compare
different model classes, rank them according to some criteria, and use possibly a combination of their predictions.
Such procedures are summarized in Fig. 2. It should be noted that the scientific community has been researching the
parallelization of algorithms for both inverse and forward problems in order to handle high dimensional parameter
spaces [6–11, 36–39].

FIG. 1: The calibration-prediction procedure: calibration (solution of an inverse problem) on the left, followed by a
prediction (solution of a prediction problem) on the right.

FIG. 2: When many candidate model classes are available, the calibration-prediction procedure of Fig. 1 gets aug-
mented with a step involving the ranking and selection of model classes.
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Although the formula (1) for the evaluation ofπposterior(·) at a particular parameter vectorθ is straightforward,
the calibration-prediction procedure has an intrinsic difficulty, even if the model has “only” tens or hundreds of pa-
rameters: How can one use the posterior PDF as an input in a forward problem? One possible solution is to use
sampling algorithms. If one is able to sample the posterior distribution correctly, then the samples can be used in
a simple Monte Carlo approach; for instance, in order to provide valuable prediction information about the studied
phenomenon. However, the challenge here is to “correctly” sample. The posterior PDF might have multiple modes
[regions of high probability content (HPC)], and “naive” sampling algorithms may explore some modes fully while
completely neglecting other modes. We will come back to this issue in Section 2.

The rest of the paper is organized as follows. After giving motivations in this Introduction, we give an overview
of the adaptive multilevel stochastic simulation algorithm (AMSSA, [1, 2]) in Section 2, followed by a detailed
analysis of potential load balancing issues in such an algorithm, the resulting proposed parallel AMSSA, and proposed
load balancing approaches in Section 3. Section 4 then shows some problems that we used to test load balancing
approaches, with corresponding results. We finish the paper with conclusions in Section 5.

2. THE ADAPTIVE MULTILEVEL STOCHASTIC SIMULATION ALGORITHM (AMSSA)

Section 1 sets the motivation for two important computational tasks:
{

generate samples of the posterior PDFπposterior(θ|D, Mj) in order to
forward propagate uncertainty and compute QoI random variables,

(2)

and

compute model evidenceπ(D|Mj) =
∫

f(D|θ,Mj) · πprior(θ|Mj) dθ. (3)

Regarding computational task (2), it is important to take into account potential multiple modes in the posterior,
as highlighted in Section 1. One simple idea is to sample increasingly difficult intermediate distributions, accumu-
lating “knowledge” from one intermediate distribution to the next, until the target posterior distribution is sampled.
Assuming one is able to sample the prior, possible intermediate distributions are given by

π
(`)
int (θ|D) = f(D|θ,Mj)τ` · πprior(θ|Mj), i = 0, 1, . . . , L, (4)

for a givenL > 0 and a given sequence0 = τ0 < τ1 < . . . < τL = 1 of exponents. Whenτ` = 0, the distribution
is the prior, and whenτ` = 1, the distribution is the posterior. As̀increases from̀ = 0 until ` = L, the distribution
transitions from the initial prior to the final posterior. This algorithm is referred to as a multilevel algorithm where
each step̀ can be thought of as a level.

Regarding computational task (3), a naive approach would be to use Monte Carlo directly, but then the variance
of the integral estimator would tend to be too high. But again, the intermediate distributions in Eq. (4) can be of help.
First, one clearly has:

∫
f(θ|D, Mj) · πprior(θ|Mj) dθ =

∫
f · πprior dθ

=
∫

f (1−τL−1) f (τL−1−τL−2) . . . f (τ2−τ1) fτ1 · πprior dθ.

Let us assume that the prior PDF is already normalized; i.e., it integrates to 1. Ifτ1 is small enough, then Monte Carlo
can be efficiently applied to the calculation of

c1 ≡
∫

fτ1 · πprior dθ,

that is, ∫
f(θ|D, Mj) · πprior(θ|Mj) dθ = c1

∫
f (1−τL−1) f (τL−1−τL−2) . . . f (τ2−τ1) g1 dθ,
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where

g1(θ) ≡ f(θ|D, Mj)τ1 · πprior(θ|Mj)
c1

is a normalized PDF. Next, ifτ2 − τ1 is small enough, then Monte Carlo can be efficiently applied to the calculation
of

c2 ≡
∫

fτ2−τ1 g1 dθ,

that is, ∫
f(θ|D,Mj) · πprior(θ|Mj) dθ = c2c1

∫
f (1−τL−1) f (τL−1−τL−2) . . . f (τ3−τ2) g2 dθ,

where

g2(θ) ≡ f(θ|D, Mj)τ2 · πprior(θ|Mj)
c2c1

is a normalized PDF. By repeating the process for all levels, one has

π(D|Mj) =
∫

f(θ|D, Mj) · πprior(θ|Mj) dθ = cL cL−1 . . . c2 c1.

