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The inverse problem considered here is the estimation of the distribution of a nonobserved random variable X, linked
through a time-consuming physical model H to some noisy observed data Y. Bayesian inference is considered to account
for prior expert knowledge on X in a small sample size setting. A Metropolis-Hastings-within-Gibbs algorithm is used
to compute the posterior distribution of the parameters of the distribution of X through a data augmentation process.
Since running H is quite expensive, this inference is achieved by a kriging emulator interpolating H from a numerical
design of experiments (DOE). This approach involves several errors of different natures and, in this article, we pay effort
to measure and reduce the possible impact of those errors. In particular, we propose to use the so-called DAC criterion
to assess in the same exercise the relevance of the DOE and the prior distribution. After describing the calculation of
this criterion for the emulator at hand, its behavior is illustrated on numerical experiments.
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1. INTRODUCTION

The probabilistic treatment of uncertainties is gaining fast growing interest in numerous industrial fields. Designing
and predicting the behavior of complex mechanisms in various environments benefits from increasing computational
means, and numerical simulation has become a well established domain of engineering. In such settings, a physical
phenomenon of interest is implemented through a so-called computer code, often seen as a black-box, that involves
a set of input variables to be calibrated. Such variables can be considered uncertain, because they reflect intrinsic
randomness or because any information to calibrate them is noisy or indirect. Therefore, besides the uncertainty
propagation challenges when dealing with complex and high CPU-time demanding physical models, one of the key
issues regards the quantification of the sources of uncertainties.

A major difficulty is linked to the limited sampling information directly available on uncertain input variables. A
simple example, that motivated the present study, is the prediction of a river water level using hydraulical codes: one
of their most influent inputs is the river bed friction, which is uncertain by nature and for which no observation is
directly available. This parameter summarizes a set of local geomorphological effects, the consequence of which is
discernible only by observing the fluctuations of the output variable, namely the water level.

For such variables, it is highly beneficial (a) to integrate expert judgment into the quantification, such as likely
bounds on physical intervals or more elaborate probabilistic information, provided this judgment is reliable, and (b) to
integrate indirect information connected to the uncertain variable of interest through a physical model. The recovery
of indirect information generally involves the probabilistic inversion of a computer simufatonplementing this
model. The situation of indirect information can be summarized by the following equation:

E:H(Xudt)_FUMZE{lavn}? (l)
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whereY; € R is an observable outpuk; € R? is a nonobserved inpuf; € R% is an observed input related to the
experimental conditions, anid; € R? is a measurement error. The purpose is to estimate the distribftiointhe
random vectors(; from the observationgy;,: = 1,...,n), knowing that the functiol/ cannot be inverted formally
or numerically in due time.

Many approaches are possible to approximate the solution of this inverse problem (provided it exists), as lineariz-
ing the physical modeH around a fixed point, (see Celeux et al. [1]), or using a non linear approximation of the
function H obtained through kriging and making use of a stochastic procedure with this nonlinear approximation of
H (see Barbillon et al. [2] and Li and Sudjianto [3]). The innovation proposed here is to consider a Bayesian approach
of the problem. Not only it allows to address both issues (a) and (b) simultaneously, but it can be helpful, especially,
to avoid identifiability problems not investigated by the former approaches. In this framefaslgiven a prior dis-
tribution, and the inversion problem becomes conditioning the prior knowledge to the available indirect observations,
which results in the posterior distribution &f.

Nonetheless, the technical choices implied by solving this inverse problem in a Bayesian statistical setting are
likely to produce several kinds of error, the combination of which potentially threatens the relevance of the results.
They are listed beneath:

e Estimation error:Usually the sample size is small with respect to the dimension of the problem, and the
variance of the estimators of the parameters defitihgan be expected to be large, even if some additive
knowledge may be incorporated through a choice of an informative prior distribution;

e Emulator error: Since H is too complex, it is needed to replace it with an emula%rpursuing the ideas of
Barbillon et al. [2], and the discrepancy betwdérand H could induce an important error;

e Algorithmic error: To proceed to statistical inference, it is needed to use complex stochastic algorithms. In
the Bayesian setting, those algorithms are Monte Carlo Markov Chain (MCMC) algorithms which produce
Markov chains converging to the desired posterior distributions. But, controlling the convergence of the MCMC
algorithms towards their limit distributions is essential to get reliable estimates.

e Prior uncertainty: The prior knowledge on the parameters definifigs expected to produce regularized es-
timates with smaller variances than maximum likelihood estimates. But eliciting reliable information from
experts could be difficult and wrong prior information can severely influence the inference.

Beyond the estimation problem, this article is mainly concerned with the assessment of the quality of the proposed
estimates. It implies to measure and control the above-mentioned error sources. In this context, we focpgarn the

error which received little attention and propose to measure it with a criterion, the data agreement criterion (DAC),
well-adapted for emulators defined on a compact set. Obviously those different error sources are linked and their
relations for uncertainty analysis with small samples are discussed. The article is organized as follows. In Section 2,
the MCMC algorithm for a Bayesian estimation of an emulator of the model (1) is presented and the possible error
sources are precisely described. Then, the DAC criterion to measure the prior error is presented in Section 3 as the
resulting strategy for assessing the relevance of both the emulator and the prior distribution. Numerical experiments,
where different criteria assessing the different error sources are illustrated and compared, are presented in Section 4
and a discussion section ends the paper.

2. BAYESIAN INFERENCE WITH A GAUSSIAN EMULATOR

The statistical problem is to estimate the probability distributorof X = {X1,..., X,,} from the observations

y = {v,i = 1,...,n}, wherey; is the realisation of the random varial}é. To get a manageable but rather
generic problem, it is assumed that the unknown infiutfollows a multivariate Gaussian distributioki, (m, C')

with unknown meann and variance matrixC. Other assumptions are the mutual independence okthand the

errorU; fori = 1,...,n, and the independence of thg Besides, the observation err@y is supposed to follow a
Gaussian distributionV,, (0, R) with known diagonal variance matrit. Finally, by considering only an independent
measurement error, it is underlyingly assumed that the model discrepancy, namely the difference between the actual
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physical process from which the observatidfysre taken and the physical modé| is negligible. Details about the
concrete handling of model discrepancy can be found, for instance, in Kennedy and O’Hagan [4] and Brygpjarsd
and O’Hagan [5].

