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We discuss the choice of polynomial basis for approximation of uncertainty propagation through complex simulation

models with capability to output derivative information. Our work is part of a larger research effort in uncertainty quan-

tification using sampling methods augmented with derivative information. The approach has new challenges compared

with standard polynomial regression. In particular, we show that a tensor product multivariate orthogonal polynomial

basis of an arbitrary degree may no longer be constructed. We provide sufficient conditions for an orthonormal set of

this type to exist, a basis for the space it spans. We demonstrate the benefits of the basis in the propagation of material

uncertainties through a simplified model of heat transport in a nuclear reactor core. Compared with the tensor product

Hermite polynomial basis, the orthogonal basis results in a better numerical conditioning of the regression procedure, a

modest improvement in approximation error when basis polynomials are chosen a priori, and a significant improvement

when basis polynomials are chosen adaptively, using a stepwise fitting procedure.
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1. INTRODUCTION

We discuss the choice of polynomial basis in polynomial regression with derivative (PRD) information. PRD is an ap-
proach to uncertainty quantification in which an approximate model of the system response is computed by regressing
both the output information and its derivative with respectto the physical parameters computed at a small number of
sample points in the parameter space. In turn, this model canbe used to efficiently estimate the system response under
parametric uncertainty.

For several nuclear reactor system simulations, we found that approximation of the uncertainty effect by PRD is
more precise than linear approximation by an order of magnitude or more [1]. Moreover, we have shown that the PRD
model can be used as a control variate to reduce the variance of certain statistical estimators. In turn, this results in far
fewer system samples being used to obtain a reasonable confidence interval for those estimators.

Our approach hinges on the observation that adjoint techniques can be used to efficiently compute gradient in-
formation. In particular, the required derivatives can be computed by algorithmic, or automatic, differentiation: a
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procedure that reads source code of the model, augments algebraic operations with their partial derivatives, and then
assembles the gradients using the chain rule. The adjoint (reverse) mode of automatic differentiation computes the
gradient of the system response in a time that is at most five times the cost of one function evaluation (system simu-
lation for a given choice of parameters), irrespective of the dimension of the parameter space [2]. Hence, in principle,
we obtain no less thand/5 more information for the same computational cost when compared with samples of the
function values alone. As a result, the use of derivative information allows one to build approximations based on
smaller training sets (or, equivalently, by using fewer computationally expensive model runs).

As we have demonstrated in prior work, the use of derivative information in PRD relaxes the limitations of the
“curse of dimensionality” and allows uncertainty quantification of models with 10–100 uncertainty quantifiers. At
the high end of this range, a reasonable approximation precision requires a very large polynomial basis, and the
regression procedure becomes numerically ill-conditioned for the Hermite polynomials basis, one of the most com-
monly used in uncertainty quantification. This raises the following important challenges: How do we choose a basis
that reduces or eliminates the ill-conditioning in the polynomial regression with the derivative information proce-
dure? How do we take advantage of this basis? Answering thesequestions becomes the central objective of this
work.

To demonstrate our findings on an example that exhibits some of the complexity encountered in advanced engi-
neering codes, we use a three-dimensional (3D) model of heattransport in a sodium-cooled reactor core, described
below in Section 4.1. The uncertainty in the model originates from the experimental error in measurement of depen-
dency of material properties on temperature. In the computational experiments described in this work the uncertainty
space has dimension 12; a 66-dimensional version is also available. We compare the performance of the new basis
with such standard choices as Hermite polynomials, and we show that the resulting information matrix is much better
conditioned. In our numerical experiments, the use of the new basis results in a small improvement in precision when
the basis polynomials are chosen a priori, and a significant improvement (of several orders of magnitude) when the
basis polynomials are chosen adaptively, using a stepwise fitting procedure.

The rest of the paper is organized as follows. In Section 2, weexplain the general task of uncertainty quan-
tification for simulation models and the PRD approach in particular, as well as the place of PRD in the context of
techniques for uncertainty propagation. In Section 3, we analyze the features of tensor-product orthonormal multi-
variate bases for use in PRD and describe procedures for building them. In Section 4, we describe the nuclear reactor
model used in our numerical experiments and apply the PRD technique both in standard form and as part of stepwise
regression. In Section 5, we discuss the significance of the performed work and future steps needed to extend the
technique.

2. UNCERTAINTY QUANTIFICATION BY POLYNOMIAL REGRESSION WI TH DERIVATIVE
INFORMATION

2.1 Problem Definition

We view a generic model with uncertainty as a discretized system of algebraic-differential equations:

F (T,R) = 0 (1)

R = R(T, x) (2)

J = J(T) (3)

where the variablesT = (T1, T2, ..., Tn) characterize the model state; the dependence of physical parameters of the
modelR = (R1, R2, ..., RN ) includes errors∆R = (∆R1, ∆R2, ..., ∆RN ); an output of interest is expressed by
the merit functionJ(T); and uncertainty in the physical description of the model isdescribed by a set of stochastic
variablesx = (x1, x2, ..., xd).

The parameter setR is not independent. It is related to the variables by a set of expressions

R := R0(T) · [1 + ∆R(T, x)] (4)
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with the experimental error∆R(T; x), which is also dependent on model state, and on a set of parametersx that
quantifies the uncertainty. The parametersx become theprimaryuncertainty parameters. Then, the structural equation
of the nonlinear system becomes

F [T,R(T; x)] = 0 (5)

Strictly speaking, Eq. (5) now results in the primary variable T being a function ofx and not ofR (which is itself
a function of model state). To abide by the physical meaning of the respective parametersR, we may still write
T = T(R).

