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We discuss the choice of polynomial basis for approximation of uncertainty propagation through complex simulation
models with capability to output derivative information. Our work is part of a larger research effort in uncertainty quan-
tification using sampling methods augmented with derivative information. The approach has new challenges compared
with standard polynomial regression. In particular, we show that a tensor product multivariate orthogonal polynomial
basis of an arbitrary degree may no longer be constructed. We provide sufficient conditions for an orthonormal set of
this type to exist, a basis for the space it spans. We demonstrate the benefits of the basis in the propagation of material
uncertainties through a simplified model of heat transport in a nuclear reactor core. Compared with the tensor product
Hermite polynomial basis, the orthogonal basis results in a better numerical conditioning of the regression procedure, a
modest improvement in approximation error when basis polynomials are chosen a priori, and a significant improvement
when basis polynomials are chosen adaptively, using a stepwise fitting procedure.
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1. INTRODUCTION

We discuss the choice of polynomial basis in polynomialesgion with derivative (PRD) information. PRD is an ap-
proach to uncertainty quantification in which an approxmabdel of the system response is computed by regressing
both the output information and its derivative with respedhe physical parameters computed at a small number of
sample points in the parameter space. In turn, this moddieased to efficiently estimate the system response under
parametric uncertainty.

For several nuclear reactor system simulations, we fouatiapproximation of the uncertainty effect by PRD is
more precise than linear approximation by an order of magdeibr more [1]. Moreover, we have shown that the PRD
model can be used as a control variate to reduce the varifceetain statistical estimators. In turn, this resultsdn f
fewer system samples being used to obtain a reasonable @ocdithterval for those estimators.

Our approach hinges on the observation that adjoint teclesigan be used to efficiently compute gradient in-
formation. In particular, the required derivatives can lbenputed by algorithmic, or automatic, differentiation: a
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procedure that reads source code of the model, augmentsaigeperations with their partial derivatives, and then
assembles the gradients using the chain rule. The adj@wnerge) mode of automatic differentiation computes the
gradient of the system response in a time that is at most fivestithe cost of one function evaluation (system simu-
lation for a given choice of parameters), irrespective efdimension of the parameter space [2]. Hence, in principle,
we obtain no less thati/5 more information for the same computational cost when caetbwith samples of the
function values alone. As a result, the use of derivativerimfation allows one to build approximations based on
smaller training sets (or, equivalently, by using fewer potationally expensive model runs).

As we have demonstrated in prior work, the use of derivatifermation in PRD relaxes the limitations of the
“curse of dimensionality” and allows uncertainty quanéfion of models with 10-100 uncertainty quantifiers. At
the high end of this range, a reasonable approximation gicecrequires a very large polynomial basis, and the
regression procedure becomes numerically ill-conditioioe the Hermite polynomials basis, one of the most com-
monly used in uncertainty quantification. This raises tH®¥dng important challenges: How do we choose a basis
that reduces or eliminates the ill-conditioning in the paynial regression with the derivative information proce-
dure? How do we take advantage of this basis? Answering tesstions becomes the central objective of this
work.

To demonstrate our findings on an example that exhibits sdrtteeaomplexity encountered in advanced engi-
neering codes, we use a three-dimensional (3D) model ofthaaport in a sodium-cooled reactor core, described
below in Section 4.1. The uncertainty in the model origisdtem the experimental error in measurement of depen-
dency of material properties on temperature. In the contiomia experiments described in this work the uncertainty
space has dimension 12; a 66-dimensional version is alskallea We compare the performance of the new basis
with such standard choices as Hermite polynomials, and we #fat the resulting information matrix is much better
conditioned. In our numerical experiments, the use of themesis results in a small improvement in precision when
the basis polynomials are chosen a priori, and a significaptovement (of several orders of magnitude) when the
basis polynomials are chosen adaptively, using a stepwiisgfprocedure.

The rest of the paper is organized as follows. In Section 2ewmain the general task of uncertainty quan-
tification for simulation models and the PRD approach inipaldr, as well as the place of PRD in the context of
techniques for uncertainty propagation. In Section 3, wadyee the features of tensor-product orthonormal multi-
variate bases for use in PRD and describe procedures faitgithem. In Section 4, we describe the nuclear reactor
model used in our numerical experiments and apply the PRihigue both in standard form and as part of stepwise
regression. In Section 5, we discuss the significance of énfopned work and future steps needed to extend the
technique.

2. UNCERTAINTY QUANTIFICATION BY POLYNOMIAL REGRESSION WI TH DERIVATIVE
INFORMATION
2.1 Problem Definition

We view a generic model with uncertainty as a discretizetesy®f algebraic-differential equations:

F(T,R)=0 1)
R =R(T,z) 2)
J=J(T) 3)

where the variable¥ = (T, Ts, ..., T,,) characterize the model state; the dependence of physieaheters of the
modelR = (R, Ra, ..., Ry ) includes errorsAR = (AR, AR, ..., ARy); an output of interest is expressed by
the merit function/(T); and uncertainty in the physical description of the modeldscribed by a set of stochastic
variablese = (21, 22, ..., Z4).

The parameter s& is not independent. It is related to the variables by a sexpfassions

R :=Ro(T) - [1 + AR(T, z)] (4)
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with the experimental erroAR(T; x), which is also dependent on model state, and on a set of pteemethat
guantifies the uncertainty. The parametetsecome th@rimary uncertainty parameters. Then, the structural equation
of the nonlinear system becomes

F[T,R(T;z)] =0 (5)

Strictly speaking, Eq. (5) now results in the primary valégll being a function ofc and not ofR. (which is itself
a function of model state). To abide by the physical meanihthe respective parametels, we may still write
T = T(R).

We note that the algebraic structure under which uncegtamintroduced into the model can be as simple
as AR(T,z) = « or more complex depending on the modeling principles. Oraamgte is presented in Sec-
tion 4.1.

Our problem is to efficiently characterize the uncertaintshie merit function/(T). We are given

¢ A probability structure on the physical uncertainty spadthpugh some further modeling may be necessary to
properly characterize it [3]) of the variablesand

e A numerical implementation of the physical phenomenon toatputesT givenR(T, ) and, subsequently,
J.