For reasons of numerical stability, one rather computes the estimators

c̃i = ln ci, i = 1, 2, . . . , L,

that is, one has
ln[π(D|Mj)] = c̃L + ˜cL−1 + . . . + c̃2 + c̃1.

Indeed, the values ofci can be quite small, and the final evidence can easily get to a value smaller than the smallest pos-
itive number representable by the computer. Regarding the statistical accuracy of the final estimator forln[π(D|Mj)],
it is clear that it will be affected by the accuracy of each individual estimatorc̃i. An appropriate rate of increase of the
exponentτ` between levels is a key ingredient on the controlling of such accuracies. This topic is more extensively
discussed in [2].

Now let be given, for̀ = 0, 1, . . . , L, (a) the total amountn(`)
total > 0 of samples to be generated at the`th level

[this notation is consistent with the notationntotal used in Eq. (12) below], and (b) the thresholds0 < β
(`)
min < β

(`)
max < 1

on the effective sample sizen(`)
eff [defined in Eq. (7)] of thè th level. The adaptive multilevel algorithm can then be

written as: 



01. Set` = 0, τ` = 0;
02. Sample prior distributionn(0)

total times;
03. While τ` < 1 do{
04. Begin next level: set̀ ← ` + 1;
05. Computeτ`;
06. Select, from previous level, initial positions for Markov chains;
07. Compute sizes of chains(so that sum of sizes= n

(`)
total);

08. Generate chains;
09. Computec`;
10. }

(5)

One of the first versions of the adaptive multilevel algorithm was proposed in [40], where the adaptivity came from
the fact that the samples in the previous level are used to construct a global proposal PDF for the generation of Markov
chain samples in the current level. An improved version of the algorithm was later proposed in [41] with increased
adaptivity coming from the fact that the exponentsτ` do not need to be pre-determined; consequently, neither the total
numberL of levels. The evidence can be calculated simultaneously. Reference [1] improves the previous versions by
modifying steps 05–08. Reference [2] further improves steps 05–07.
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In order to briefly explain such steps, let us define fork = 1, 2, . . . , n
(`)
total:

θ(`)[k] = kth sample at thèth level, ` = 0, 1, . . . , L,

w(`)[k] = f (τ`−τ`−1)(D|θ(`)[k], Mj), ` = 1, . . . , L,

w̃(`)[k] =
w(`)[k]

∑n
(`)
total

s=1 w(`)[s]

, ` = 1, . . . , L, (6)

n
(`)
eff =

1
∑n

(`)
total

s=1

(
w̃(`)[s]

)2
, ` = 1, . . . , L. (7)

Step 05 in Algorithm (5) is accomplished by computingτl (e.g., through a bisection method) so that

β
(`)
min <

n
(`)
eff

n
(`)
total

< β(`)
max.

Let us now define the discrete distribution

P (`)(k) = w̃(`)[k], k = 1, 2, . . . , n
(`)
total. (8)

Steps 06 and 07 in Algorithm (5) are accomplished by sampling (8)n
(`)
total times. The selected indicesk determine the

samplesθ(`)[k] to be used as initial positions, and the number of times an indexk is selected determines the size of
the chain beginning atθ(`)[k] [the sizes of these chains are denoted byai in Eq. (10) below,i = 1, . . . , Nt]. In [2]
we explain all these steps in more detail. Since the focus of this current paper is the load balancing of parallel runs
of AMSSA, in [2] we also talk in more detail about the important issue of MCMC convergence. Proofs of MCMC
convergence assume an infinite amount of samples. In practical MCMC runs, however, one can usually obtain only
necessary conditions of convergence, specially in the case of complex nonlinear models with many unknown parame-
ters, when there are practically no clues about the posterior joint PDF and about sufficient conditions of convergence.
In the case of AMSSA, it should be noted that the chain of samples obtained per processor at each level is formed
by a collection of smaller chains, each beginning at a different initial position. An appropriate rate of increase of the
exponentτ` between levels will give a good combination of initial positions and chain sizes, so that the collection of
all samples (of all processors) will represent well the intermediate posterior PDF at the end of each level.