In the Bayesian framework, the first task is to choose a prior distributi@nfor the parameter vect@r = (m, C)
to be estimated in the model (1). A conjugate prior distribution appears as a rather natural and usual choice:

mlCNNq(Pv>C/CL), (2)
C ~IWg(A,v), )

whereZW, (A, v) denotes an inverse-Wishart distribution, with> ¢ — 1 the degrees of freedom ade A7*¢
the positive definite inverse scale matrix; the hyperparameters(u, a, A,v) are assumed to be specified by the
practitioner, typically from expert knowledge. See O’Hagan et al. [6] for a review of the dedicated methods.

The conjugation properties being, however, restricted to cases wheXe #e not missing, the multivariate poste-
rior distributionm(8]y) is not explicit. Therefore it must be described by simulation means. This can be approximated
using Markov chains produced by a Gibbs sampler including a Metropolis-Hastings (MH) step (see, for instance,
Tierney [7]). Actually, the calculation of the full conditional posterior distributionsmgfthe variance matrix’, and
X leads to the following Gibbs sampler (below thet 1)-th iteration):

Given (mll, Cl"l, X"y forr = 0,1,2,..., generate

L O] oW (A4 Sy (il = XY (m = X)) — ) (il ) v 1)

Clr+1]
n—+a

a n
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n

3. XM+ xcexp{ — %Z {(XZ[TH] _ m[r+1])/ (C[er])*l (Xi[r-i-l] _ m[r+1])

i=1
(= B 4)) B (- Y ) ] }

which is not belonging to a closed form family of distributions. Thus a MH step is used to sirbifiatd from
its full conditional distribution.

Now, considering situations where extensive samplinf 6K, d) is time-consuming, the Gibbs sampler must be
adapted. In those situations, we propose to reptaedth amaximinLHD (latin hypercube design) kriging emulator
H, following Barbillon [8]. This emulator is briefly described below.

e Kriging is a geostatistical method (Matheron [9]) that has been adapted by Sacks et al. [10, 11] to approximate
a physical modeH on a bounded hypercul§& This method has known a growing interest in meta-modeling
since the works of Koehler and Owen [12], Santner et al. [13], and Fang et al. [14], among others. According
to this approach the functioH is regarded as the realization of a Gaussian process TGR) GP(u, ¢),
characterized by its mean and variance functiang) = E[H(z)] andc(z,2’) = CoVv[H(z),H(z")] =
0?K¢(||z — #'||) forany z = (z,d), K. being a symmetric positive kernel such tiigt(0) = 1 (see Mitchell
et al. [15]). In a Bayesian perspective, GP modeling can be interpreted as pro¥dimigh a prior (Ras-
mussen and Williams [16]). The procelgscan be proved to be normally distributed knowing some evaluations
Hp, = {H(2@)),...,H(zx))} on adesign of experimentdOE) Dy = {z),..., %)} of N points
2(5) = (@), diz))-
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The best MSPEnean squared prediction errppredictor of H, denoted bﬁ, is the conditional mean:
H(z) = E(H(z) |Hp,), Vz € Q.

ThenH (z) is minimizing the conditional expectation of the loss functiét(z) — H(z))?2, the so-called MSE
(mean squared error) (see Johnson et al. for details [17]),

MSE(z) = E <(H(z) — H(2))? |HDN> Yz e Q.

e The setDy = {zq),..., 2} is chosen oM € RI*% according to anaximinLHD (see Joseph and Hung
[18], McKay et al. [19], and Petelet et al. [20]): each dimension of the multidimensional ddmigidlivided
into N intervals of equal length and the sBty of NV points are selected such that when projected on any
dimension, each interval contains one and only one ofNhgrojected points. Moreover) y is chosen to be
maximin i.e., it maximizes

Op = min ||z — 2(4
b= [0 Wl
among the LHD of sizeV.

Finally, considering the newmulator errorresulting from this version of kriging, the conditional distribution of
X is described as follows. Note that simulating this conditional distribuKorequires again a Metropolis-Hastings
step inside the Gibbs sampler, the details of which being provided in Fu et al. [21].

n

X[T+1]| e |R+ MSE[T+1]|71/2 - exp 7% Z(X‘[T—i_l] o m[r+1])/ |:Cf['r‘+1]:| _1(Xi[r+1] o m[r+1])

=1 '
. ﬁ[r+1]
1 fir+y flr+11Y e
—§<(y1—H1 )(yn—Hn ))(R+MSE ) : :
Y — I’_j’r[z"-&-l]
whereH!"™ = H(X™ 4,), by denoting theth diagonal component @t by R;;,

R, 0 } nlines Rii 0
0 R, } nlines 0 R;;

and MSE" 1 = MSE (X[*+1.d = (d,...,d,)) is a block diagonal matrix defined by

MSE, (XI"*1], d) 0 } nlines

MSEX[ 1 q) =

)

0 MSE:,,(X[T+1], d) } n lines
with each variance matrix MSEXI"+1 d) € M™*™ defined by

—~ 2
MSE, (X", d) = E ((Hﬂx[”ﬂ,d) ~ (XY, ) |HDN> '

Here7{; denotes thgth dimension of the Gaussian procéssIn this conditional posterior distribution, the error
term is composed dR and MSE, where the former represents the uncertainty from the physical model and the latter
represents the uncertainty from the Gaussian emulator.
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2.1 Controlling the Algorithmic Error

An important problem when running MCMC algorithms is monitoring the convergence of the simulated Markov
chain in order to minimize the above mentiorsdorithmic error. Actually, MCMC algorithms can converge slowly

and stopping a simulated chain too early could lead to a poor approximation of the target distribution. Monitoring the
convergence of a MCMC algorithm is also a difficult problem. Despite many effort having been made on this question,
there is not an absolute way to answer it. We chose to use the much employed Brooks-Gelman (BG) statistics (Brooks
and Gelman [22]) computed from five replications of the Monte Carlo Markov chain (see Appendix A). The MCMC
algorithm is stopped if the BG statistics remains smaller than 1.05. This threshold is more stringent than the standard
threshold 1.2 suggested in [22].