We note that the algebraic structure under which uncertainty is introduced into the model can be as simple
as ∆R(T, x) = x or more complex depending on the modeling principles. One example is presented in Sec-
tion 4.1.

Our problem is to efficiently characterize the uncertainty in the merit functionJ(T). We are given

• A probability structure on the physical uncertainty space (although some further modeling may be necessary to
properly characterize it [3]) of the variablesx, and

• A numerical implementation of the physical phenomenon thatcomputesT givenR(T, x) and, subsequently,
J .

To find the effects of the uncertainty on the merit functionJ ,

∆J = J [T(R)] − J [T(R + ∆R)] (6)

we express the output as a function of uncertainties of the inputs, represented by the parametersx:

J(x) = J{T[R(T) + ∆R(T; x)]} (7)

In the scope of this work, we assume that merit functionJ(x) is effectively differentiable with respect to the uncer-
tainty quantifiersx. If required by an applied problem at a future time, we can allow non-smoothness with minimal
changes to the general method, as long as its location in the uncertainty space is known. Practically speaking, if this
condition does not apply, we can still use the derivative information at differentiability points, and discard it else-
where. On the other hand, we expect that our method will work well primarily for differentiable functions, and our
theory applies only to this case. The challenge in our endeavor is that for a model of more than trivial complexity, the
dependence of the outputJ on the uncertaintyx cannot be described explicitly. A straightforward approach to under-
standing this dependence would be to evaluate the model overa large, representative subset of the uncertainty space.
However, one can afford to run the model for only a limited number of scenarios. Therefore, a practical approach to
uncertainty quantification is to create a polynomial approximation ofJ based on small-scale sampling using the code,
followed by large-scale exploration of the approximate model.

To that end we choose a setΨ of polynomials on the uncertainty quantifiersx = {xi}, i = 1, ..., d. A subset{Ψl}
is used to approximate the merit function:

J ≈ J̃ =
∑

l

βlΨl(x) (8)

The coefficientsβl are obtained by requiring that the function and the derivative values of the surrogate modelJ̃(x)
match the ones of the real modelJ(x), in a least-squares sense. Approximation of the uncertain effects by a flexible
basis of functions on uncertainty quantifiers is closely related to the stochastic finite-element method (SFEM); such a
basis is sometimes called polynomial chaos, as we discuss inSection 2.2.

We extend the idea by using derivative information∇J at every training point, in addition to the function values
J . The polynomial fitting equations are as follows:
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

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...
...

...
...
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∂x1
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· · ·
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· · ·
∂Ψk(S1)

∂xn
...

...
...

...
∂Ψ1(S2)

∂x1

∂Ψ2(S2)

∂x1
· · ·

∂Ψk(S2)

∂x1
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...
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...
∂Ψ1(Sm)

∂xn

∂Ψ2(Sm)

∂xn

· · ·
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∂xn




· β =




J(S1)

...

J(Sm)

∂J(S1)

∂x1

∂J(S1)

∂x2
...

∂J(S1)

∂xn

∂J(S2)

∂x1
...

∂J(Sm)

∂xn




(9)

whereS1, S2, ..., Sm are sample training points in the uncertainty space:Si = (x
(i)
1 , x

(i)
2 , ..., x

(i)
m ). An evalua-

tion of J and its first derivatives atSi generates a subcolumn of entries, that is, information for several rows at
once.

If the resulting system is underdetermined, we can add more sample points. If this option is not available, we
can a priori prune the polynomial basis as we have done in [3] or we can use a standard reduction of the uncertainty
space (at the cost of reduced accuracy). However, for our scope of application, more relevant is the situation where the
system is overdetermined. Then, we can solve it in a least-squares sense. To account for either type of ill-posedness,
we solve the system using a generalized pseudo-inverse approach based on singular value decomposition [4]. The
generalized pseudo-inverse uses singular value decomposition where exceedingly smaller singular values are replaced
with +∞ before carrying out the inversion. We call this approach PRDinformation. It is closely related to stochastic
finite-element approximation [5–7] (also see Section 2.2).

An important feature of the method is that fewer sample points are required compared to derivative-free ap-
proaches. For regression methods, it is normally expected that the number of regression samples is significantly larger
than the uncertainty dimension, and definitely not less thatthe number of polynomials in the basis. Using our ap-
proach, however, we can informally think of each individualcomponent of the gradient as an equivalent of another
sample point. The curse of dimensionality associated with approximation in large-dimensional spaces is not elimi-
nated, but its effect is reduced. We justify our use of derivative information, as opposed to adding more sample points
by using only function values, by the fact that it is possibleto obtain complete gradient information of the model with
a limited relative computational overhead, independent ofthe model complexity. A computability theory result puts
this overhead at 500% at most [8], making it advantageous to use PRD for models with uncertainty dimensions higher
than 5. In practice, the overhead is less. In our experimentsthe gradient was typically obtained in less time than one
model evaluation. This situation is not unusual in cases where a nonlinear iteration is present to compute the system
state and, subsequently, the response functionJ(x). The sensitivity equations involve only one such system, whose
cost may be comparable to one of the iterations.