To find the effects of the uncertainty on the merit functign

AJ = J[T(R)] — J[T(R + AR)] (6)
we express the output as a function of uncertainties of thet#) represented by the parameters

J(z) = J{T[R(T) + AR(T; )]} W

In the scope of this work, we assume that merit functidn) is effectively differentiable with respect to the uncer-
tainty quantifierse. If required by an applied problem at a future time, we caovalhon-smoothness with minimal
changes to the general method, as long as its location inntbertainty space is known. Practically speaking, if this
condition does not apply, we can still use the derivativermfation at differentiability points, and discard it else-
where. On the other hand, we expect that our method will wogk primarily for differentiable functions, and our
theory applies only to this case. The challenge in our ermtaathat for a model of more than trivial complexity, the
dependence of the outpuiton the uncertaintg cannot be described explicitly. A straightforward applrotcunder-
standing this dependence would be to evaluate the modebdagege, representative subset of the uncertainty space.
However, one can afford to run the model for only a limited t@mof scenarios. Therefore, a practical approach to
uncertainty quantification is to create a polynomial appr@tion of J based on small-scale sampling using the code,
followed by large-scale exploration of the approximate elod

To that end we choose a sBtof polynomials on the uncertainty quantifiets= {z;},i = 1, ...,d. A subsef{ ¥, }
is used to approximate the merit function:

JrJ =Y Pl () ®)
l

The coefficientgd; are obtained by requiring that the function and the dereatalues of the surrogate modi%(lcc)
match the ones of the real modgx), in a least-squares sense. Approximation of the uncerffsots by a flexible
basis of functions on uncertainty quantifiers is closelgted to the stochastic finite-element method (SFEM); such a
basis is sometimes called polynomial chaos, as we discu&sdtion 2.2.

We extend the idea by using derivative informat\gd at every training point, in addition to the function values
J. The polynomial fitting equations are as follows:
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Uy(Sh) Uy (Sh) U (S1)
J(S1)
\I}l(sm) \I}Q(Sm) \Ijk(sm) :
09U, (Sy)  AV4(S)) AW(S1) 7S]
Wy (St W2 (S1 W (St
o0x1 o0x1 0x1 82(51)
Z1
8\111(51) (9\112(51) a\pk(sl) BJ(Sl)
8x2 8x2 6:02 8172
: : : : 9)
oV(S1) 0Ws(Sy) OV L(Sy) 0J(Sh)
0T, 0T, oxy, Oz
: : : DI (S5)
OV1(S2)  0Vy(S2) OWi(S2) 9z,
o0x1 o0x1 O0x1 :
: : 3 0J(Sm)
oV1(S,,) 0Uy(S,,) OV (Sm) O
0T, 0, oxy,

where S, Ss, ..., S, are sample training points in the uncertainty spagge:= (a:g“,xg“, ...,:z:ﬁ,?). An evalua-
tion of J and its first derivatives af; generates a subcolumn of entries, that is, information éveral rows at
once.

If the resulting system is underdetermined, we can add mameke points. If this option is not available, we
can a priori prune the polynomial basis as we have done inr[@Jeocan use a standard reduction of the uncertainty
space (at the cost of reduced accuracy). However, for opessbapplication, more relevant is the situation where the
system is overdetermined. Then, we can solve it in a leastreg sense. To account for either type of ill-posedness,
we solve the system using a generalized pseudo-inverseagipbased on singular value decomposition [4]. The
generalized pseudo-inverse uses singular value decotigmoshere exceedingly smaller singular values are reglace
with +oo before carrying out the inversion. We call this approach RBrmation It is closely related to stochastic
finite-element approximation [5-7] (also see Section 2.2).

An important feature of the method is that fewer sample goare required compared to derivative-free ap-
proaches. For regression methods, it is normally expehtediie number of regression samples is significantly larger
than the uncertainty dimension, and definitely not less ththumber of polynomials in the basis. Using our ap-
proach, however, we can informally think of each individoainponent of the gradient as an equivalent of another
sample point. The curse of dimensionality associated withr@aximation in large-dimensional spaces is not elimi-
nated, but its effect is reduced. We justify our use of déiresinformation, as opposed to adding more sample points
by using only function values, by the fact that it is posstblebtain complete gradient information of the model with
a limited relative computational overhead, independethefmodel complexity. A computability theory result puts
this overhead at 500% at most [8], making it advantageousad”RD for models with uncertainty dimensions higher
than 5. In practice, the overhead is less. In our experintaetgradient was typically obtained in less time than one
model evaluation. This situation is not unusual in casesrg/henonlinear iteration is present to compute the system
state and, subsequently, the response funcfian. The sensitivity equations involve only one such systenpseh
cost may be comparable to one of the iterations.

A downside of the approach is that one has to make the demviatiormation available. In our numerical exper-
iments, the adjoint differentiation was hand coded. In atesl effort [9], we have investigated the application of our
approach when the gradient information is computed by aatier(or algorithmic) differentiation (AD). Our early in-
vestigations indicate that, while a nontrivial endeaveadient information can be obtained by AD, even when legacy
code is involved, with a small to moderate amount of develepirtime.
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2.2 Connection between PRD and Collocation Stochastic Fini te-Element Approaches

Our work has originated in investigations of SFEM approadbeuncertainty quantification [10, 11] and, particularly
their application to nuclear engineering models. In thesgisere a SFEM approach with a polynomial basis is used,
one constructs an approximation from Eq. (1):

T(x) =Y B/ () (10)
l

One such technique is the Galerkin approach [12]: the céeffis3” are determined by requiring that the projection
of the residual of Eq. (1) on spatespanned by polynomialg; be zero. We have demonstrated that the approach can
be extended to constrained optimization problems as wallewnaintaining the optimization structure as opposed to
converting the problem to nonlinear Eq. (1) [11].

More relevant for our discussion, however, is the collamaapproach. In this approach, the coefficightsare
determined by enforcing that the stochastic finite-elerapptoximatioril' (z) = >, B/ ¥;(z) have a zero residual
at a set of collocation points;;, i = 1,2, ..., M. Thatis,

F{T(z;), R[T(x:;), 2]} =0 i=1,2,...,m. (11)

Assuming that the systei{ T (x), R[T(x), =]} has a unique solution for a given it follows that for each sample
point S;, there is a uniqud; such thatF'[T;, R(T;, S;)] = 0. In turn, the collocation problem [Eqg. (11)] becomes
equivalent to the interpolation problem

S BIW(m) =T(@:)=T;, i=12,... .M (12)
l

We can interpret Eq. (12) as an interpolation problem in ed¢he components of the vector g7 },. Effectively,
based on Eqg. (11), we can state that solving Eq. (12), anc&hugl 1), is equivalent to building a surface response in
each of the components @f(x).

In this work, we are interested in one particular responsetfan,.J(T). Assume, for the purpose of our argument,
that the response function is linearThand that we are seeking a response to the uncertainty vasdhlthe same
polynomial space as we did fdf(x), that is,

J(@) = B/ (=) (13)
!

Assume now that we carry out collocation on the state spage(fR)], to which we apply the response function
J = J[T(x)]. It then immediately follows thaf [T(x)] also satisfies the interpolation conditions

J[T(x;)] = J[T(xs)], i =1,2,...,.M (14)

If, in addition, the function/ is linear in the state variabléB, it immediately follows that the response function
satisfies

D B W) =Y J(B)dVi(w) = J(xi) = J[T(w;)] (15)
l l

Therefore, if the interpolation problem [Eq. (12)] is wethged and thus has a unique solution, it follows that using
collocation for the state and applying the response funcfiare equivalent to determining the coefficieftsfrom
imposing the collocation-interpolation conditions [E45]] directly on.J. Moreover, the solution to Eq. (15) can be
obtained by the least-squares regression approach,

M 2
min ) <J<ccz-> -> B/ %(cci)) (16)
l

Bi i
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since the latter problem has a unique solution if the intiefan problems [Egs. (15) and (12)] have a unique solution.
We also point out that obtaining an approximation of the oese function [Eq. (15)] that satisfies Eq. (14) directly
also carries the name (at least for some of its variants) efélsponse surface approach. Therefore, the approach
described above can be seen simultaneously as an SFEMatmloapproach, an interpolation approach, a surface
response approach, and a regression approach.