2.2 Measuring the Emulator Error

However, a good monitoring of the MCMC algorithm could be jeopardized if the emulatis too far from the
model H (theemulator erro). This could occur because kriging makes use of a Gaussian process approximation that
is known to be smooth, while some types of physical mddelre not and will require using larger number of points

N to approximate them. Thus, a too small number of poi¥itehosen for the desigv, can distinctly increase

the emulator error. The two following criteria, among the most used criteria to measure the quality of a design, are
investigated here.

(i) The coefficient of predictability), (see Vanderpoorten and Palm [23]) is

_ PRES$D")
|H(D*) — H(D¥)

QQ =1 |27 (4)

where

PRES$D*) = ||H(D*) — H(D*)||”

is the Euclidean distance between the true function valuand the approximated valué on a validation
sampleD* = {v(y, ..., v}, H(D*) denoting the mean function value @

N*

— 1

H(D") = WZH(U(”)'
i=1

A cheaper version af), can be obtained by cross-validation, as follovesye one ouprocedure):

PRESSy
Qycv =1- = ’ ®)
’ SN H ) - Hoxl
with
_ 1
Hp, = N;H(%%
and
N N R ,
PRESSy = > ¢%) = Y | H(zw) — Hoilz)||",
=1 =1
where
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e ¢(; is the prediction error at;) of a fitted model without the poin{;;

. fl,i(z(i)) is the approximation off at z;, derived from all the points of the design except.

Both versions of), are related to the ratio of variance explained by an emulator. The ¢asén 1, the smaller
this ratio and the better the quality of the desigg .

(i) An alternative criterion is the Mahalanobis distance (MD) (see Bastos and O’Hagan [24]), computed on a
validation sampleé)* with N* points as follows:

MD = (H(D*) - ﬁ(D*))/<MSE(D*)>_1 (H(D*) - ﬁ(D*)), (6)

where MSE D*) is the conditional variance matrix of the desifr knowing Hp- = {H (v(1)), - - ., H (v(n+)) }-
An interest of this criterion is to account for the correlations between the points through theZMS&Erm.
Obviously, the MD value is sensitive to the choice/&f. D* could be generated aseaximinLHD. A cheaper
cross-validated version of MD is as follows:

MDcy = ;,i (H(Z@)) - ﬁ—i(z(i)))/(MSEi(%)))_l (H(Z(i)) - ﬁ—i(z(i))),

Whereﬁ_i(z(i)) denotes the predictor af at pointz(;) by using the desig_; = {z(), ..., 2(i—1), 2(i+1)
...,z + and MSE ;(z(;) denotes the related squared error.

Now, the smaller the sample sizg the greater thestimation error The two above-mentioned criteria are not
aiming to measure this estimation error. But sii€és complex, it is quite difficult to assess this error in an inverse
modeling context. Bayesian inference could be expected to be helpful to reduce the estimation erroisidraall
and when reliable prior information is available. However, if the prior information is not relevanpritreerror
will be large and Bayesian inference may be harmful. For this very reason, it is important to be able to measure the
relevance of the prior information. In the present context, it is possible to use a promising criterion, the so-called DAC
criterion (Bousquet [25]) for this task, as detailed in the next section.

3. ASSESSING A PRIOR DISTRIBUTION AND A DESIGN
3.1 The DAC Criterion

The data agreement criterion (DAC) (Bousquet [25]) has been conceived as a measure of the discrepancy between a
prior distribution of model parameters and the data. & a sample with pdf(y|0). Let 77/ (0) be a benchmark
noninformative prior (see for instance, Yang and Berger [26])aftj the prior distribution derived from the prior
information onB. DAC is defined as

KL (7 (0ly)||7(6))

PAC(TY) = KLl 17 (0))° )

where KL(p||q) denotes the Kullback-Leibler distance between the probability distributiamslg, which is defined
as

KL (pllq) =Ap(w)10g](jégdw, (8)

X being the set of all accessible values:fof he rationale underlying the definition of DAC is as follows: the posterior
distribution7” (8|y) derived from the noninformative prior provides essentially the same information on theta as the
datay. This posterior can thus be interpreted as a benchmark prior perfectly in accordance with data information. The
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divergence KI(w’ (0]y)||7(0)) (or relative negative entropy) between the true pri@andr” (-|y) provides a measure
of the discrepancy between the two sources of informatiof.on

If DAC (n]y) < 1, the informative priorr is closer tor”(-]y) than the noninformative priox’, and the data
y and the priorr(0) are declared to be in agreement. Otherwise if DAg) > 1, the datay and the priorr(0)
are declared to be discrepant. DAC has been proved to be efficient when the noninformative’ (#iois proper,
otherwise it must be adapted using techniques used for estimating Bayes factors (see Bousquet [25]).

3.2 The Impact of the Emulator

In the present context, a kriging emulator defined on a compad® setused to compute an approximation of the
posterior distribution of the parametér= (m, C). Since the emulator is defined on a compact set, the parameters
m and C are also restricted to be in compact s@fs and{2¢. It allows to define a proper noninformative prior
7/ (m, C'), which is chosen as the Jeffreys prior for the multivariate Gaussian model, then a tractable DAC. The
technical precisions abo,,, Q¢ and the calculation of DAC are provided in Appendices B and C.