A downside of the approach is that one has to make the derivative information available. In our numerical exper-
iments, the adjoint differentiation was hand coded. In a related effort [9], we have investigated the application of our
approach when the gradient information is computed by automatic (or algorithmic) differentiation (AD). Our early in-
vestigations indicate that, while a nontrivial endeavor, gradient information can be obtained by AD, even when legacy
code is involved, with a small to moderate amount of development time.
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2.2 Connection between PRD and Collocation Stochastic Fini te-Element Approaches

Our work has originated in investigations of SFEM approaches for uncertainty quantification [10, 11] and, particularly,
their application to nuclear engineering models. In the case where a SFEM approach with a polynomial basis is used,
one constructs an approximation from Eq. (1):

T̃(x) =
∑

l

βT
l Ψl(x) (10)

One such technique is the Galerkin approach [12]: the coefficientsβ
T are determined by requiring that the projection

of the residual of Eq. (1) on spaceV spanned by polynomialsΨl be zero. We have demonstrated that the approach can
be extended to constrained optimization problems as well, while maintaining the optimization structure as opposed to
converting the problem to nonlinear Eq. (1) [11].

More relevant for our discussion, however, is the collocation approach. In this approach, the coefficientsβT are
determined by enforcing that the stochastic finite-elementapproximatioñT(x) =

∑
l β

T
l Ψl(x) have a zero residual

at a set of collocation points,xi, i = 1, 2, . . . , M . That is,

F{T̃(xi), R[T̃(xi), xi]} = 0 i = 1, 2, . . . , m. (11)

Assuming that the systemF{T(x),R[T(x), x]} has a unique solution for a givenx, it follows that for each sample
point Si, there is a uniqueTi such thatF [Ti, R(Ti, Si)] = 0. In turn, the collocation problem [Eq. (11)] becomes
equivalent to the interpolation problem

∑

l

βT
l Ψl(xi) = T̃(xi) = Ti, i = 1, 2, . . . , M (12)

We can interpret Eq. (12) as an interpolation problem in eachof the components of the vector set{βT
l }l. Effectively,

based on Eq. (11), we can state that solving Eq. (12), and thusEq. (11), is equivalent to building a surface response in
each of the components of̃T(x).

In this work, we are interested in one particular response function,J(T). Assume, for the purpose of our argument,
that the response function is linear inT and that we are seeking a response to the uncertainty variablex in the same
polynomial space as we did for̃T(x), that is,

J(x) =
∑

l

βJ
l Ψl(x) (13)

Assume now that we carry out collocation on the state space [Eq. (11)], to which we apply the response function
J = J [T(x)]. It then immediately follows thatJ [T(x)] also satisfies the interpolation conditions

J [T̃(xi)] = J [T(xi)], i = 1, 2, . . . , M (14)

If, in addition, the functionJ is linear in the state variablesT, it immediately follows that the response function
satisfies ∑

l

βJ
l Ψl(xi) =

∑

l

J(βT
l )dΨl(xi) = J(xi) = J [T̃(xi)] (15)

Therefore, if the interpolation problem [Eq. (12)] is well posed and thus has a unique solution, it follows that using
collocation for the state and applying the response function J are equivalent to determining the coefficientsβJ

l from
imposing the collocation-interpolation conditions [Eq. (15)] directly onJ . Moreover, the solution to Eq. (15) can be
obtained by the least-squares regression approach,

min
βJ

l

M∑

i=1

(
J(xi) −

∑

l

βJ
l Ψl(xi)

)2

(16)
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since the latter problem has a unique solution if the interpolation problems [Eqs. (15) and (12)] have a unique solution.
We also point out that obtaining an approximation of the response function [Eq. (15)] that satisfies Eq. (14) directly
also carries the name (at least for some of its variants) of the response surface approach. Therefore, the approach
described above can be seen simultaneously as an SFEM collocation approach, an interpolation approach, a surface
response approach, and a regression approach.

When the responseJ [T(x)] is nonlinear, the equivalence among the approaches ceases to hold; but if the function
J is smooth, one can demonstrate by polynomial approximationarguments that Eq. (16) will produce an approxima-
tion of the similar quality to using collocation and then usingJ(x̃) as the approximation.

An additional advantage of using Eq. (16) over Eq. (11) consists of far lower memory overhead, since multiple
values of the potentially large state vectorT(x) do not need to be stored.

In addition, in the case where gradient information is sought andJ is real valued (or vector valued of low di-
mension), adjoint methods can be used to efficiently computederivative information. We note that either advantage
disappears ifJ is vector valued of large dimension.

In this work, we focus on the widely encountered case whereJ is real valued (although the approach is immedi-
ately extensible to vector responseJ , but the effort versus precision analysis will not be carried out in that case). We
choose the regression ansatz [Eq. (16)], which is more flexible about the type of information included in creating an
approximate model ofJ . In particular, we are interested in the case where derivative information forJ is available
and formulation (16) naturally extends to

min
βJ

l

m∑

i=1



(

J(xi) −
∑

l

βJ
l Ψl(xi)

)2

+

d∑

j=1

(
∂J(xi)

∂xj

−
∑

l

βJ
l

∂Ψl(xi)

∂xj

)2

 (17)

We note that the optimality conditions of Eq. (17) are the same as the least-squares version of Eq. (9). It is easy to
derive other forms of the regression approach [Eq. (17)] that include incomplete derivative information or weighting;
but, for this paper, we will include only the standard approach [Eq. (17)].

Given the connection we have pointed out between our approach and collocation approaches, we will still refer to
the optimality conditions of Eq. (17), implied when solvingEq. (9), as collocation equations since, as pointed out in
the preceding paragraphs, for the linear response case and unique solution of Eq. (9) they are equivalent to the SFEM
collocation approach.