3. THE PARALLEL ADAPTIVE MULTILEVEL STOCHASTIC SIMULATION ALGORITHM (PAMSSA)

Sampling algorithms following Eq. (4) can greatly benefit from parallel computing. At each level`, many computing
nodes can be used to sample the parameter space collectively. Beginning with` = 0, the computing nodes (a) sample
π

(`)
int (θ|D,Mj); (b) select some of the generated samples (“knowledge”) to serve as initial positions of Markov chains

for the next distributionπ(`+1)
int (θ|D,Mj); and (c) generate the Markov chains forπ

(`+1)
int (θ|D,Mj). The process

(a)–(b)–(c) continues until the final posterior distribution is sampled, as schematized in Fig. 3. The selection process
(b), as̀ increases (see Fig. 8), tends to value samples that are located in the regions of high probability content, which
gradually “appear” asτ` increases. So, as̀increases, if the “good” samples selected from the`th level to the(`+1)th
level are not redistributed among computing nodes before the Markov chains for the(` + 1)th level are generated, the
“lucky” computing nodes (that is, the ones that had, already at the initial levels, samples in the final posterior regions
of high probability content) will tend to accumulate increasingly more samples in the next levels. Therefore, as the
exponentτ` increases, care needs to be taken in order to maintain balanced computational load among all computing
nodes. This can be achieved by adding one extra step to Algorithm (5), as follows:

International Journal for Uncertainty Quantification



Parallel Adaptive Multilevel Sampling 221

FIG. 3: Usage ofNp parallel chains to try to speed up Algorithms (5) and (9).





01. Set` = 0, τ` = 0;
02. Sample prior distribution;
03. While τ` < 1 do{
04. Begin next level: set̀ ← ` + 1;
05. Computeτ`;
06. Select, from previous level, initial positions for Markov chains;
07. Compute sizes of chains;
08. Redistribute chain initial positions among processors;
09. Generate chains;
10. Computec`;
11. }

(9)

Step 08 in Algorithm (9) is the main subject of this paper. It can be more formally formulated as follows. Assume
there are (a) an executable program; (b)Nt > 1 unpartitionable computational tasks; and (c)Np > 1 processors to
execute the tasks, withNt > Np. The ith task consists of running the executable program a total ofai > 1 times,
i = 1, . . . , Nt. That is,

ai = number of runs of theith computational task, i = 1, . . . , Nt. (10)
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In the case of the current paper, for instance, the executable program would be a posterior PDF calculation; a com-
putational task would be the generation of a chain; andai would be the size of the chain associated to theith initial
position selected in step 06 of Algorithm (9).

Before we proceed, we note that wherever the word “processor” appears in the paper, it should be understood as
an eventual “group of processors,” that is, a “processing group.” This might occur, for instance, when the model is
complicated enough to the point of requiring parallel computing to its evaluation at a chain candidate position. We
assume, from now on, that (d) all processors have equal computational capabilities; (e) all calls to the executable
program have equal computational demands; and (f) the redistribution of initial positions among processors is com-
putationally negligible compared to one program run. Let us denote

nj = number of runs (to be) handled by thejth processor, j = 1, . . . , Np, (11)

ntotal =
Nt∑

i=1

ai =
Np∑

j=1

nj = total number of runs, (12)

and
n =

ntotal

Np
= mean number of runs per processor. (13)

Running step 08 of Algorithm (9) is then equivalent of solving the following problem:
{

distribute theNt tasks among theNp processors so that each processor gets its total
numbernj of program runs,j = 1, . . . , Np, the closest possible to the meann.

(14)

If step 08 of Algorithm (9) is not considered, one can easily get the situation schematized in Fig. 4, whereb
increases as the levels progress. Another way to see the importance of step 08 is through its effect on the scalability
of AMSSA as many chains simultaneously explore the parameter space, as schematized in Fig. 5. If the load is not
balanced, it might happen in an extreme case that only one processor ends up concentrating all chain positions after
some levels, in which case all the otherNp − 1 processors will be idle; that is, a run withNp processors will end up
taking almost the same time as the run with one processor only (assuming, for fair comparison, that the total number
of chain positions per level is kept the same between runs with different number of processors).

It should be noted that the complexity of problem (14) comes from the fact that theNt tasks have potentially very
different computational costsa1, a2, . . . , aNt [due to potentially different values̃w(`)[k], see Eq. (6)]. If all tasks were
equally computationally expensive, the problem would simply consist of keepingNt a multiple ofNp.