When the responsé[T(x)] is nonlinear, the equivalence among the approaches cedselslt but if the function
J is smooth, one can demonstrate by polynomial approximatignments that Eq. (16) will produce an approxima-
tion of the similar quality to using collocation and thenngsi/ (z) as the approximation.

An additional advantage of using Eq. (16) over Eq. (11) cstasif far lower memory overhead, since multiple
values of the potentially large state vecifx) do not need to be stored.

In addition, in the case where gradient information is sawgid J is real valued (or vector valued of low di-
mension), adjoint methods can be used to efficiently comgetivative information. We note that either advantage
disappears it/ is vector valued of large dimension.

In this work, we focus on the widely encountered case whieiereal valued (although the approach is immedi-
ately extensible to vector respongebut the effort versus precision analysis will not be carceit in that case). We
choose the regression ansatz [Eg. (16)], which is more fee@ibout the type of information included in creating an
approximate model of . In particular, we are interested in the case where devivatiformation forJ is available
and formulation (16) naturally extends to

2
miny " < )—Zfsi’wcm) +Z<‘”"’" Zﬁl Al "’") (17)
!

Blzl

We note that the optimality conditions of Eq. (17) are the sa® the least-squares version of Eq. (9). It is easy to
derive other forms of the regression approach [Eq. (17}]ittdude incomplete derivative information or weighting;
but, for this paper, we will include only the standard appiofEq. (17)].

Given the connection we have pointed out between our appiaaa collocation approaches, we will still refer to
the optimality conditions of Eq. (17), implied when solvikg. (9), as collocation equations since, as pointed out in
the preceding paragraphs, for the linear response casenaqukLsolution of Eq. (9) they are equivalent to the SFEM
collocation approach.

2.3 Comparison with Previous Approaches

As described in Section 2.2, the PRD method is related tonmohjal approximations of complex systems with un-
certain parameters and SFEM [5-7, 11]. An important clag&F&EM is SFEM-Galerkin methods [5]. Such methods
are robust, but they also are demanding in terms of computteffort and require substantial storage. SFEM col-
location methods [4, 13, 14] are closely related to our apgio They are nonintrusive and do not need specialized
solvers, but they still use a state variable approximatiah a most circumstances, do not explore the use of gradient
information. We also point out that using a state variablegraximation makes the use of adjoint calculation much
less efficient since the number of dependent variables isveowlarge [8].

To a great extent, our method can be thought of as a hybriddseta Monte Carlo method [15, 16] and a sensitivity
surface response method [17, 18]. Such approaches havelydoeen proposed in the context of Gaussian process
methods [19]. Closer to our approach, other authors havepatsposed SFEM-based hybrid methods [18, 20]. In
particular, both Refs. [18, 20] point out the potential imf@tion efficiency that can be obtained from the gradient and
demonstrate the reduction in number of samples for the samaliyjof the uncertainty assessment, as we do in [3].
Reference [18] uses a singular value decomposition apptoatetermine the coefficients of the model, which would,
in principle, result in a model equivalent to the regressipproach. Nevertheless, our recent work [3] enhanced the
approach in several ways. Specifically, we presented nevg teagrune the polynomial basis to mitigate the effects
of the curse of dimensionality and described the use of thpeomgh as a control variate to reduce the bias. The
regression—least-squares interpretation that we pasitesgkential to determine the advances in polynomial blaats t
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we develop in the rest of this work. Moreover, we have beenetdioknowledge—the first group to investigate the
issues of applying the method in the nuclear engineering f&l9, 21].

Our work shares some characteristics with surface respapgeximation [18, 20, 22, 23]. Such approaches
have been successfully used in nuclear engineering apphsaincluding in the USNRC licensing process [24-28].
Nevertheless, our method is different in its use of gradigiormation as an enhancement to Monte Carlo sampling.

3. ORTHOGONAL BASIS FOR POLYNOMIAL REGRESSION WITH DERIVAT IVE INFORMATION

In this section, we discuss the theoretical consideratibaslead to the construction of a polynomial basis for do-
ing regression with derivative information. In this worlarfsimplicity, we call a basis an orthonormal system of
polynomials (which is a basis for the linear space it spans).

3.1 Modeling Framework

Choose a se® of multivariable orthonormal polynomials of the variables= (z;,--- ,24)”. A subsef{¥;} C ©
is used to approximate the merit function:

JQJZZﬁl\Pl (18)
l

Define an operatdk, that, when applied to &-variate scalar functiorf, returns its value and gradient informa-
tion:

of of  \\"
Lm - [ P 19
r= (1@ @ gl @) (19)
For a vector functiof = (fy,---, fr)?, we extend the definition of the operator as follows:
Hle)  folx) - fi(@)
df1 df2 Ofk
_ w —_— w PR —_— w
ofi | 0f A
8xd (m) 8:17d (iL‘) 8xd (iL‘
We now use this notation to define the collocation matrix ia framework. For the considered choice of polynomials
U = (¥, --,¥;)T, we define the collocation matrR as follows:
L, o7
L, o7
F = : (21)
Ly, ©7
Here,x1, s, ..., x,, are them points at which the system output functidnis sampled. Then, our regression model
becomes
LoJ =L, P7B 4 e(x) (22)

wheree(z) € R™*1 s the error term, which we assume here to be a random vasablethat (z; ) is independent
from g(xs) if ©1 # x2. Moreover, we also will assume that the components(af) are independently distributed
with mean zero and the same variawnde We will discuss the suitability of this assumption shartly

To determine the parameter vecppof the model, we compute the values of the output functi@nd its deriva-
tives at them sample points. Then, a single sample paintwill generate a subvector of entries with components
J(x;) and[0J (z;)/0z;], 7 = 1,2,...,d, providing right-side information for several collocatiequations at once.
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By matching the values of and its derivatives with the corresponding polynomial esgntation, we build an ex-
tended system of collocation equations

F=y (23)

wherey = (LL J,--- LT J)T. This is equivalent to Eq. (9), but now using matrix-vectotation.
The system equation in Eq. (23) is overdetermined. The-gsires solution, that is, the one satisfying Eq. (17),
is given by

B = (FTF) 'FTy, (24)

provided that the matri¥' has full column rank.