It is important to notice that the criterion is depending on the design Denotingr” (8]y, Dy) the posterior
distribution ofo given the datay and the current desighy,

_ KL (n7(0ly, Hp,)[|7(0))
KL (m/(8ly, Hpy)l|7”(6))
A DAC value greater than 1 is just indicating that there is something misleading between the data, the prior and the

design. Thus, if the data and the prior are known (or assumed) to be relevant, DAC could be regarded as a criterion to
assess the design @s or MD.

DAC(T(|y7 HDN)

3.3 Computing DAC
Since(S/T) < 1<«= S—-T <0,if S > 0,T > 0, anumerically more convenient version of DAC, dendbAC, is
DAC(rly, Hp,) = KL (v (8]y, Hp,)||m(6)) — KL (/(6ly, Hp,)[|x (8)) .
The critical value foDAC is 0. Since the support of/ (8]y, Hp, ) is ©2, one has

7T‘](9|y, HDN)
™(6)
= EW"(GW,HDN) [log 7T'](e|y, HDN)] — Ew~7(9|y,HDN) [log 7r(9)] s

KL (77 (8]y, Hp,)||7(0)) :/QWJ(6|y,HDN)10g do

and

7T‘](ebﬁ HDN)
m/(6)

= EW‘I(Q\}’»HDN) [log W(](e‘y,HDN)] — ]EWJ(eb’aHDN) [logwj(e)} .

KL (=7 (Bly, Hop, )| (8)) = / 7 (6ly, Hp,)log a6
Q

Therefore, the transformddAC can be written as
DAC(wly, Hp,) = KL (77 (8]y, Hp, )[|7(6)) — KL (=7 (6]y,Hp,)||7’(6))
= ]E7r~7(9|y,HDN) [log W'](e)} - Eﬂ‘](e\y,HDN) [log w(0)],

and checking%(ﬂ% Hp, ) < 0 means that the prior distribution(6) and the coupley, Hp,,) are compatible.
This criterion can be computed using the outputs of a Gibbs sampler run with a noninformative’grjor

R R

—— 1 1

DAC(rly, Hpy) = 3 ) _logn”(87) = = > logm(®"), 9
r=1 r=1
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where0” ~ 7/ (-ly,Hp, ), r € {1,..., R} is a simulated sequence obtained by Gibbs sampling. Denafing=
(1/n) >, X;, the full conditional distribution ofn. verifies

1 - ! -
' (m|C,Y,X,p,Hp) x I, exp [—2(m - X,) (2) (m — Xn)] )

Thus, itis a normal distribution truncated 0n,: I,
matrix C' verifies

-N (X, C/n). The full conditional distribution of the variance

m

(C|m,Y,X,p, Hp)  Iq, |C|~1(n+9+2)/2 exp [—;Tr (n(m—X,)(m—-X,) - c—l)} . (10)

Thus it is an inverse-Wishart distribution truncated(osn:
Io. -IW (n(m—X,)(m—X,) ,n+1). (11)

Using the full conditional posterior distributions &f, the Gibbs sampler approximating the posterior distribution
of (m, C') with a noninformative prior truncated to the domalp, x ¢ could be straightforwardly described (see
Fu et al. [21]).

Remark: The simulation ofC is difficult sincen (m — X,,)(m — X,,)’ is not a definite but a semi-definite positive
matrix and numerical problems can occur. However, up to an additive constant, the calculation (10) is proper. For this
reason, we recommend to use a Metropolis-Hastings algorithm for simutating

Metropolis-Hastings (MH) algorithm

1. lteration 0: Choose an arbitrary valaé® =
2. Iterationh: UpdateC!" as follows:

e Generatet, from the following proposal distributiorf*, which is adding a small correctiosl, to the
semi-positive definite matrign — X ,,)(m — X,,)’, with € a small positive value anlj, an identity matrix
of dimensiong x ¢

&) =TIa (&) - IW (n(m—X,)(m—X,) 4+ el;n+1).
o Let

g(&)f*(ch—1)
g(Ch=10) f*(&)

with g proportional to the target distribution which means the truncated Inverse-Wishart distribution (11)

x(Clh=1g) = A, (12)

1 _
9(C) = Tng (C) - |C|7 12/ exp {—QTr (n(m = Xy)(m = X)"- C7)

e ChooseC" as follows

. .y [h—l]
ol _ { g with probability o(C' LE), (13)

Ch=11 otherwise

In this way, the produced Markov chai'™) converges to the target distribution (11).
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3.4 Using the DAC Criterion

By its very nature, the criterioDAC is measuring the agreement between the observed data and the prior distribution.
As shown above, it could be computed without particular difficulties, despite it needs to run an additional Gibbs

sampler, when the distributioA has been replaced by a kriging emulafér ThusDAC is depending on the prior
distribution and the desigh . HenceDAC is a criterion allowing to assess both the prior and design relevance with
respect to the observed dataBut this double assessment has to be done properly using the following procedure:

1. If DAC < 0 then the prior and the design are declared to be acceptable.

2. If DAC > 0, the following step is required:
under a “good prior” assumption, efforts are made to improve the design by incredsingnodifying Q. If

DAC is not decreasing under zero, it means that the prior information is questionable and there is the need to
go back to the experts or, maybe more honestly, to employ vague priors as the Jeffreys priors.

This procedure is depicted by the following diagram:

[Computation of ]SKGJ
[

Possible DAC > 0
outcomes
] Bad prior
Concl
or bad

design ?

Hyp:“good prior”

>

Improve
the present
design
[ |
DAC DAC
decreases decreases
l not enough
Problem
of design

Help of
experts

4. NUMERICAL EXPERIMENTS

In order to illustrate the behavior of the the above-mentioned criteria, numerical experiments are performed from
simulated data on two statistical models. The first example is a simplified version of a hydraulic model, and the
second example is a a real physical hydraulic code which is widely used at EDF (Eleciédtrance).