FIG. 4: Schematic evolution of the balancing ratiob, defined in Eq. (16), as the levels of parallel AMSSA Algorithm
(9) progress.
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FIG. 5: Schematic overall time scalability of parallel AMSSA Algorithm (9), which depends on whether or not load
balancing is used. Assuming that the total number of samples per level is kept the same among runs with different
number of processors,t1 represents the time required for the whole algorithm to run in one processor, whiletNp

represents the time required for the whole algorithm to run inNp processors.

We now describe two possible ways to address problem (14). Section 3.1 briefly describes a binary integer pro-
gramming (BIP) formulation, while Section 3.2 describes a heuristic approach.

3.1 A Binary Integer Programming Formulation

Problem (14) can be shown to be equivalent to the following BIP problem (see Appendix A for a detailed derivation):





min
r ∈ {0,1}NtNp×1

n1 = gT
1 · r,

subject to

{
G · r 6 0(Np−1)×1,
M · r = 1Nt×1,

(15)

whereG andM are matrices formed with quantities0, 1 andai. In Eq. (15), (a) the solution vector “r” represents
the assignment of theNp processors to theNt tasks (a value “1” means that a processor is assigned to a task); (b) the
inequality constraints guarantee that allnj are handled simultaneously (that is, not only the amountn1 appearing in
the objective function); while (c) the equality constraints guarantee that eachith task is assigned to only one processor.
It should be noted that this problem is solved at every level. The numberNt of chains and their sizes might vary per
level (in the tests of this paper we kept the sum of allNt chain sizesa1, a2, . . . , aNt to be constant per level). At each
level, problem (15) involves the numberNt of chains, the chain sizesai, and the numberNp of processors. Although
the computational complexity of Eq. (15) does not depend on the number of unknown parameters, this BIP problem
might be very difficult to solve, given its dimensionNt×Np and itsNt +Np− 1 constraints. Possible algorithms are
the branch and bound method, cutting plane method, and branch and cut method [42]. In the future we intend to use
libraries such as GNU GLPK [43] (which uses the branch and cut method) and Zoltan [44] to solve Eq. (15).

3.2 A Heuristic Approach

We now present a heuristic algorithm that we have derived. It was very easy to implement [in contrast to formulation
(15)], and it gave satisfactory results in all our test problems of Section 4. Let us denote by
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b =
max

16j6Np

nj

min
16j6Np

nj
(16)

the (balancing) ratio between the maximum total computational work and minimum total computational work among
all processors. Problem (14) can also be formulated as

Distribute theNt tasks among theNp processors so thatb gets the closest possible to1. (17)

The step 08 of Algorithm (9) begins with an original assignment of computational tasks (i.e., chain initial positions
and corresponding chain sizes) to each processor. Indeed, the objective of step 08 is to reassign such computational
tasks among the processors in order to improve their computational balance. Let us denote byN

(j)
t the number of

computational tasks assigned to thejth processor, and leta(j)
k , k = 1, 2, . . . , N

(j)
t , denote the number of program

runs (i.e., chain sizes) of each of these computational tasks. Let us denote by

S = {a1, a2, . . . , aNt
}

the set of allNt computational tasks that are (re)assigned, and by

S̃ = {a(1)
1 , a

(1)
2 , . . . , a

(1)

N
(1)
t

, . . . , a
(Np)
1 , a

(Np)
2 , . . . , a

(Np)

N
(Np)
t

}

the set of all computational tasks assigned per processor, for all processors. It should be clear that there is a bijective
correspondence betweenS and S̃. Also, the total numbernj of program runs assigned for thejth processor [see
Eq. (11)] is

nj =
N

(j)
t∑

k=1

a
(j)
k , j = 1, . . . , Np.