We now discuss the implications and suitability of sevesalanptions we have made. We observe that the estima-
tor [EqQ. (24)] is unbiased for the model [Eq. (22)] for any me&ro noise, irrespective of the other properties of the
noise [29]. That is, from Eq. (248[B] = E[(FTF)"'FTy] = (F'F)~'FTE[y] = (F'F)~'FTy = B. Therefore,
our assumption that(x) has independent identically distributed entries has noilgaver the biasedness, even if
incorrect for a particular model. Moreover, consistenbg(tis, convergence cﬁ to B in probability for increasingly
large data sets) would also follow under fairly weak comahisi even if the distribution of(x) is misspecified.

Naturally, any confidence test will be affected if the cosade assumption ag(x) is incorrect. On the other hand,
absent other information about the problem, assumingetfag) has independent, identically distributed components
is a reasonable starting assumption. In addition, it seemedrrect assumption if the error is due to rounding. While
assumptions about the proper noise form are clearly nobwitbhonsequences, the latter observation, the robustness
of several of the properties of classical regression witlpeet to several of its assumptions [29], and the fact that
bias is not affected by the particular form of the noise, pguous to continue the analysis of the consequences of the
independently, identically distributed component noiseled at this time.

3.2 Design Consequences

Toward the end of making Eq. (24) a robust estimate, a crasglimption is the one thé\l“TF)_1 is not singular.
Moreover, assuming that the regression model [Eq. (22)]taachssumptions on are correct, then the estimator
described in Eqg. (24) satisfie5v([§) = o?(FTF)~!. Therefore, obtaining a good regression estimate meaagebt
ing a Smallcov([g), subject to a normalization constraint (such as prescritse). Such problems are the subject
of experimental design [30]; and one design strategy2kaptimal approach, attempts to maximize the determinant
of the covariance matrix. Unfortunately, tihieoptimal and other alphabetic optimal designs are highpedelent on
the choice of the basidb. In our situation, the final choice oF is made after the data are observed. Such a data-
dependent basis selection procedure is common in lineeessign. The effect of removing®, from the surrogate
model is confounded by the presence of otfirerin the model. The magnitude of this confounding is propoio

to thel, I’ element Ofcov(g). Therefore, we aim to choosk and a desigre;, ..., ¢, that make&ov([g) closeto a
multiple of the identity matrix.

Suppose that the desigs, ..., z,, iS chosen to approximate a probability distribution witmsigy p, in other
words, the empirical distribution of the design is closehm distribution of a continuous random variable with dgnsit
p. Therefore, the information matrix may be approximated byrgegral involving the basis but independent of the
details of the design:

Lprp = liLwi\IJ(Lm\pT) z/ L, W (L, 7) p(x)da
m m i Q
1 NN TN, ' )
-1/ (%(ccm(mwz % (@) aﬂ“’)) p(m)dm]
i=1 ! jh=1
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This relationship suggests the definition of the inner pobdlhiat depends on both the function and its derivative:

d
(f.9) = /Q Lo f (Lag)” p(x)dz = /Q ( Z &C >) p(x)dz (26)
1 1

This approximation for the information matrix implies thiis approximately a multiple of the identity matrix if the
U, are chosen to be orthonormal with respect to the inner ptatkfined in Eq. (26){¥;, ¥),) = d;p.

Given any initial polynomial basis, one can use the Grama8dhmethod to construct an orthonormal basis with
respect to the inner product [Eq. (26)]. However, as showeh s basis might not be of tensor product form. A tensor
product basis has the important advantage of facilitativegimclusion or exclusion of terms involving the variable
x; without adversely affecting the terms involving other aétes. For example, the basise, x2, 124 is of tensor
product form, and removing the variahte means only removing the last two basis elements. The regudtsis still
allows for general linear polynomials iry. The basidl, z1 + 2, 22, z122 Spans the same space as the first one, but
now removing all terms involving- leaves only the constant term.

Thus, one would like to have a tensor product basis thatli®adrmal with respect to the inner product [Eq. (26)].
If the derivative terms are not included in the definition bé tinner product, then one naturally obtains a tensor
product of common orthogonal polynomials such as the Legepolynomials in the case of the uniform distribution,
or the Hermite polynomials in the Gaussian distribution][3&ideed, tensor product bases are the most routinely
considered bases in uncertainty quantification. Howewecesthe derivative terms must be included in the inner
product, reflecting the derivative values in the the infalioramatrix, it may not be possible to retain orthogonalitga
a tensor product basis for arbitrary orders of polynomiliss is an important issue to address, given the observation
in previous work [1] that some of the original variables maibit higher degrees of nonlinearity than others. The
next subsection explores this problem.

3.3 Characterizing a Tensor Product Basis

To gain a taste of the difficulties involved, consider theecfms d = 2, with both variables uniformly distributed on
[-1,1]. The umvanate polynom|aISW|th respect to the inpeduct in Eq. (26) are, z1, 22 — (1/3), 23 — (9/10)z1,
and 1,70, 23 — (1/3), 23 — (9/10)x5. Unfortunately, it can be shown that the multilinear polgmal z; - x5 is

not orthogonal to the fourth degree polynomial- [z3 — (9/10)x2] under this inner product. Therefore, a tensor
product orthogonal polynomial basis of an arbitrary degnes not exist when the inner product contains gradient
information, as is the case for our choice of the inner profi. (26)].

We thus proceed to investigate the circumstances undehwdisor product bases can be defined, which neces-
sarily must include constraints on the polynomial degrbas are considered. The following Theorems 2 and 3 and
Corollary 2 provide sufficient conditions under the assuamhat the variables are symmetrically distributed orirthe
domain. We first characterize the one-variable polynonuiglsogonal under the inner product [Eq. (26)].

Theorem 1.
Let w;(x) be univariate{ = 1) orthonormal polynomials with respect to the inner prodéet. (26)] such that the

degree ofw;(z) is j. Then,w; (z) has the formu; o27 + a;j227 2 + -+ +a. il 4 Jxﬂ 2[3] forvj e N (where| | is
the floor function, that is, it rounds down to the nearestgatg
Proof. Thew;(x) are computed recursively by using the Gram-Schmidt orthafization and the inner product in
Eq. (26):

( Z; 0 <g.77 wl>w1 (l’) (27)
g (x) = 2120 (95, wihwi(=) |

whereg;(z) = x7. Note that for any non-negative integgrandh

wo(x) =1, w;(x) =

(03.90) = (o7} = [ (2940 + T ol = 0 (28)
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if 7 andh have opposite parity, singeis an even function. The proof of this theorem proceeds bydtidn.
For the caseg = 1, 2, property (28) implies that
x— (z,1) x

wy(z) = ————— = T = a1,0% (29)
lz —(z, )| =]
a® — (<I2a 1) + (2%, a1,0z)a1 01?) x? — (22,1 9
p— ? ? p— ? p— 30
ws () 72 — (22, 1) + @2, arom)aron) | % — (@2, 0y 207 T2 (30)

both of which satisfy the conclusion of the theorem. _

Now assume that;(z) = a;joz? + ajox? ™2 4+ -+ aj_Qtlej*QL%J for j < n. Since(g;, gn) = 0 for j andh
of opposite parity, it also follows thd;, w,) = (27, w;,) = 0 for h < n and;j andh of opposite parity. Then, for
j = n+ 1, by definition of the Gram-Schmidt orthogonalization itiéoVs that

zt — Y0 " wiwy (x)
wn(x) = " 31_1 - x " — Z <xn7wj>wj(x)
HCL‘ - Zj:l <x ’wj>wj (CL‘)H 0<j<j & n same parity
= A 0% + Ap oz 4 an,zL%an_QL%J
Thus, the statement is proved by induction. O

Corollary 1.
For the inner product defined in Eq. (26) and orthonormalsbasi w, ws, ... defined above, with the variable
domainQ and distribution densitg both symmetric with respect to 0, then the two componentsefriner product,

Jo wi(z)w;(x)p(z)dr and [, wi(x)w)(z)p(z)dz, both vanish ifi and; are of different parity.