2.3 Comparison with Previous Approaches

As described in Section 2.2, the PRD method is related to polynomial approximations of complex systems with un-
certain parameters and SFEM [5–7, 11]. An important class ofSFEM is SFEM-Galerkin methods [5]. Such methods
are robust, but they also are demanding in terms of computational effort and require substantial storage. SFEM col-
location methods [4, 13, 14] are closely related to our approach. They are nonintrusive and do not need specialized
solvers, but they still use a state variable approximation and, in most circumstances, do not explore the use of gradient
information. We also point out that using a state variable approximation makes the use of adjoint calculation much
less efficient since the number of dependent variables is nowvery large [8].

To a great extent, our method can be thought of as a hybrid between a Monte Carlo method [15, 16] and a sensitivity
surface response method [17, 18]. Such approaches have recently been proposed in the context of Gaussian process
methods [19]. Closer to our approach, other authors have also proposed SFEM-based hybrid methods [18, 20]. In
particular, both Refs. [18, 20] point out the potential information efficiency that can be obtained from the gradient and
demonstrate the reduction in number of samples for the same quality of the uncertainty assessment, as we do in [3].
Reference [18] uses a singular value decomposition approach to determine the coefficients of the model, which would,
in principle, result in a model equivalent to the regressionapproach. Nevertheless, our recent work [3] enhanced the
approach in several ways. Specifically, we presented new ways to prune the polynomial basis to mitigate the effects
of the curse of dimensionality and described the use of the approach as a control variate to reduce the bias. The
regression–least-squares interpretation that we positedis essential to determine the advances in polynomial basis that
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we develop in the rest of this work. Moreover, we have been—toour knowledge—the first group to investigate the
issues of applying the method in the nuclear engineering field [3, 9, 21].

Our work shares some characteristics with surface responseapproximation [18, 20, 22, 23]. Such approaches
have been successfully used in nuclear engineering applications, including in the USNRC licensing process [24–28].
Nevertheless, our method is different in its use of gradientinformation as an enhancement to Monte Carlo sampling.

3. ORTHOGONAL BASIS FOR POLYNOMIAL REGRESSION WITH DERIVAT IVE INFORMATION

In this section, we discuss the theoretical considerationsthat lead to the construction of a polynomial basis for do-
ing regression with derivative information. In this work, for simplicity, we call a basis an orthonormal system of
polynomials (which is a basis for the linear space it spans).

3.1 Modeling Framework

Choose a setΘ of multivariable orthonormal polynomials of the variablesx = (x1, · · · , xd)
T . A subset{Ψl} ⊂ Θ

is used to approximate the merit function:

J ≈ J̃ =
∑

l

βlΨl (18)

Define an operatorLx that, when applied to ad-variate scalar functionf , returns its value and gradient informa-
tion:

Lxf =

(
f(x),

∂f

∂x1
(x), · · · ,

∂f

∂xd

(x)

)T

(19)

For a vector functionf = (f1, · · · , fk)T , we extend the definition of the operator as follows:

LxfT =




f1(x) f2(x) · · · fk(x)

∂f1

∂x1
(x)

∂f2

∂x1
(x) · · ·

∂fk

∂x1
(x)

...
...

...
...

∂f1

∂xd

(x)
∂f2

∂xd

(x) · · ·
∂fk

∂xd

(x)




(20)

We now use this notation to define the collocation matrix in this framework. For the considered choice of polynomials
Ψ = (Ψ1, · · · , Ψk)T , we define the collocation matrixF as follows:

F =




Lx1
ΨT

Lx2
ΨT

...
Lxm

ΨT


 (21)

Here,x1, x2, . . . , xm are them points at which the system output functionJ is sampled. Then, our regression model
becomes

LxJ = LxΨT β + ε(x) (22)

whereε(x) ∈ R
m+1 is the error term, which we assume here to be a random variablesuch thatε(x1) is independent

from ε(x2) if x1 6= x2. Moreover, we also will assume that the components ofε(x) are independently distributed
with mean zero and the same varianceσ2. We will discuss the suitability of this assumption shortly.

To determine the parameter vectorβ of the model, we compute the values of the output functionJ and its deriva-
tives at them sample points. Then, a single sample pointxi will generate a subvector of entries with components
J(xi) and[∂J(xi)/∂xj ], j = 1, 2, . . . , d, providing right-side information for several collocation equations at once.
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By matching the values ofJ and its derivatives with the corresponding polynomial representation, we build an ex-
tended system of collocation equations

Fβ = y (23)

wherey =
(
LT

x1
J, · · · ,LT

xm
J
)T

. This is equivalent to Eq. (9), but now using matrix-vector notation.
The system equation in Eq. (23) is overdetermined. The least-squares solution, that is, the one satisfying Eq. (17),

is given by

β̂ = (FTF)−1FT y, (24)

provided that the matrixF has full column rank.
We now discuss the implications and suitability of several assumptions we have made. We observe that the estima-

tor [Eq. (24)] is unbiased for the model [Eq. (22)] for any mean zero noise, irrespective of the other properties of the
noise [29]. That is, from Eq. (24)E[β̂] = E[(FT F)−1FT y] = (FT F)−1FT E[y] = (FT F)−1FT y = β. Therefore,
our assumption thatε(x) has independent identically distributed entries has no bearing over the biasedness, even if
incorrect for a particular model. Moreover, consistency (that is, convergence of̂β to β in probability for increasingly
large data sets) would also follow under fairly weak conditions even if the distribution ofε(x) is misspecified.