4.1 Simplified Hydraulic Model

We consider the following simplified two-dimensional hydraulic model used, for instance, in [27]:
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0.6
/] N 0.4 0.6 _ X,)03
HX,d)= | Xp4 (200 4} 47X (55 — X377 ) |
30055 — X X4 30004 x 50000-3
where,

52 0
0 1

Xy
Xo

)= ((5%)(57))

d~ Gumbe(1o13, —458),

-

and an errot/ ~ N(0,1075 - ).

Since we are mainly concerned in analyzing the behavi%, six different prior distributions on the model pa-
rameters are considered, which present several degrees of accordance with the simulaiediltaare summarized
in Table 1. Note that the prior distributions or the parametemsndC arem|C' ~ N (u, C/a) andC ~ IW(A,v)

with A = ¢ - Ciexp.

4.1.1 Checking for Good Posterior Approximation

A first task is to validate the approximation of the true posterior distribution provided by the Gibbs algorithm call-

ing the kriging emulator. The cases when the prior is noninformative (needed later to compute DAC) or in accor-
dance with the simulated data (FHV) should therefore lead to get posterior estimation result§natiOuk’, Y')

close to the values used in the simulation task. Using the Brooks-Gelman heuristics detailed in Appendix A to test
the convergence of MCMC chains, 1000 posterior samples (sorted using a classical ACF autocorrelation test) were
produced, each one conditioned to a design of 20 points. The posterior means, standard deviations, and 95% cred-
ible intervals were calculated for the parameters and displayed in Table 2. The presence of the simulation values

TABLE 1: Description of the six prior distributions by their accordance with the simulated data: PLV = perfect
mean and low variance, PMV = perfect mean and medium variance, PHV = perfect mean and high variance, FHV
= fair mean and high variance, BMV = bad mean and medium variance, BHV = bad mean and high variance

Prior PLV PMV PHV FHV BMV BHV
m 30,50} {30,507} 130,50} 135,49} {10, 54} {10, 54}

a 1710 10 1 1 1[5 ]10 1 1

t 21 2 [ 30 2 2 2 2 2

v 5| 5 | 33 5 5 5 5 5

& <1.52 0) (52 0) (7.52 0 ) (7.52 0 ) (52 0) <7.52 0 )
Exp 0 1 0 1 0 1.5 0 1.5 0 1 0 1.52

TABLE 2: Posterior means, standard deviations, and 95% credible intervals for
(m, C) given, respectively, the FHV informative prior and noninformative prior

Parameters my ma Ci1 Coo

Informative prior (FHV)

Estimate 30.9014  49.4802  26.4058  1.0778

Std. dev. 0.9895 0.1941 6.9559 0.2925

2.5% 29.0053 49.1112 15.5504  0.6528

97.5% 32,9227 49.8723  43.2018  1.7495
Non-informative prior

Estimate 30.8865 49.5102 25.6555  1.1082

Std. dev. 0.9941 0.1965 7.5674 0.3210

2.5% 28.9870  49.1423  14.9727  0.6323

97.5% 32.9860 49.8951  44.3246  1.9190
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within the posterior coverage illustrates the relevance of the approximatiéh afid the management of MCMC
chains.

Furthermore, because an uncertainty study requires to sample relevant valiie $ffeposterior predictive miss-
ing dataX were sampled from a multivariate normal distribution calibrated with these posterior values. Finally the
posterior predictive observationswere computed using these reconstruciedhe observed values and the true
function H. Figures 1-4 superimpose the isolines of the posterior predictive densityaaflY” and the true observa-
tions (marked as red stars). Again, a good coverage can be noticed. Note that using the informative prior very slightly
improves the coverage with respect to the noninformative one.

2nd component of X

15 20 25 30
1st component of X

w
(&)

40 45

2 4 6 3 10 12 14 16
x 107

FIG. 1: Isolines of the posterior predictive density and true values (red stars) of the missing dgiteen the FHV
informative prior.

2nd component of X

15 20

N
(&)

30
1st component of X

w
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40 45

2 4 6 8 10 12 14

x10°

FIG. 2: Isolines of the posterior predictive density and true values (red stars) of the missing dziteen the nonin-
formative prior.
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FIG. 3: Isolines of the posterior predictive densitylofand true observations(red stars), given the FHV informative

prior.
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FIG. 4: Isolines of the posterior predictive density¥fand true observations (red stars), given the noninformative
prior.

4.1.2 Assessing the Relevance of the Design

The following experiments aim now at assessing the ability of crit@siand MD to measure the quality of a design.

In this purpose three different designs with 20 points, 100 points, and 500 points have been considered on two different
domains

0y =[25.1001, 34.8999] x [48.0400, 51.9600] x [40, 1800],
Qs = [20,40] x [45,55] x [min(d;), max(d;)].
2 K2
2, can be thought of as a realistic domain &ndis a larger domain. When using a validation sample we choose
it as amaximirLHD of 100 points withinQ2;. Figures 5 and 6 give the box plots bf- ) based on 20 repetitions

computed on a validation sample and by cross-validation, respectively. The close€)t ang, the better the design
is supposed to be. The observed difference$ en)), according to the designs are relevant but hardly perceptible as
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1-Q2

0.10

0.08

0.06

0.04

0.02

0.00

eme small domain
large domain

—_
— —

T 1
100 500

Number of points in design

FIG. 5: 1 — @, boxplots based on 20 repetitions, calculated on a validation sample fmesixninLHDs of 20, 100,
and 500 points within small domafn;, (—) and large domaif, (), with the validation sample asmaximinLHD

of 100 points within(; .