Proof. By Theorem 1w; is a sum of terms of the form; ;_,z", wherej and i have the same parity. Thus,
Jo wi(z)w;(z)p(x)dx and [, wi(x)w)(z)p(x)dz may both be written as integrals of monomiafs whereh has
the parity ofi + j. If ¢ 4+ j is odd, then the integrals vanish becapse symmetric, as was noted in the derivation of

Eq. (28). O

We now tackle the issue of the restrictions on the polynomégjree that allow for the definition of a tensor-
product orthogonal polynomial basis for the inner prod&ct.[(26)]. Sufficient conditions for such a basis to exist are
provided by the following Theorem 2.

Theorem 2.
Consider the set of multivariate polynomiglsy, : wp(x) = cp H?lej,pj (zj), p € T'}. Here,{w;,}>%, is
the set of orthogonal univariate polynomials constructecbeding to Theorem 1 using the symmetric probability
density p; defined on the domaif2;. Also, I' C N¢ is the set of possible indices (degrees) of the multivariate
polynomials, wherep = (p1,p2,--- ,pa)’ is one such index set. Moreovey, is the normalizing factor to make
lwpl] = 1; and the inner product, Eq. (26), for these multivariateypomials is defined by the product density
functionp(x) = Hle p;(z;) defined on the Cartesian product sample sgaee Q1 x Q3 x --- x Q4. Under these
assumptions, i = (¥,,---,¥;)7T is the vector basis whose elements are taken from the abbeémseiltivariate
polynomials, then thes&; are orthonormal, that is,¥;, ¥;) = &,;/, provided that the index sét satisfies the
following condition.

For all distinct pairs of indice®, q € T there exists somee {1,2,-- -, d} such that one of the following criteria
is satisfied:

1. The polynomialgu, andwg are univariate polynomials af;,; i.e.,p; # g;, p; = ¢; = 0, for vj # .

2. One of the two polynomials), or wq does not depend on;, while the other does, i.ep; = 0 # ¢; or
pi #0=q;.

3. The two polynomialsv, or wq have different parity in the variablg, i.e.,p; andg; have opposite parity.
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Proof. The proof proceeds by showing that,,, wq) = 0 for anyp andq matching the criteria above.
Case 1: Sincevp(x) = w; p, (z;) andwg(x) = w; g, (x;), it follows that(wp, wq) = (w; p,, wiq) = 0.

Case 2: Without loss of generality, we can take= 0 # ¢;. The inner productwp, wq) is shown to vanish by
showing that each term in its definition in Eq. (26) vanishegarticular, the orthogonality of the univariate
polynomialsw; o andw; 4, implies that

/ wp () wq(x)p(x)dz o / w;,0(T)Wi,q, () p(2)dr = (Wi 0, Wig) =0
Q

Q;

/ wz’-,o(xi)w;qi (zi)p(x;)dz; =0, i=s sincew,(z;) =0
Owp , | Owg Q '
z)2%a

d
o 0z Oxs (@)o(@)da o
wi_ro(:zri)wiyqi (xz)p(xl)dxz = O, 7 }é S
Q;
It then follows that every term in the definition @iy, wq) vanishes, séwp, wq) = 0.

Case 3: Accordingto Corollary 1,
/ Wi p; (T)w; g, (2)ps(x)dz =0 and / w; , (2)w; 4, (x)pi(x)dr =0
Q; Q;

By the same argument used for Case 2, it follows thgt wq) = 0. O

Note that Case 3 includes the case whgre 1 andg; = 2 but notthe case whegg = 1 andg; = 3. Some simple
characterizations of sets of polynomial indices (degrées)satisfy Theorem 2 are given by Corollary 2. The proof
of this corollary follows by checking that; satisfies the conditions of Theorem 2 and noting thaits a superset of
Iy andFQ.

Corollary 2.
The following choices of" all satisfy the criteria of Theorem 2 that guarantees arodhmal multivariate basis:

I ={peNi:|pli <3}, To={peNj:|plle<2},
I3 =TyU{p=(0,...,0,p;,0,...,00T eNd :i =1,...,d}.

The sets in Corollary 2 are almost the best obtainable fortipad purposes. Indeed, we note that the example
provided at the beginning of Section 3.3 shows the the imbilisg of constructing tensor product bases with gll
satisfying eithef|p|; < 4 or ||plls < 3.

We now discuss how the orthogonal basis is affected by riegcdlhis issue is important because many times the
parameters of interest have completely different physioik, yet they will be modeled on some reference domain,
making rescaling necessary. It has been assumed in Secligcha& the function values and the first-order partial
derivatives all have the same varianc&, This assumption depends on the scaling of the variahldssing a different
scaling (different units) changes the first-order partitdhtive by a constant and changes its variance accosding|
However, the main conclusions of Theorem 2 still hold undfeknt scalings.

Theorem 3. B
Forj = 1,...,d, letQ;, p;, and{w;,}32, be reference domains, probability density functions, aeguences
of orthogonal polynomials satisfying the hypotheses ofdrbm 2, respectively. Fof = 1,...,d, choose any

a; > 0 and anyb; to define new rescaled domains, probability density fumsti@nd sets of multivariate polyno-
mials:
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r—b; =~ Lo (z=b; b
Qj_{a:: JGQJ_}’ pj(x)——pj( J), vp : Up(x —CprJpJ( >7PGI‘
aj aj a; @

Here, ¢, is the same constant as in Theorem 2, and thé' settisfies the same condition as in Theorem 2. Using the
scaling constants;, redefine the operatdr as

Lot = (1@ @ acfl @) )
fi(z) fo®) - fil)
af1 an ofi
(@) az=(x) - az—(w)
Lof7 = 3“’”_1 3“’”_1 M (32)
6f1 an 8fl
aig (@) aag (@) aig - (@)
Use this rescaled operator to redefine the inner product if26) as
TN
1.9 = [ Lo (Lag)” olaic = [ <f<w>g<w>+;afa—f<m> o >> ple)dz (39

if the above set of multivariate polynomials is orthonormvéh respect to this new inner product.