Naturally, any confidence test will be affected if the covariance assumption onε(x) is incorrect. On the other hand,
absent other information about the problem, assuming thatε(x) has independent, identically distributed components
is a reasonable starting assumption. In addition, it seems the correct assumption if the error is due to rounding. While
assumptions about the proper noise form are clearly not without consequences, the latter observation, the robustness
of several of the properties of classical regression with respect to several of its assumptions [29], and the fact that
bias is not affected by the particular form of the noise, prompt us to continue the analysis of the consequences of the
independently, identically distributed component noise model at this time.

3.2 Design Consequences

Toward the end of making Eq. (24) a robust estimate, a crucialassumption is the one that
(
FTF

)−1
is not singular.

Moreover, assuming that the regression model [Eq. (22)] andthe assumptions onε are correct, then the estimator
described in Eq. (24) satisfiescov(β̂) = σ2(FTF)−1. Therefore, obtaining a good regression estimate means obtain-
ing a smallcov(β̂), subject to a normalization constraint (such as prescribedtrace). Such problems are the subject
of experimental design [30]; and one design strategy, theD-optimal approach, attempts to maximize the determinant
of the covariance matrix. Unfortunately, theD-optimal and other alphabetic optimal designs are highly dependent on
the choice of the basis,Ψ. In our situation, the final choice ofΨ is made after the data are observed. Such a data-
dependent basis selection procedure is common in linear regression. The effect of removing aΨl from the surrogate
model is confounded by the presence of otherΨl′ in the model. The magnitude of this confounding is proportional
to thel, l′ element ofcov(β̂). Therefore, we aim to chooseΨ and a designx1, ..., xm that makescov(β̂) close to a
multiple of the identity matrix.

Suppose that the designx1, ..., xm is chosen to approximate a probability distribution with density ρ, in other
words, the empirical distribution of the design is close to the distribution of a continuous random variable with density
ρ. Therefore, the information matrix may be approximated by an integral involving the basis but independent of the
details of the design:

1

m
FTF =

1

m

m∑

i=1

Lxi
Ψ
(
Lxi

ΨT
)
≈

∫

Ω

LxΨ
(
LxΨT

)
ρ(x)dx

=

[∫

Ω

(
Ψj(x)Ψh(x) +

d∑

i=1

∂Ψj

∂xi

(x)
∂Ψh

∂xi

(x)

)
ρ(x)dx

]k

j,h=1

(25)
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This relationship suggests the definition of the inner product that depends on both the function and its derivative:

〈f, g〉 =

∫

Ω

Lxf (Lxg)
T

ρ(x)dx =

∫

Ω

(
f(x)g(x) +

d∑

i=1

∂f

∂xi

(x)
∂g

∂xi

(x)

)
ρ(x)dx (26)

This approximation for the information matrix implies thatit is approximately a multiple of the identity matrix if the
Ψl are chosen to be orthonormal with respect to the inner product defined in Eq. (26):〈Ψj , Ψh〉 = δjh.

Given any initial polynomial basis, one can use the Gram-Schmidt method to construct an orthonormal basis with
respect to the inner product [Eq. (26)]. However, as shown, such a basis might not be of tensor product form. A tensor
product basis has the important advantage of facilitating the inclusion or exclusion of terms involving the variable
xi without adversely affecting the terms involving other variables. For example, the basis1, x1, x2, x1x2 is of tensor
product form, and removing the variablex2 means only removing the last two basis elements. The resulting basis still
allows for general linear polynomials inx1. The basis1, x1 + x2, x2, x1x2 spans the same space as the first one, but
now removing all terms involvingx2 leaves only the constant term.

Thus, one would like to have a tensor product basis that is orthonormal with respect to the inner product [Eq. (26)].
If the derivative terms are not included in the definition of the inner product, then one naturally obtains a tensor
product of common orthogonal polynomials such as the Legendre polynomials in the case of the uniform distribution,
or the Hermite polynomials in the Gaussian distribution [31]. Indeed, tensor product bases are the most routinely
considered bases in uncertainty quantification. However, since the derivative terms must be included in the inner
product, reflecting the derivative values in the the information matrix, it may not be possible to retain orthogonality and
a tensor product basis for arbitrary orders of polynomials.This is an important issue to address, given the observation
in previous work [1] that some of the original variables may exhibit higher degrees of nonlinearity than others. The
next subsection explores this problem.

3.3 Characterizing a Tensor Product Basis

To gain a taste of the difficulties involved, consider the case for d = 2, with both variables uniformly distributed on
[–1,1]. The univariate polynomials with respect to the inner product in Eq. (26) are1, x1, x2

1 − (1/3), x3
1 − (9/10)x1,

and 1,x2, x2
2 − (1/3), x3

2 − (9/10)x2. Unfortunately, it can be shown that the multilinear polynomial x1 · x2 is
not orthogonal to the fourth degree polynomialx1 · [x3

2 − (9/10)x2] under this inner product. Therefore, a tensor
product orthogonal polynomial basis of an arbitrary degreemay not exist when the inner product contains gradient
information, as is the case for our choice of the inner product [Eq. (26)].

We thus proceed to investigate the circumstances under which tensor product bases can be defined, which neces-
sarily must include constraints on the polynomial degrees that are considered. The following Theorems 2 and 3 and
Corollary 2 provide sufficient conditions under the assumption that the variables are symmetrically distributed on their
domain. We first characterize the one-variable polynomialsorthogonal under the inner product [Eq. (26)].