We propose the following simple heuristic algorithm:





01. Find jmin = arg min
16j6Np

nj ;

02. Find jmax = arg max
16j6Np

nj ;

03. Setb =
njmax

njmin

;

04. Set iteration= 0;
05. While (b 6= 1) and(iteration< ntotal) do{
06. Findkmin = arg min

16k6N
(jmax)
t

a
(jmax)
k ;

07. Reassigna(jmax)
kmin

from thejmax-th to thejmin-th processor;
08. Find j̃min = arg min

16j6Np

nj ;

09. Find j̃max = arg max
16j6Np

nj ;

10. Computẽb =
nj̃max

nj̃min

;

11. If b̃ > b then exit ‘While’ loop;
12. Prepare for next iteration: setjmin = j̃min, jmax = j̃max, b = b̃;
13. Set iteration← iteration+ 1;
14. }

(18)

The idea behind Algorithm (18) is very simple: gradually reassign the smallest computational task from the pro-
cessor with the biggestnj (total computational work) to the processor with smallest total computational work, until
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ratiob gets to value1, orb increases, or too many iterations happen. The intuition behind setting the maximum number
of iterations tontotal is to give a reasonable average chance for allNt computational tasks to be used in the reassign-
ment step 07 of Algorithm (18). Indeed,Nt 6 ntotal, and such an upper limit on the amount of iterations has performed
quite well in the examples of this paper (see Section 4), in the sense that the heuristic Algorithm (18) has guaranteed
balancing ratiob 6 2.

4. TEST PROBLEMS AND RESULTS

In this paper we study the load balancing issue in the context of three different problems, described below in Subsec-
tions 4.1–4.3. We report numerical experiments with the PAMSSA Algorithm (9) balanced with heuristic algorithm
(18). The algorithms were coded on a C++/MPI environment using the QUESO library [39]. We performed experi-
ments with three different amountsNp of processors: one, eight, and64. In all experiments we have used a total of
8,192 MCMC samples per level. When eight (or 64) processors were used, each processor generated approximately
1,024 (or 128) samples per level, although the total number of samples per level was always 8,192, as in the case of
experiments with one processor only. We say “approximately” because the ideal balancing amount (1,024 or 128) of
samples per processor is guaranteed only at the beginning of level 0. For all subsequent levels, the amount of samples
per processor will get close to the ideal value as long as the balancing ratiob of Eq. (16) gets close to unity. It should
be noted also that all chains in all processors are run without a burn-in phase.

4.1 A 1D Problem

Let us defineD = [−250.0, 250.0], and the three distributionsπprior : D → R+, f1 : R→ R+ andf2 : R→ R+ by

πprior(θ) =
1
|D| =

1
500

, ∀ θ ∈ D,

f1(θ) =
1

(2π)(1/2)
√
|V1|

e−(1/2)(θ−µ1)
T V−1

1 (θ−µ1), ∀ θ ∈ R, (19)

and

f2(θ) =
1

(2π)(1/2)
√
|V2|

e−(1/2)(θ−µ2)
T V−1

2 (θ−µ2), ∀ θ ∈ R, (20)

where
µ1 = 10, V1 = 12,

and
µ2 = 100, V2 = 52.

In this example we are interested in sampling the posterior PDF given by

πposterior(θ) ∝
[
1
2
f1(θ) +

1
2
f2(θ)

]
· πprior(θ) = f(θ) · πprior(θ).

Figure 6 shows the likelihood functionf(θ). Figure 7 presents the results for one processor only. This 1D problem is
very simple (low dimension), requiring just four levels to achieve exponentτ = 1, as shown in Fig. 7(a). Figure 7(b)
is shown just to highlight that runs with one processor have no balancing problem, obviously.

Figure 8 shows the intermediary likelihood functions for the four exponents of Fig. 7(a). The “sharp” corner that
appears in Fig. 8 for the curve forτ = 0.00586 is a result of the use of the two Gaussian distributions (19) and (20).
Indeed, such a small value ofτ exposes two “Gaussian” shapes: one aroundθ = 10 and the other aroundθ = 100.
Also, although the PDF for the first exponentτ = 0.00586 is not unimodal, the proximity of the two modes makes it
feasible for standard MCMC algorithms to appropriately sample the distribution, in contrast to the difficulty of these
same standard MCMC algorithms to handle the bimodal distribution of Fig. 6 directly.
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FIG. 6: Likelihood function of our 1D test problem.

(a) (b)

FIG. 7: Behavior of Algorithm (5) on the 1D problem withNp = 1 processor:τlevel is the exponent at each level,
while b is the balancing ratio defined in Eq. (16).

Figure 9 presents the results obtained with eight processors. Figure 9(a) shows the evolution of exponents, per
level, for two cases: Algorithm (9) without balancing, and Algorithm (9) with heuristic balancing (18). The cases are
similar to each other and to Fig. 9(a) as well. In Fig. 9(b) we see some unbalancing happening when the reassignment
step [step 08 in Algorithm (9)] is not applied. However, this unbalancing is still minor, given the combination of a
simple problem (just 1D) and a small number of processors.