Proof. The proof proceeds by verifying that the inner product of tnaltivariate polynomials from this theorem,
andvq, equals the inner product of two multivariate polynomiatsii Theorem 2 by a change of variable. Since

Ovp 1 T — b x; —b;
axk( ) = cpa_kw;C,pk ( H w]apj Jaj

Jj=1, j#k

it follows that

(vp, vq) /Cpcq Hwa,pj ( ’ ] )wjv‘h' ( Jaj J)
d k — bk k — bk z; —b; X
Z ( )w;quk ( ) H Wj,p; ( Ja_ '7) Wy, q; ( .
k= J

— b, d
) | T estepae
J j=1

Jj=1, j#k
d d d d
H Wj,p; (Uj)wjq; (us) +Zwk Pr (uk)wy, Sk (ur) H Wj,p; (Ug)wj,q; (u) Hf) (u;)d
j=1 k=1 j=1, j#k j=1
= (wp, wq)
where the first inner product is the rescaled one in Eq. (38)}tfa@ second one is the original one in (26). O

3.4 Construction of Orthogonal Bases

Provided that the required degrees of the multivariatermumiyials satisfy the conditions in Theorems 2 and 3, one can
always construct a basis of orthogonal multivariate potgiats as tensor products of orthogonal univariate polyromi
als. Given a family of distributions (e.g., uniform), andcedarence domain (e.d-1, 1]), Theorem 3 may then be used
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to construct the multivariate tensor product orthogonaldaven if the domain is stretched, shrunk, or translatéd. A
the same time, Theorem 3 also describes how to adjust thecatitbn matrix to account for the rescaling.

For example, suppose that= 2, variablex; is uniformly distributed ori—0.5, 0.5], and variabler, is uniformly
distributed on—1, 1]. The univariate orthogonal polynomials with respect tothgorm distribution on—1, 1] and

inner product [Eqg. (26)] are

3 )

T4 — —

9
P —

1077

If the total degree of the multivariate polynomial is no kar¢ghan3, then by Theorem 3 one may obtain the following
vector of orthogonal basis functions with respect to theimproduct [Eq. (33)]:

T = (Uy,... W)

- T (I1)2 1 T1T2 9 1
Vo 05 T3 05 2T 3

Correspondingly, the collocation matrix and responseorestiould be adjusted as

_i(ﬂ) z1
10 \0.5/” 0.5

) |(

X 2 1 3
0.5) E]

_m}

U, (S)) Uy (S)) U10(Sh) J(S1)
0.5‘2—2(51) 0.5%(51) 0.568‘2110(51) 0.58‘2(511)
Tl Ss) S 81) e
F= Uy (So) Ws(S2) Vi0(S2) y = J(S2) (34)
0'5%(Sm> 0.52—‘53’(5,”) 0.588‘1;110(sm) o.5a°gim)
T (Sn) S2(Sw) (S ) 5]

Naturally, the conditions in Theorem 2 are somewhat resteicsince they limit the degree of polynomials that
can be used while still retaining orthogonality and the ¢empsoduct structure. However, to introduce polynomials of
higher degree requires that we give up either orthogonalitiie tensor product structure. Giving up the former may
lead to the situation where the estimates of pairs of regmes®efficients are highly correlated. Giving up the latter
makes it awkward to remove one variable from the model witlzalversely affecting the dependence of the model
on other variables. In practice, the restriction on the degnay not be too limiting since given a maximum total
degree allowed op, the number of possible polynomials increase®#4”) as the dimensiond, tends to infinity.

On the other hand, the number of polynomials used shouldxuetesl the number of observations available, namely,
m(d+ 1). In our numerical results in Sections 4.3 and 4.2 we will éd@sonly the tensor product basis produced by
PRD in order to assess its properties and potential.

4. NUMERICAL RESULTS

In this section, we investigate the results of using thedepsoduct basis developed in Section 3 with the PRD
approach.

4.1 Applied Problem

As an applied example, we use a 3D, steady-state reactommatel with uniform fuel elements, simple heat transport
description (including convection and diffusion), unifoliquid coolant flow, and no control mechanisms. While our
research extends to more complex systems, the idea was towithr a model that exhibits behavior typical for
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real-world nuclear reactors in sufficient measure to studgettainty propagation and that avoids model-specific
complexities of the nuclear reactor analysis. The opematiparameters of the model were chosen to correspond to
a sodium-cooled fast reactor with realistic temperatu@iesions. A cross section of the finite-volume geometric
representation (with just seven pins) is shown in Fig. 1hinfbllowing paragraphs we briefly describe the physical
model. A more detailed description of this model is providefB].

To model uncertainty related to thermo-hydraulic desmipbf the reactor core, we couple a 3D heat conduction
and convection equation

0=~V -KVT - pc, VT +q" (35)
represented by
0= / KVT - 7dS + / pc, T - idS — / q"dv (36)
o0 o0 Q

in every volume cell2 with the dependencies of the material properties (heatwttivity in fuel and coolantx’,
specific coolant heat, , heat transfer coefficierit, and coolant density) on temperature:

(K,cp.h,p) = R = Ro(T) - [1 + AR(T, z)] (37)

with the error-free dependency functioRs (T) taken from the available materials properties [32, 33]. Ehelant
flow @ and heat source tergi’ were calibrated to represent a realistic situation. Thethaasfer coefficienk appears
in the discretization oW/ T over the boundary between fuel and coolant.

We use a fairly complex uncertainty structure in which theertainty quantifiers are dimensionless coefficients
in the representations of the dependency of material ptiegamn temperature:

AR(,T, T) =X CO(T) + 27 - Cl (T) + x9 - Cg (T) (38)

Co(T)=1;C1(T) =T+ 1;Co(T) = 2T? — 1 (39)

thus resulting in three uncertainty quantifiers per physiasameter; the dimension of the uncertainty spade.is
Furthermoreg, z1, 2 are randomly distributed with a probability density fuctiestimated from the published
data [32, 33]. As a result, the experimental erfaR in measurement of a material propegyis, in this case, not
randomly and uniformly distributed over the geometry of thactor. Instead, it depends on temperature (and that
dependence itself is uncertain as quantified by the parasejez;, andz,). Other expressions for uncertainty
representation are, of course, possible. Our main apprgtlits any structure as long as the derivathiéx) /0x

can be computed.

AN

FIG. 1: Simplified 3-D model of the reactor core.
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The solution of the coupled system is resolved. In the ckfueh element we use a finer 3D grid for evaluating
the temperature distributidhy,:
~V - KVTpin+q" =0 (40)

We chose the maximal fuel centerline temperature as a maritibn. We note that over the continous spatial co-
ordinates this function is differentiable as long as the imaxn is unique and regular in an optimization sense.
Nevertheless, to protect against nondifferentiabiligttimay be induced by the discretization of the partial déffial
equations, we use an approximation with another vector ndiffi) = max(Teenterline) ~ ||Teenterline||100- The
approximation is differentiable since the argument of themnever approaches zero.

For this model, the gradient information was obtained bgaticoding. We are currently actively investigating the
use of automatic differentiation techniques to obtain gmat$ for our method when applied to nuclear engineering
applications [9].