Theorem 1.
Let wj(x) be univariate (d = 1) orthonormal polynomials with respect to the inner product[Eq. (26)] such that the

degree ofwj(x) is j. Then,wj(x) has the formaj,0x
j + aj,2x

j−2 + · · ·+ a
j,2b j

2
cx

j−2b j
2
c, for ∀j ∈ N (whereb c is

the floor function, that is, it rounds down to the nearest integer).

Proof. Thewj(x) are computed recursively by using the Gram-Schmidt orthogonalization and the inner product in
Eq. (26):

w0(x) = 1, wj(x) =
gj(x) −

∑j−1
i=0 〈gj , wi〉wi(x)

‖gj(x) −
∑j−1

i=0 〈gj , wi〉wi(x)‖
(27)

wheregj(x) = xj . Note that for any non-negative integersj andh

〈gj , gh〉 = 〈xj , xh〉 =

∫

Ω

[xj+h + jhxj+h−2]ρ(x)dx = 0 (28)
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if j andh have opposite parity, sinceρ is an even function. The proof of this theorem proceeds by induction.
For the casesj = 1, 2, property (28) implies that

w1(x) =
x − 〈x, 1〉

‖x − 〈x, 1〉‖
=

x

‖x‖
= a1,0x (29)

w2(x) =
x2 −

(
〈x2, 1〉 + 〈x2, a1,0x〉a1,0x

)

‖x2 − (〈x2, 1〉 + 〈x2, a1,0x〉a1,0x) ‖
=

x2 − 〈x2, 1〉

‖x2 − 〈x2, 1〉‖
= a2,0x

2 + a2,2 (30)

both of which satisfy the conclusion of the theorem.

Now assume thatwj(x) = aj,0x
j + aj,2x

j−2 + · · · + a
j,2b j

2
cx

j−2b j
2
c for j < n. Since〈gj , gh〉 = 0 for j andh

of opposite parity, it also follows that〈gj , wh〉 = 〈xj , wh〉 = 0 for h < n andj andh of opposite parity. Then, for
j = n + 1, by definition of the Gram-Schmidt orthogonalization it follows that

wn(x) =
xn −

∑n−1
j=1 〈x

n, wj〉wj(x)

‖xn −
∑n−1

j=1 〈x
n, wj〉wj(x)‖

∝ xn −
∑

0≤j<j & n same parity

〈xn, wj〉wj(x)

= an,0x
n + an,2x

n−2 + · · · + a
n,2bn

2
cx

n−2b n
2
c

Thus, the statement is proved by induction.

Corollary 1.
For the inner product defined in Eq. (26) and orthonormal basis w0, w1, w2, . . . defined above, with the variable
domainΩ and distribution densityρ both symmetric with respect to 0, then the two components of the inner product,∫
Ω wi(x)wj(x)ρ(x)dx and

∫
Ω w′

i(x)w′
j(x)ρ(x)dx, both vanish ifi andj are of different parity.

Proof. By Theorem 1wj is a sum of terms of the formaj,j−hxh, wherej and h have the same parity. Thus,∫
Ω

wi(x)wj(x)ρ(x)dx and
∫
Ω

w′
i(x)w′

j(x)ρ(x)dx may both be written as integrals of monomialsxh, whereh has
the parity ofi + j. If i + j is odd, then the integrals vanish becauseρ is symmetric, as was noted in the derivation of
Eq. (28).

We now tackle the issue of the restrictions on the polynomialdegree that allow for the definition of a tensor-
product orthogonal polynomial basis for the inner product [Eq. (26)]. Sufficient conditions for such a basis to exist are
provided by the following Theorem 2.

Theorem 2.
Consider the set of multivariate polynomials{wp : wp(x) = cp

∏d

j=1 wj,pj
(xj), p ∈ Γ}. Here,{wj,p}

∞
p=0 is

the set of orthogonal univariate polynomials constructed according to Theorem 1 using the symmetric probability
densityρj defined on the domainΩj . Also, Γ ⊂ N

d
0 is the set of possible indices (degrees) of the multivariate

polynomials, wherep = (p1, p2, · · · , pd)
T is one such index set. Moreover,cp is the normalizing factor to make

‖wp‖ = 1; and the inner product, Eq. (26), for these multivariate polynomials is defined by the product density
functionρ(x) =

∏d
j=1 ρj(xj) defined on the Cartesian product sample spaceΩ = Ω1 ×Ω2 × · · · × Ωd. Under these

assumptions, ifΨ = (Ψ1, · · · , Ψk)T is the vector basis whose elements are taken from the above set of multivariate
polynomials, then theseΨl are orthonormal, that is,〈Ψl, Ψ

′
l〉 = δl,l′ , provided that the index setΓ satisfies the

following condition.
For all distinct pairs of indices,p,q ∈ Γ there exists somei ∈ {1, 2, · · · , d} such that one of the following criteria

is satisfied:

1. The polynomialswp andwq are univariate polynomials ofxi,; i.e.,pi 6= qi, pj = qj = 0, for ∀j 6= i.

2. One of the two polynomialswp or wq does not depend onxi, while the other does, i.e.,pi = 0 6= qi or
pi 6= 0 = qi.

3. The two polynomialswp or wq have different parity in the variablexi, i.e.,pi andqi have opposite parity.
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Proof. The proof proceeds by showing that〈wp, wq〉 = 0 for anyp andq matching the criteria above.

Case 1: Sincewp(x) = wi,pi
(xi) andwq(x) = wi,qi

(xi), it follows that〈wp, wq〉 = 〈wi,pi
, wi,qi

〉 = 0.