1-Q2

0.10

0.05

0.00
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T 1
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Number of points in design

FIG. 6: 1 — Q5 boxplots based on 20 repetitions, calculated by cross-validation fanakimirLHDs of 20, 100,
and 500 points within small domain;, (—) and large domaif, (—).

even a small design of 20 points on the large donfairproduces small — - values. The difficulty with criterion
Q- is to choose a sensible threshold to declare that a design is acceptable.
Figures 7 and 8 display the boxplots lo;(MD) in the same conditions. As it could be expected, this crite-
rion is decreasing when the number of design points increases. But, these figures show unexpected differences: the
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FIG. 7: MD boxplots based on 20 repetitions, calculated on a validation sample faresiiminLHDs of 20, 100,
and 500 points within small domafn; (—) and large domaif, (), with the validation sample asmaximirLHD
of 100 points within; .

1.0

em» small domain
large domain

0.0

log(MD)

-1.0

-15

[ T 1
20 100 500

Number of points in design

FIG. 8: MD boxplots based on 20 repetitions, calculated by cross-validation fanakiminrLHDs of 20, 100, and
500 points within small domaife; (—) and large domaifs (—).
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cross-validated MD does not seem very sensitive for the dofdaiend the cross-validated MD values for the larger
domain with a design of 500 points are amazingly scattered (see Fig. 8). Moreover, contrar@todtigrion, no
reference value is available with MD and it seems difficult to use this more expensive criterion to assess a design (see
Fig. 7).

4.1.3 Assessing the Relevance of the Prior and the Design

The following numerical experiments aim at analyzing the abilitifﬁr/': to assess either the relevance of a design or
a prior distribution.

Figure 9 depicts the behavior of DAC in the small domain, for 100 repeated estimations of the model with the
six prior distributions andnaximinLHDs with 20, 100, and 500 points. It appears that the "bad” priors are discarded
in the first two cases while accepted with a design of 500 points. Other priors, even for a design of 20 points, seem
acceptable. Obviously, for this poor design the Gibbs sampler converges dramatically slower (2,000 iterations for
D500 and 100,000 iterations fdp,), but in many situations this is not problematic. Actually, the main computational
burden is computing the highly CPU-time demanding physical méfieln the present context, running a Gibbs
sampler with a design a¥ points requiresV calls to the function and it could be faster to run a Gibbs sampler on
a Do for 100,000 iterations than a Gibbs sampler withg, for 2,000 iterations. Moreover, the behavior@AC
for the larger domaitf2,, which is not reported here, is quite similar to thatfr. It shows that the choice of domain
does not affect the agreement between the prior and the data.

Figure 10, which displays the behaviorDAC for the PLV and FHV prior with different values for the hyperpa-
rametersy and¢, shows that those hyperameters can have a sensitive impact on the result and that too concentrated
priors (related to large values afandt) could lead to a doubtful Bayesian inference. For example, for the PLV prior,
increasing the value af, which weights the prior mean, does not much change the valueDAC asu is equal to
the actual meam; while for the FHV prior, a largea results in a IargeEA\\E value as in this “fair” casey and the
actual meamn are different.

150
|
q

= Py
- PVV
- PHV
FHV
BMV
BHV

DAC
100
|
4

50
|

—_— *;;E —_—_
{ T 1
20 100 500

Number of points in design

FIG. 9: DAC boxplots based on 100 repetitions, calculated within small dofajrior threemaximinLHDs of 20,
100, and 500 points and six priors PLV(—), PMM, PHV(—), FHV(—), BMV(-), and BHV( ).
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FIG. 10: DAC boxplots based on 100 repetitions, calculated within small dofaijfior threemaximinrLHDs of 20,
100, and 500 points and PLV and FHV priors with different values of the hyperparameteds.

Figures 11 and 12 display the marginal posterior distributions wittagimuraLHD of 100 points and 20 points.

These figures confirm tHeAC diagnosis. There are great differences between the posteriors derived from "bad priors”
and the other ones, including the posterior derived from the Jeffreys prior, are quite similar. It is also important to notice
than there is no sensitive differences between the posteriors derived from the 100 points and 20 points (which is not

reported here) designs, as indicated by% criterion.
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FIG. 11: Marginal posterior distributions dfn, C') with a maximinLHD of 100 points in small domaif2,, based

on six informative PLV, PMV, PHV, FHV, BMV, BHV priors and the Jefferys noninformative prior. The empirical
estimation is marked by a star.

It seems thaDAC is indicating that a reasonable prior can be resistant to a poor design. This is not always true.
For instance, a poor design of 18 randomly generated points on the faces of a cube (three points were generated on
each face) has been considered when replafifyy the Sobol function:

|4z —2[ + ay
N 1+ ay

b

H(X.d) = [T gr (Isin(X)]) g3 (| sin(d)|) , whereg;(x)
k=1

with a;, = 1. A Gibbs sampler of 800 000 runs has been run to estimate the posterior distribdti@jy, Hp ).

As shown in the left graph of Fig. 1BAC; s remains positive for the four prior choices, which indicates the need to
improve the design.

Remark. In these numerical experiments, different priors are compared using DAC in an illustrative purpose. It does
mean that DAC might be used as a selection tool to select one prior over another. Indeed, prior distributions reflect

prior knowledge and uncertainty abakit before seeing the data. DAC is just a criterion measuring the discrepancy
between the prior distribution and the data.
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FIG. 12: Marginal posterior distributions afmn, C') with a maximirLHD of 20 points in small domaif?,, based
on six informative PLV, PMV, PHV, FHV, BMV, BHV priors and the Jefferys noninformative prior. The empirical
estimation is marked by a star.

4.2 Real Case Study: the MASCARET Code

The second example considered here is a real hydraulic model, the MASCARET code, which implements an approx-
imating solution to the St-Venant equation through finite difference methods. It is developed at EDF in collaboration
with the Centre cEtudes Technigues Maritimes et Fluviales (CETMEF), which puts together the computer code of
free surface.