4.2 Quality of the Information Matrix

In our numerical experiments, we consider an applied mod#alwncertainty space dimensiaf. To determine the
quality of the information matrix, we assume a uniform disttion for each of thé 2 parameters of our model from
Section 4.1. The range of values of each uniform marginalidigion is obtained by matching it with the mean and
variance of each parameter from a full nuclear reactor strari model. This uniform distribution does not necesgaril
match the full multivariate distribution of the full nucleseactor simulation model, but it is more convenient to work
with. Starting from a uniform distribution ojr-1, 1], we use the following values of the scaling and shift paranset
as described in Theorem 3, wheke= (a1, - - ,a12)?, andB = (by,--- ,b12)7:

0.0094 0
0.0094 0
0.0097 0
0.0807 0
0.0819 0
0.0865 0
(4,B) 0.0734 0 (41)

0

0

0

0

0

0.0768
0.0841
1.9868 x 10~°
1.8514 x 1075
1.9047 x 107°

Using this experimental setup, we analyze the propertid¢seoinformation matrixF” F through the singular values
of the collocation matrix¥', since the singular values bfare the square root of the eigenvalues of information matrix
FTF, and the condition number of the information matrix is thea® of that of the collocation matrix. Here, the
condition number of a non-square matrix is defined as the ddtihe largest and the smallest of its singular values.
As described in Section 3.1, we expect the properties oftlaisix to be a good indicator of the performance of the
model. In particular, we would like this matrix to be at a sian$ial distance from singularity and as close to identity
as possible (although for random designs like the ones deresd here, this can be achieved only in the limit of an
infinite number of sample points; whereas we will use the aagi for a relatively small number of samples).

We tried two different experiments. For the first experimeve obtained a total 0f4 sample points. We used
36 sample points as training data, and the ottteas testing data. For the full model of dimensighwe have455
multivariate polynomials up to degreékein the full basis; the collocation matrix will be of the sizé8 x 455. In
the following section, we will compare the prediction rasuf full basis and truncated basis. Using the Hermite
polynomial basis witht55 polynomials, with36 sample points including function and derivative inforroati we
observed that the numerical rank of the collocation magix3B, which means that the corresponding information
matrix is singular. The condition number of the collocatioatrix is 1.9806 x 10'7. We ran the same experiment
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for the orthogonal basis described in Corollary 2. We defithedindex set based on total degree of the polynomial
basis, which we require to be less than or equdl tihat is,||p||; < 3. Using standard distributiobi[—1, 1] and the
Gram-Schmidt method, we can get the univariate basis upgreds in one dimension asvg(z) = 1, wi(z) = z,
wa(z) = 2% — (1/3), w3 (x) = 23 — (9/10)z.

Then, based on Corollary 2, the tensor product of the urdtebasis is an orthogonal basis for the multivariate.
We use the sam&6 sample points as for Hermite polynomials, which means thiecaion matrix will be of size
468 x 455, and we get the full rank collocation matrix with conditiommberl.4408 x 10°, a far better result compared
with the Hermite polynomial case. For the second experimneatobtained a total of08 sample points. We usg2
sample points as training data, and the remaiiigample points as testing data, and the size of the collatatio
matrix will be 936 x 455. Using the Hermite polynomial basis witls5 polynomials, with72 sample points including
function and derivative information, the condition numbegthe collocation matrix ig.8289 x 1013.

Using the same orthogonal basis constructed in the firstgrpat, with the sam&2 sample points as for Hermite
polynomials, we obtained the condition numier397 x 103 for the collocation matrix, which corresponds to a far
better conditioned information matrix. In Fig. 2, we ploétthe singular values of the collocation matrix in log scale
for both our tensor product orthogonal basis and the Herpatgnomial basis, for the first experiment, with a total
of 54 sample points. We see that for Hermite polynomials, thewargvalues distribution drops more quickly, so
the corresponding information matrix will be farther awagn the one for our orthogonal design. Also, we can see
that for our orthogonal basis, most of the singular valueslaige, which means the variance of the corresponding
coefficient is small.

In Fig. 3, we plot the the singular values of the collocaticatrix in log scale for both our tensor product orthog-
onal basis and the Hermite polynomial basis, for the secapdrament, with108 sample points. We observe a result
similar to that of the first experiment.

4.3 Using the Tensor Product Orthogonal Basis within Stepwi se Regression

Once we produced an orthogonal basis as described in S&tiomimportant issue was how to harness its potential
promised by our analysis in Section 3.2. In particular, veeiaterested in identifying regression procedures usiigg th
basis, which has a small generalization error; that is, ve& peocedures that do well on data on which they have not
been trained.

2
10 T T T T T T T T T
Orthogonal Basis
10° 5‘ — + — - Hermite Polynomials | |
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\
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FIG. 2: Ordered singular values of the collocation matrix $drsample points.
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FIG. 3: Ordered singular values of the collocation matrix {68 sample points.

Since small generalization error is connected with thatglio fit a model well on a small set of predictors [34],

a natural question to ask is, what is the best subset of tkis Hzat will predict the output? Stepwise regression [35]
gives an approach to truncate the basis. It is a systematiwoehéor adding and removing terms from a multilinear
model based on their statistical significance in a regrasbiased on hypothesis testing, suctiaandt tests [35].

For the modelL,J = L,¥Tp + ¢, stepwise regression is based on fidest. The method begins with an
initial model and then compares the explanatory power akimentally larger and smaller models. At each step, we
compute theF statistic of each coefficient and then compute phealue, which is the probability with respect to
the F distribution to test models with and without a candidatentelf a term is not currently in the model, the null
hypothesis is that the term would have a zero coefficientdeaido the model. If there is sufficient evidence to reject
the null hypothesis, the term is added to the model. Conlygifa term is currently in the model, the null hypothesis
is that the term has a zero coefficient. If there is insufficéstdence to reject the null hypothesis, the term is removed
from the model. The method proceeds as follows.

Step 1: Fit the initial model.

Step 2: If any terms not in the model hgwvealues less than an entrance tolerance (that is, if it isealylithat they
would have a zero coefficient if added to the model), add tleewaith the smallesp value, and repeat this
step; otherwise, go to Step

Step 3: If any terms in the model hayevalues greater than an exit tolerance (that is, if it is wilikthat the
hypothesis of a zero coefficient can be rejected), removerteewith the largest value, and go to Step;
otherwise, end.

Depending on the terms included in the initial model and tttepin which terms are moved in and out, the method
may build different models from the same set of potentiaheThe method terminates when no single step improves
the model.

There is no guarantee, however, that a different initial eloda different sequence of steps will notlead to a better
fit. In this sense, stepwise models are locally optimal but @t be globally optimal as opposed to globally optimal
model selection methods such as best subset, LASSO, or LARh&other hand, our model h&s5 polynomials,
which is a very large basis, and thus computational effost bea difficulty for those methods. Another concern for
our method originates from the fact that in our case stepmigeession performs the modeling by analyzing a large
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number of terms, and selecting those that fit well. Thusivalues for the selected terms are likely to be significant,
and hypothesis testing loses its inference power. If theailvje of modeling is to test the validity of a relationship
between certain terms or to test the significance of a pdatiterm, stepwise regression is not recommended [35];
also see [36] for a discussion of pseudoness offihstatistic. If the objective is to predict, however, as is thase
here, stepwise regression is a convenient procedure fects® terms, especially when a large number of terms are
to be considered. As a result, we choose stepwise regressiour basis truncation method.