Case 2: Without loss of generality, we can takepi = 0 6= qi. The inner product〈wp, wq〉 is shown to vanish by
showing that each term in its definition in Eq. (26) vanishes.In particular, the orthogonality of the univariate
polynomialswi,0 andwi,qi

implies that

∫

Ω

wp(x)wq(x)ρ(x)dx ∝

∫

Ωi

wi,0(x)wi,qi
(x)ρ(x)dx = 〈wi,0, wi,qi

〉 = 0

∫

Ω

∂wp

∂xs

(x)
∂wq

∂xs

(x)ρ(x)dx ∝





∫

Ωi

w′
i,0(xi)w

′
i,qi

(xi)ρ(xi)dxi = 0, i = s sincew′
i,0(xi) = 0

∫

Ωi

wi,0(xi)wi,qi
(xi)ρ(xi)dxi = 0, i 6= s

It then follows that every term in the definition of〈wp, wq〉 vanishes, so〈wp, wq〉 = 0.

Case 3: According to Corollary 1,
∫

Ωi

wi,pi
(x)wi,qi

(x)ρi(x)dx = 0 and
∫

Ωi

w′
i,pi

(x)w′
i,qi

(x)ρi(x)dx = 0

By the same argument used for Case 2, it follows that〈wp, wq〉 = 0.

Note that Case 3 includes the case wherepi = 1 andqi = 2 but not the case wherepi = 1 andqi = 3. Some simple
characterizations of sets of polynomial indices (degrees)that satisfy Theorem 2 are given by Corollary 2. The proof
of this corollary follows by checking thatΓ3 satisfies the conditions of Theorem 2 and noting thatΓ3 is a superset of
Γ1 andΓ2.

Corollary 2.
The following choices ofΓ all satisfy the criteria of Theorem 2 that guarantees an orthonormal multivariate basis:

Γ1 = {p ∈ N
d
0 : ‖p‖1 ≤ 3}, Γ2 = {p ∈ N

d
0 : ‖p‖∞ ≤ 2},

Γ3 = Γ2 ∪ {p = (0, . . . , 0, pi, 0, . . . , 0)T ∈ N
d
0 : i = 1, . . . , d}.

The sets in Corollary 2 are almost the best obtainable for practical purposes. Indeed, we note that the example
provided at the beginning of Section 3.3 shows the the impossibility of constructing tensor product bases with allp
satisfying either‖p‖1 ≤ 4 or ‖p‖∞ ≤ 3.

We now discuss how the orthogonal basis is affected by rescaling. This issue is important because many times the
parameters of interest have completely different physicalunits, yet they will be modeled on some reference domain,
making rescaling necessary. It has been assumed in Section 3.1 that the function values and the first-order partial
derivatives all have the same variance,σ2. This assumption depends on the scaling of the variablesxi. Using a different
scaling (different units) changes the first-order partial derivative by a constant and changes its variance accordingly.
However, the main conclusions of Theorem 2 still hold under different scalings.

Theorem 3.
For j = 1, . . . , d, let Ω̃j , ρ̃j , and{wj,p}

∞
j=0 be reference domains, probability density functions, and sequences

of orthogonal polynomials satisfying the hypotheses of Theorem 2, respectively. Forj = 1, . . . , d, choose any
aj > 0 and anybj to define new rescaled domains, probability density functions, and sets of multivariate polyno-
mials:
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Ωj =

{
x :

x − bj

aj

∈ Ω̃j

}
, ρj(x) =

1

aj

ρ̃j

(
x − bj

aj

)
,



vp : vp(x) = cp

d∏

j=1

wj,pj

(
xj − bj

aj

)
, p ∈ Γ





Here,cp is the same constant as in Theorem 2, and the setΓ satisfies the same condition as in Theorem 2. Using the
scaling constantsaj , redefine the operatorL as

Lxf =

(
f(x), a1

∂f

∂x1
(x), · · · , ad

∂f

∂xd

(x)

)T

(31)

LxfT =




f1(x) f2(x) · · · fl(x)

a1
∂f1

∂x1
(x) a1

∂f2

∂x1
(x) · · · a1

∂fl

∂x1
(x)

...
...

...
...

ad

∂f1

∂xd

(x) ad

∂f2

∂xd

(x) · · · ad

∂fl

∂xd

(x)




. (32)

Use this rescaled operator to redefine the inner product in Eq. (26) as

〈f, g〉 =

∫

Ω

Lxf (Lxg)T
ρ(x)dx =

∫

Ω

(
f(x)g(x) +

d∑

i=1

a2
i

∂f

∂xi

(x)
∂g

∂xi

(x)

)
ρ(x)dx (33)

if the above set of multivariate polynomials is orthonormalwith respect to this new inner product.

Proof. The proof proceeds by verifying that the inner product of twomultivariate polynomials from this theorem,vp

andvq, equals the inner product of two multivariate polynomials from Theorem 2 by a change of variable. Since

∂vp

∂xk

(x) = cp
1

ak

w′
k,pk

(
xk − bk

ak

) d∏

j=1, j 6=k

wj,pj

(
xj − bj

aj

)

it follows that

〈vp, vq〉 =

∫

Ω

cpcq




d∏

j=1

wj,pj

(
xj − bj

aj

)
wj,qj

(
xj − bj

aj

)

+

d∑

k=1

w′
k,pk

(
xk − bk

ak

)
w′

k,qk

(
xk − bk

ak

) d∏

j=1, j 6=k

wj,pj

(
xj − bj

aj

)
wj,qj

(
xj − bj

aj

)


d∏

j=1

ρj(xj)dx

=

∫

Ω̃

cpcq




d∏

j=1

wj,pj
(uj)wj,qj

(uj) +

d∑

k=1

w′
k,pk

(uk)w′
k,qk

(uk)

d∏

j=1, j 6=k

wj,pj
(uj)wj,qj

(uj)




d∏

j=1

ρ̃(uj)du

= 〈wp, wq〉 = δp,q

where the first inner product is the rescaled one in Eq. (33) and the second one is the original one in (26).