Figure 10 presents the results that we got with 64 processors. Figure 10(a) is similar to the cases with one and
eight processors. Figure 10(b), however, now shows a more significant increase of the balancing ratiob [see Eq. (16)],
although the small number of levels contributes to such a ratio not increas much.

4.2 Sum of 10D Gaussian Distributions

Let us defineN = 10, D = [0.5, 3.5]N = [0.5, 3.5] × . . . × [0.5, 3.5], and the three distributionsπprior : D → R+,
f1 : RN → R+ andf2 : RN → R+ by
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FIG. 8: Intermediary likelihood functionsf(θ|D, M)τ` , obtained during the solution of the 1D test problem, where
τ` is the exponent computed at the`-th level of Algorithm (9),` > 1. The four exponent values are the same ones
appearing in Fig. 7(a). The continuous curve (exponentτ = 1) is the same curve as in Fig. 6.

(a) (b)

FIG. 9: Behavior of Algorithm (9), without and with heuristic balancing Eq. (18), on the 1D problem withNp = 8
processors:τlevel is the exponent at each level, whileb is the balancing ratio defined in Eq. (16).

πprior(θ) =
1
|D| =

1
310

, ∀ θ ∈ D,

f1(θ) =
1

(2π)N/2
√
|V1|

e−(1/2)(θ−µ1)
T V−1

1 (θ−µ1), ∀ θ ∈ RN ,

and

f2(θ) =
1

(2π)N/2
√
|V2|

e−(1/2)(θ−µ2)
T V−1

2 (θ−µ2), ∀ θ ∈ RN ,

where
µ1 = (1, . . . , 1), V1,ij = (0.1)2 · exp[(i− j)2/16],

and
µ2 = (3, . . . , 3), V2,ij = (0.1)2 · exp[(i− j)2/16].
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(a) (b)

FIG. 10: Behavior of Algorithm (9), without and with heuristic balancing Eq. (18), on the 1D problem withNp = 64
processors:τlevel is the exponent at each level, whileb is the balancing ratio defined in Eq. (16).

In this example we are interested in the posterior PDF given by

πposterior(θ) ∝
[
1
2
f1(θ) +

1
2
f2(θ)

]
· πprior(θ).

Figures 11 and 12 present the results obtained with eight and 64 processors, respectively. Figures 11(a) and 12(a)
are similar to each other, but they present many more levels than in the 1D problem case. Also, the first 15 levels
ended up resulting in very small exponents, which motivated us to present them in the logarithmic scale.

Regarding the behavior of the balancing ratiob, we observed that at least one processor easily got chains of size
0 (zero) already at the initial levels if load balancing was not pursued, resulting inb = +∞. We, therefore, decided
to present in Figs. 11(b) and 12(b), the tendency ofb to increase at every level during the run of balanced Algorithm
(9). That is, we present the value ofb before and after step 08 of Algorithm (9). The strong tendency to unbalancing
is clear in both Figs. 11(b) and 12(b), due to the problem complexity (10 dimensions, with two isolated modes). The

(a) (b)

FIG. 11: Behavior of the Algorithm (9), with heuristic balancing Eq. (18), on the 10D problem withNp = 8 proces-
sors:τlevel is the exponent at each level, whileb is the balancing ratio defined in Eq. (16).
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(a) (b)

FIG. 12: Behavior of the Algorithm (9), with heuristic balancing Eq. (18), on the 10D problem withNp = 64
processors:τlevel is the exponent at each level, while b is the balancing ratio defined in Eq. (16). The value ”5” in (b)
represents+∞, meaning that at least one processor was assigned zero chain positions before reassignment step 08 in
Algorithm (9).

tendency is stronger for the case of more processors, since the bigger the number of processors, the less samples
each processor has at every level when one fixes the total number of samples per level (fixed to 8,192 in our tests, (as
reported in the beginning of Section 4). Also, the heuristic algorithm performs very well in the case of eight processors
[Fig. 11(a)], always bringingb to values close to the ideal value of1. The case of 64 processors [Fig. 11(b)] is more
challenging, where the heuristic algorithm guarantees1.5 6 b 6 2, and even so, at every step at least one processor
got zero samples to handle before reassignment step 08, causingb = +∞ [represented by the value “5” in Fig. 11(b)].
Although not equal to the ideal value of1, theseb values between1.5 and2 are still much better than the case where
(potentially many) processors get completely idle, with no samples to handle.