We use thest epwi sef i t function in MATLAB (implementing an algorithm from [37]) ral define thep value
for basis to enter and exit &05. We tried both starting with nothing (no polynomials) in tim@del and everything
(all 455 polynomials) in the model.

We use the same two sets of data as in the previous sectiothaHinst experiment, we will havg sample points
for training andl8 sample points for testing.

For the orthogonal basis obtained from Corollary 2, stgrtirith nothing in the model, we g@ polynomials
in the final model. When we started with all of td85 polynomials in the model, we g&t71 polynomials in the
final model. In Fig. 4, we show the function value errors, vétid without basis truncation, witfD) standing for
the orthogonal basis case. We report relative functioneveluors, ordered from smallest to largest. Starting with
nothing in the model results in far fewer polynomials thaartitg with everything in the model. It also results in
better estimation error for the testing data.

For Hermite polynomials (one of the recommended polynos@#d used in uncertainty quantification [31]), start-
ing with nothing in the model, we g66 polynomials in the final model, while starting with all of thg5 polynomials
in the model, we got24 polynomials in the final model.

In Fig. 5, we compare the relative function value errors oftiated orthogonal basis starting with nothing in the
model with those of the Hermite polynomials using the fultisaand two methods of stepwise regression.

Then, to get a more general view of the prediction error ofilbebdels, we permute thid sample points randomly
30 times. Each time, we randomly také points as training data, and take the oth&points as testing data. In Fig. 6,
we show the boxplots for the relative function errors of thenfard truncated orthogonal model compared with those
of three kinds of Hermite polynomial basis: full Hermite pobmial basis, forward truncated Hermite polynomial
basis, and backward truncated Hermite polynomial basis.

In Fig. 7, we show the sample mean and standard deviatioreafeflative function value errors for the forward
truncated orthogonal model compared with those of thregskai Hermite polynomial basis.
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FIG. 4: Relative function value errors without basis truncatiompared with those with basis truncations.
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FIG. 6: Boxplot of relative function value errors in log scale foetforward truncated orthogonal basis compared
with those of truncated Hermite polynomials withh sample points.
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FIG. 7. Sample mean and standard deviation of relative functiomevatrors in log scale for the forward truncated
orthogonal basis compared with those of truncated Hernolgnpmials with54 sample points.

We conclude from Figs. 6 and 7 that stepwise regression wsufastantially better for the orthogonal basis com-
pared with the Hermite basis, resulting in better estimg@gsnore than an order of magnitude) and fewer polynomials
in the final model, when the number of sample points is verjtdich

For the second experiment, we will have a total @ sample points72 as training points ang6 as testing points.

As in the first experiment, we permute the8 sample points randomi§0 times. Each time, we randomly take
points as training data, and use the otB@ipoints as testing data. In Fig. 8, we show the boxplots foréhative
function errors of the forward truncated orthogonal moaehpared with those of three kinds of Hermite polynomial
basis: full basis, forward truncated basis, and backwatttited basis.

In Fig. 9, we show the sample mean and standard deviatioreafetlative function value errors for the forward
truncated orthogonal model compared with those of thregskad Hermite polynomial basis.

From Figs. 8 and 9, we conclude that, with more sample pointsifich case, the collocation matrix of Hermite
polynomial basis is better conditioned), forward trundatethogonal basis does almost the same as full Hermite
polynomial basis. On the other hand, we have only al6éuytolynomials in the forward truncated orthogonal basis,
as opposed td55 polynomials in Hermite polynomial basis, so our method dbessame quality of work but with
a far smaller model. We also see from Fig. 8 that truncatddogdnal basis is much more stable than truncated
Hermite polynomials, as the length of the boxes indicated.9&& from Fig. 9 that truncated orthogonal basis gives
better prediction error than truncated Hermite polynomislle thus conclude that even in the larger sample size
case our method does better. We emphasize, however, thapplication regime of interest is the low-sample-size
case brought about by the need to evaluate expensive fusdhat is common in uncertainty quantification. As we
saw from Figs. 6 and 7, in that case the performance of theated orthogonal polynomial basis approach that we
advocate is even stronger compared to the Hermite polyneani@nts.

5. CONCLUSIONS

We investigate polynomial approximations to the resporisesystem to a multidimensional uncertainty parameter.
Specifically, we investigate a regression procedure foaiabtg the best polynomial approximation in the presence
of function and gradient information. Such an investigati® warranted by the increased availability of gradient
information, for example, by use of automatic differentiattools.

Nevertheless, the use of gradients to approximate thersystgponse also poses new challenges that we address in
this paper. We find that the use of the Hermite polynomialdasiy resultin an essentially singular information matrix
for the regression procedure, especially when the numbiemetion and derivative values only slightly exceeds the
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number of polynomials used. We remedy this situation byvitegian orthogonal basis with respect to Asrtype
inner product that includes both the function and its deirrea

We are interested in particular in obtaining tensor prothasies. These bases give us two advantages. First, they
are easy to implement, regardless of the dimension. Seedmeh we want to do basis truncation according to the
importance of a certain variable, we can directly remove @mportant variable without inadvertently deleting the
polynomials including important variables. We proved b such bases can be obtained under some restriction of
the maximum degree of the multivariate polynomials.

Numerical experiments demonstrate that the tensor pramtiubgonal bases constructed here result in substan-
tially better-conditioned information matrices. In adaiit, sStepwise regression performs much better using this ne
basis in terms of obtaining a smaller error in predictingciion values and in a more parsimonious model. These
findings are validated by using a nuclear reactor core sitionl@xample.

The work presented here needs to be expanded in severdlatisein order to increase its generality. In this paper
we have considered only random designs for sampling. A betteditioned information matrix and more accurate
function approximation might be obtained by choosing a numiéorm design. In the application discussed here, such
designs must be constructed on somewhat nonrectangulaid®mnother area for further study is model selection.
The numerical experiments suggest that pruning of the beails to better model prediction. Besides the stepwise
selection procedure used here, one might consider a shenkeethod, such as LASSO. This method chooses the
regression coefficient to minimize dp-penalized least squares:

k
— argmin{ [y — Fb[2 + 23 [b,|
b

Jj=2

~lasso

whereX > 0 is a complexity parameter that controls the amount of slagekand: is the number of polynomials in
the basis. Note that the constant tefm,is not part of the penalty. Choosigsufficiently large will cause some of
the [5';?‘55%0 be exactly zero. Another important question is the gerissue of error models; we believe that in our
case it may make sense to assume a correlation between ting @rdifferent sampling points as well as between
function and derivative information.
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