In this two-dimensional model, the main sources of uncertainty are the frictions on the riverbed and the floodplain,
denoted by the vectaK, the output of the hydraulic function is the water level, denoted’hynd the observed
input is the river flow, denoted b§. In this case study, accounting for the observation difpthe dataset can thus
be generated with the help of the MASCARET cddeas follows.

Y = H(K,,Q) + U, (14)

with @ ~ Gumbe(1550, 780) and the missing data

weine ()4 )
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FIG. 13: DAC boxplots based on 20 repetitions with the Sobol function, calculated for two deBignand D1
and six priors PLV, PMV, FHV, and BMV.

To check the behavior dﬂ&(/:, two different prior distributions on th&'; hyperparameters are considered and
summarized in Table 3. o

Figure 14 displays the boxplot BIAC for 20 repetitions of the PMV and BLV priors, with sample size- 10, 50
and amaximirLHD of 20 and 200 points. It appears that the BLV prior is rejected/)ﬂg/z? in all the four cases as this
criterion remains positive, and it seems almost acceptable for the last case, with 50 observed data and 200 points in
the design, abAC is quite near zero. Moreover, the PMV prior is obviously acceptable in each case study, thanks to
the negativeSA\és. In each case this result testifies to a perfect agreement between the prior, the data, and the design.

Figure 15, displaying the corresponding marginal posterior distributiofis @dnfirms the performance &IAC.
The PMV prior leads to reasonable posterior values for all the parameters while the bad prior leads to posterior values
far from the good values, especially for the variance parameters.

TABLE 3: Description of the two prior distribu-
tions by their accordance with the generated data:
PMV = perfect mean and medium variance, BLV
= bad mean and low variance.

Prior PMV BLV
m {17,40} {5,60}
a 1 1
t 2 2
v 5 5

~ 4120 10

Cexp ( 0 712 ) ( 01 )
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FIG. 14: DAC boxplots based on 20 repetitions in the MASCARET code, for tmaximinrLHDs of 20 and 200
points, with 10 and 50 observations and PMV and BLV priors.
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FIG. 15: Marginal posterior distributions dfin, C) in the MASCARET code, based on two informative PMV and
BLV priors, two maximirLHDs of 20 and 200 points and 50 observations. The supposed true value is marked by a
star.
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5. DISCUSSION

We have shown that Bayesian analysis is possible and beneficial to solve inverse problems by estimating the parame-
ters of highly complex uncertainty models. Bayesian analysis is feasible thanks to MCMC algorithms such as Gibbs
sampling and the approximation of the physical model by a kriging emulator usiegiminLHD. Bayesian analysis
is beneficial since it allows to account properly for prior knowledge and to avoid a linearization of the physical model
H. Our analysis has shown that Bayesian inference could be beneficial because MCMC algorithms could be hoped to
be rapid even with anaximirLHD with few points in comparison to the huge time needed to computerom this
point of view, it is important to translate the time to get a realizatiot/ods a number of iterations of the MCMC
algorithm in order to choose the number of points of the emulator’s design. Let us suppose that the computation time
of one call toH equals the computation time &f( V) iterations of the MCMC algorithrh.The integerL(N) is ex-
pected to be quite large and is a decreasing function of the nuMioépoints of the desigd 5 which is as well the
number of "possible” calls tdZ. Our analysis proved that even whahis small, it is possible to increase the number
of iterations of the MCMC algorithm to get a good approximation of the model parameter posterior distribution in
an acceptable CPU time. For instance, with the real hydraulic model, the CPU time (in seconds) has been 999 for
N =500, 1930 forN = 100, and 10 100 forV = 20 on a laptop PC, with two Intel P9700 cores of 2.80 GHz.

In this perspective, the four error sources listed in the Introduction can be controlled.

e By its very nature, Bayesian inference is helpful to controlekmation erromvhen the numben of observa-
tions is small.

e Thealgorithmic errorcan be efficiently controlled with the BG statistics. To make sure that this error is not too
large, we advocate a more stringent threshold val0g than the standard threshdld.

e We propose to use the so-callBdC criterion which could be thought of as a relevant measure of the dis-
crepancy between the observed sample and the prior distribution in order to control bethutagor error
and theprior error. In our context, this criterion can be computed without major difficulties: the emulator is
defined on a compact set and, consequently, proper noninformative priors are available. However, this proper
prior distribution is subject to the choice of this compact set. It is implicitly assumed here that this compact set
has been chosen in a proper way. Note also that in our numerical experiments, the choice of this compact set
does not appear to influence highly the postexi6(0|y, Hp,, ) (see Fu et al. [21]).

Our experiments show a promising behavior of this criterion. Obviously, compm is not free since it
involves running an additional MCMC algorithm for noninformative priors. But we think that the result is worth
the trouble. Moreover, as soon as the MCMC with a noninformative prior has been run, any informative prior
can be assessed. On the other hand vD®@ is greater than zero, it could be difficult to separatedaimeilator

and theprior errors since both errors could be quite intricated. More experiments are needed to assess the
relevance and sensibility of this criterion. Nonetheless, it is a promising tool to drive Bayesian inference using
an emulator for dealing with complex inverse problems in uncertainty analysis.

Finally, the conclusion of this study can be stated as follows. When the prior knowledge on the model parameters
is relevant, Gibbs sampling or other MCMC algorithms on an appropriate emulator could be expected to lead to a
sensible estimation of these parameters with well elicited prior distributions while dramatically saving the number of
calls to the expensive functial. And, DAC might be used as a diagnostic tool to detect if the prior distribution can

be trusted. It might be also be helpful to choose a good design for the emulator.
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APPENDIX A. BROOKS-GELMAN STATISTICS

In 1998, Brooks and Gelman proposed a method derived from the method proposed by Gelman and Rubin [28],
for monitoring the convergence of iterative simulations [22]. Supposingarallel chains have been simulated, the
statisticRp¢ is constructed on the findl/ iterations after the “burn-in” period, as follows:

1. For each individual chaip, calculate the empiricdl00(1 — )% intervald;, which is the difference between
the100(1 — (o/2))% and100(«/2)% percentile of thel/ simulated points. Thus, form the within-sequence
interval length estimates.