4.3 A Hysteretic Model Class

In this example we consider the nonlinear seismic response of a four-story building. We model such a response with
a shear building model with some linear viscous damping and hysteretic bilinear interstory restoring forces. More
specifically, lett > 0 denote time, letag(t) be a given total acceleration at the base (Fig. 13), and for theith floor
[degree of freedom (dof)],1 6 i 6 No ≡ 4, let us denote:

mi = mass,

qi(t) = horizontal displacement,

Fi(t) = hysteretic restoring force, illustrated in Fig. 14.

We also define the mass matrix

M =




m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4


 ,

the stiffness matrix

K =




k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 0
0 −k3 k3 + k4 −k4

0 0 −k4 k4


 ,
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FIG. 13: Horizontal base acceleration (input data) used in our hysteretic test problem.

FIG. 14: Illustration of the hysteretic restoring force [see Eq. (21)] used in our hysteretic test problem. The termsri,
ki, andui denote model parameters.

and the Rayleigh damping matrix
C = ρM + γK,

for given positive scalar parametersρ andγ. We model the responseq(t) ≡ [q1(t), q2(t), q3(t), q4(t)] as satisfying
the equation of motion

Mq̈(t) + Cq̇(t) + F(t) = −M ·




1
...
1




4×1

· ag(t), (21)

whereF(t) ≡ [F1(t), F2(t), F3(t), F4(t)]. In this model, the hysteretic restoring forceF (t) depends on the whole
time history[q(t), q̇(t)] of responses from the initial instant until timet.
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The (noisy) measured datay = (y1, y2, y3, y4) available for model calibration consists of10 s of accelerometer
data at each floor (Fig. 15), with a sample interval∆t of 0.01 s. It was obtained by adding white noise to the output
simulation of the hysteretic model with the following input values:

m1 = m2 = m3 = m4 = 2× 104 kg,

k1 = 2.2× 107 Nm−1, k2 = 2.0× 107 Nm−1, k3 = 1.7× 107 Nm−1, k4 = 1.45× 107 Nm−1,

r1 = r2 = r3 = r4 = 0.1,

u1 = u2 = 8× 10−3 m, u3 = u4 = 7× 10−3 m,

ρ = 7.959× 10−1,

and
γ = 2.5× 10−3.

These input values were chosen deliberately so that the excitationag did not cause some of the upper floors to enter
the nonlinear regime; that is, so that our test inverse problem did not become globally identifiable. In order to diminish
the computational cost of this test problem, while still being able to show the benefit of load balancing, we used just
250 time steps; i.e., the data were available at instantstn = (n− 1) × 0.04, 1 6 n 6 NT ≡ 251. Also, we assumed
an additive noise in the measurements; i.e.,

yi = qi + εi, 1 6 i 6 No.

We consider a total of 15 unknown parametersθ = (θ1, . . . , θ15). We model the variablesεi as independently
and identically distributed Gaussian variables with mean zero and some unknown prediction-error varianceσ2. The

FIG. 15: Horizontal acceleration of each of the four floors (measured data aimed for calibration) used in our hysteretic
test problem.
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varianceσ2 is assumed to be the same for allNo = 4 floors. The other 14 parameters are related to the four triples
(ki, ri, ui), 1 6 i 6 No (see Fig. 14), toρ, and toγ. The likelihood function for this model classM is given by

f(y|θ,M) =
1

(2πσ2)NoNT /2
exp

(
− 1

2σ2

No∑

i=1

NT∑
n=1

[yi(tn)− q̈i(tn; θ2, ..., θ15)]2
)

.

We use an inverse gamma prior forσ, and a 14-dimensional Gaussian prior forθ2, ..., θ15 with zero mean and diagonal
covariance matrix equal to a scaled identity matrix.

Figures 16 and 17 present the results obtained with eight and 64 processors, respectively. All the comments of
Section 4.2 apply here as well. The only difference now is that the tendency for unbalancing is stronger in Fig. 16(b)
than in Fig. 11(b).

(a) (b)

FIG. 16: Behavior of Algorithm (9), with heuristic balancing Eq. (18), on the hysteretic problem withNp = 8
processors:τlevel is the exponent at each level, while b is the balancing ratio defined in Eq. (16).

(a) (b)

FIG. 17: Behavior of Algorithm (9), with heuristic balancing Eq. (18), on the hysteretic problem withNp = 64
processors:τlevel is the exponent at each level, while b is the balancing ratio defined in Eq. (16). The value ”5” in (b)
represents+∞, meaning that at least one processor was assigned zero chain positions before reassignment step 08 in
Algorithm (9).
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5. CONCLUSIONS

As the application of Bayesian analysis gradually evolves to more realistic mathematical models, parallel computing
will become a natural component of the analysis. In this paper, we have analyzed the important problem of balancing
the load of parallel processors when applying the AMSSA on parallel HPC environments. We have discussed two
ways to balance the computational load: by solving a BIP problem, and by using a heuristic algorithm. We have
performed experiments with the heuristic approach using combinations of three different posterior PDFs (a sum of
1D Gaussians, a sum of 10D Gaussians, and a PDF related to a stochastic hysteretic model class) and three different
number of processors (one, eight, and 64). The heuristic algorithm has performed very well in all cases.

Parallel MCMC algorithms involve interdisciplinary challenges in applied mathematics, computer science, and
computational science; e.g., robust statistical exploration of parameter spaces, load balancing, algorithm resilience
with respect to computational node failures, software library design, to name a few. We intend to further investigate
the BIP approach and other heuristic algorithms in our future work, especially in the context of heterogeneous parallel
HPC platforms.
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6. THE BINARY INTEGER PROGRAMMING FORMULATION

In this appendix we give a detailed derivation of formulation (15). Letxij ∈ {0, 1} take value1 (or 0) depending if
theith task is handled (or not) by thejth processor,1 6 i 6 Nt and1 6 j 6 Np, and letX be theNt ×Np matrix
formed by valuesxij ∈ {0, 1}. Problem (14) then can be formulated as a min-max problem, as follows:





min
X ∈ {0,1}Nt×Np

max
j ∈ {1,...,Np}

nj =
Nt∑

i=1

ai · xij ,

subject to
Np∑

j=1

xij = 1, ∀ i = 1, . . . , Nt,

(22)

whereX is aNt ×Np matrix formed by0 and1, and the equality constraint guarantees that eachith task is assigned
to only one processor.

Now, letZ+ be the set of positive integers and let us denote

a =




a1

...
aNt




Nt×1

∈ Z+
Nt ,

let ri be the vector of sizeNp formed by the components of theith row ofX,

ri ≡




xi1

...
xiNp




Np×1

∈ {0, 1}Np , i = 1, . . . , Nt,

let cj be the vector of sizeNt formed by the components of thejth column ofX,

cj ≡




x1j

...
xNtj




Nt×1

∈ {0, 1}Nt , j = 1, . . . , Np,
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and letr andc be the vectors defined by

r ≡




r1

...
rNt




NtNp×1

, c ≡




c1

...
cNp




NpNt×1

.

Also, let us denote

m1 ≡




1
...
1




Np×1

, m0 ≡




0
...
0




Np×1

, 1Nt×1 ≡




1
...
1




Nt×1

.

and letM be theNt ×NtNp matrix defined by

M =




mT
1 mT

0 . . . mT
0

mT
0 mT

1 . . . mT
0

...
...

. ..
...

mT
0 mT

0 . . . mT
1




Nt×NtNp

.

Problem (22) then can be written as




min
X ∈ {0,1}Nt×Np

max
j ∈ {1,...,Np}

nj = aT · cj ,

subject to M · r = 1Nt×1.

Another possible equivalent formulation of problem (22) is




min
X ∈ {0,1}Nt×Np

n1 = aT · c1,

subject to





n1 > n2,
n2 > n3,

...
nNp−1 > nNp ,
M · r = 1Nt×1,

that is, 



min
X ∈ {0,1}Nt×Np

n1 = aT · c1,

subject to





aT · (c2 − c1) 6 0,
...

aT · (cNp − cNp−1) 6 0,
M · r = 1Nt×1.

(23)

Defining the vectorsgi, i = 1, 2, . . . , Nt, each of sizeNtNp, by

gT
i · r = aT · ci ∀X ∈ {0, 1}Nt×Np ,

and the matrixG and vector0(Np−1)×1 by

G ≡




gT
2 − gT

1

gT
3 − gT

2
...

gT
Np
− gT

Np−1




(Np−1)×NtNp

,0(Np−1)×1 ≡




0
...
0




(Np−1)×1

,
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then problem (23) can be written as the following BIP problem:





min
r ∈ {0,1}NtNp×1

n1 = gT
1 · r,

subject to

{
G · r 6 0(Np−1)×1,
M · r = 1Nt×1,

(24)

which is problem (15).
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