2. For the entire set ofnM simulated draws from all chains, calculate the empiric¢al(1 — )% interval to
construct a total-sequence interval length estimate.

3. Evaluate the statisti® 5 defined as

Rpg =

o >

)

e A the total-sequence interval length;
o 5=1/m) ", 8, with 8; the length of the within-sequence interval for i chain.

The threshold valud.2 is advocated by the authorﬁég < 1.2) to declare that the simulation procedure has
converged. In our experiments, we make use of a more conservative threshold and procedure to ensure that the MCMC
algorithms have converged to their stationary distribution. AMCMC chain has been declared to have converged if the
Rpq statistics is smaller than 1.05 for 3000 consecutive iterations.

APPENDIX B. COMPUTING DAC FOR THE KRIGING EMULATOR

The compact se®?,,, = Q = Q; x ... x , whereQ; denotes the domain for thi¢h coordinate ofX. To deter-

mine the compact sét¢ related to the variance matr, it is convenient to consider its eigenvalue decomposition

C = VDVT whereD is the diagonal matrix of eigenvalues 6fwith |C| = |D| andV the orthogonal matrix of
eigenvectors of. For each dimension= 1,...,q, X? < B; = max((max;)?, (min;)?). On the other hand,
recalling thatR is the variance matrix of the measurement error in (1), it is reasonable to assume that the measure-
ment error is smaller than the variance and tHeid/? < |C|'/¢ = |D|'/4. Finally, the domain of varianc@. can

be defined as follows:

Qc =4C=VDVT €S} st. [D| > |R|Y?,0< D;; < (B.1)

whereS,j is the set of symmetric positive definite matrices of rank

The benchmark prior”/(0) is chosen here as the Jeffreys prior for a multivariate Gaussian distribution restricted
toQ,,, i.e.,

7(0) = \Ilglm(gz)) . |CA%2 Io.(C), (B.2)

—1
1
Ac = / — _dc| .
: (ncicﬁ >

with
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Thus
1
A :/ ———dC
© o |C]F
1
= —en)
/Qc |D|*%* ( )
1
Qp |D|T
where

Now, any orthogonal matri¥” of dimensiong is characterized by the composition @f; — 1)/2 rotations
(W1, -, Pg(g—1)/2) (cf. Thiested [29]),

/dV = / / Ay .. dyg-1)2 = q9a—1)/2
0 0

q(q—1)/2 times

1
AG! = it/ / iD| .
“ Qp |D|qT+2

Finally, it remains to calculate the integrl (1/|D|(?"*)/?)dD. Denoting itI(q,a, B1, ..., B,), With a = |R|%/?
it is derived by induction oy (the detailed calculation is given in Appendix C and related theories can be found in
Horn and Johnson [30]).

_ q-1 =1 a _a_
I(qaayﬁla"'7[3q): <ql> I<q17 (a> 7Bf717~'~7 ;1) ) (84)
q Bq

5152+ 1 1

a BBy a

Thus

and

1
I1(2,a,B1,B2) = 5log

APPENDIX C. COMPUTING THE NORMALIZING CONSTANT OF THE DIAGONAL VARIANCE
MATRIX DOMAIN

Consider
1
ac O
when the variance matrik' is diagonal and the domaiR¢ is defined as follows:
00 = {c € SF st. |C] > |RI“P, |Ciy < v/BiBy, 15 = 1, q} (C.2)
SinceC is diagonal, the above definition is equivalent to
0 S C’i S Biv
{ ngl Ci za, (©3)
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where{C;,1 < i < ¢} are the diagonal elements 6f Conditions (C.3) are equivalent to the conditions
<o <8
(C.4)

C1C2 - Cyq
, B4), the integral (C.1) can be developed as follows

1 Ba 1
7(102.../ decq
ot Cf?

Considering! as a function ofq, a, 31,

B1 1 B2
I(qaaaﬁla"'vﬁq):/ q+2dCl/ a+2
Bz PBg C‘12 Clﬁsa”'ﬁq C'22 C1Cgq—1
2 B1 1 B2 1 Bg—1 1
_ 2 / —dCy / SdCy / odCy
a2 gty 1 OTRs g 2 ey R
2 B1 1 B2 1 Bg—1 1
T atz —=dC / Edc? o / q+2 qu 1
QBq PRl O orrshg Cp° [eree ey Pl O]
2 2 (q—1\"" a\TT o e
- qufl - q <> I q— ]-a <) 7Bf yees Pg—1 | (CS)
ga* aBi \ 4 Ba
where
B1 1 B2 1 Ba-1 1
Iq 1 — / FdCH/ chg A C dcqfl
S i S e i ey N B
1 Br...Bg\ "
= 1 C.6
o (P ) o)
is obtained by induction and
B1 1 B2 1 Bg—1 1
/ @d(}l/ @d(,‘g---/ 5 dCq—1
Fro8g O1° T rl O oty Oy
1 _q_
) (G e e
= - 1 q— 17 e ) (5 0 ) H) q— )
( q ( Bq 1 q—1
by the variable change
_q
Yi = Ci(rl

1 1
BiB2 a

)

1(2,(1, ﬁlv [32) = alog [31(1[32 +

Thus step by step thanks to Eqg. (C.5), the integral can be calculatediviseiagonal. For instance, fgr= 2, 3,4

we get
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1 B1B2Bs)’ 4 B1PB2p3 8 8
I = 1 - — — 1 _
(37(1;[317{32,63) 3a% <Og o > Qa% 0g o 27([51[52[33)% + 27&3’
3 2
(4B B BanBa) = 1y (1o P2 ) L (1o BrBeBab )y (1, PPl )

1 1
+ -
16 (B1B2B3Bs)” 1642
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