3.4 Construction of Orthogonal Bases

Provided that the required degrees of the multivariate polynomials satisfy the conditions in Theorems 2 and 3, one can
always construct a basis of orthogonal multivariate polynomials as tensor products of orthogonal univariate polynomi-
als. Given a family of distributions (e.g., uniform), and a reference domain (e.g.,[−1, 1]), Theorem 3 may then be used
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to construct the multivariate tensor product orthogonal basis even if the domain is stretched, shrunk, or translated. At
the same time, Theorem 3 also describes how to adjust the collocation matrix to account for the rescaling.

For example, suppose thatd = 2, variablex1 is uniformly distributed on[−0.5, 0.5], and variablex2 is uniformly
distributed on[−1, 1]. The univariate orthogonal polynomials with respect to theuniform distribution on[−1, 1] and
inner product [Eq. (26)] are

1, x, x2 −
1

3
, x3 −

9

10
x, . . .

If the total degree of the multivariate polynomial is no larger than3, then by Theorem 3 one may obtain the following
vector of orthogonal basis functions with respect to the inner product [Eq. (33)]:

ΨT = (Ψ1, . . . , Ψ10)

=

{
1,

x1

0.5
, x2,

(x1

0.5

)2
−

1

3
,

x1x2

0.5
, x2

2−
1

3
,
(x1

0.5

)3
−

9

10

(x1

0.5

)
,

x1

0.5

(
x2

2−
1

3

)
,

[(x1

0.5

)2

−
1

3

]
x2, x3

2−
9

10
x2

}

Correspondingly, the collocation matrix and response vector should be adjusted as

F =




Ψ1(S1) Ψ2(S1) · · · Ψ10(S1)

0.5
∂Ψ1

∂x1
(S1) 0.5

∂Ψ2

∂x1
(S1) · · · 0.5

∂Ψ10

∂x1
(S1)

∂Ψ1

∂x2
(S1)

∂Ψ2

∂x2
(S1) · · ·

∂Ψ10

∂x2
(S1)

Ψ1(S2) Ψ2(S2) · · · Ψ10(S2)
...

...
...

...

0.5
∂Ψ1

∂x1
(Sm) 0.5

∂Ψ2

∂x1
(Sm) · · · 0.5

∂Ψ10

∂x1
(Sm)

∂Ψ1

∂x2
(Sm)

∂Ψ2

∂x2
(Sm) · · ·

∂Ψ10

∂x2
(Sm)




, y =




J(S1)

0.5
∂J(S1)

∂x1

∂J(S1)

∂x2

J(S2)
...

0.5
∂J(Sm)

∂x1

∂J(Sm)

∂x2




(34)

Naturally, the conditions in Theorem 2 are somewhat restrictive, since they limit the degree of polynomials that
can be used while still retaining orthogonality and the tensor product structure. However, to introduce polynomials of
higher degree requires that we give up either orthogonalityor the tensor product structure. Giving up the former may
lead to the situation where the estimates of pairs of regression coefficients are highly correlated. Giving up the latter
makes it awkward to remove one variable from the model without adversely affecting the dependence of the model
on other variables. In practice, the restriction on the degree may not be too limiting since given a maximum total
degree allowed ofp, the number of possible polynomials increases asO(dp) as the dimension,d, tends to infinity.
On the other hand, the number of polynomials used should not exceed the number of observations available, namely,
m(d + 1). In our numerical results in Sections 4.3 and 4.2 we will consider only the tensor product basis produced by
PRD in order to assess its properties and potential.

4. NUMERICAL RESULTS

In this section, we investigate the results of using the tensor product basis developed in Section 3 with the PRD
approach.

4.1 Applied Problem

As an applied example, we use a 3D, steady-state reactor coremodel with uniform fuel elements, simple heat transport
description (including convection and diffusion), uniform liquid coolant flow, and no control mechanisms. While our
research extends to more complex systems, the idea was to work with a model that exhibits behavior typical for
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real-world nuclear reactors in sufficient measure to study uncertainty propagation and that avoids model-specific
complexities of the nuclear reactor analysis. The operational parameters of the model were chosen to correspond to
a sodium-cooled fast reactor with realistic temperature excursions. A cross section of the finite-volume geometric
representation (with just seven pins) is shown in Fig. 1. In the following paragraphs we briefly describe the physical
model. A more detailed description of this model is providedin [3].

To model uncertainty related to thermo-hydraulic description of the reactor core, we couple a 3D heat conduction
and convection equation

0 = −∇ · K∇T − ρcp
−→u ∇T + q′′′ (35)

represented by

0 =

∫

∂Ω

K∇T · −→n dS +

∫

∂Ω

ρcpT~u · ~ndS −

∫

Ω

q′′′dV (36)

in every volume cellΩ with the dependencies of the material properties (heat conductivity in fuel and coolantK,
specific coolant heatcp , heat transfer coefficienth, and coolant densityρ) on temperature:

(K, cp, h, ρ) = R = R0(T) · [1 + ∆R(T, x)] (37)

with the error-free dependency functionsR0(T) taken from the available materials properties [32, 33]. Thecoolant
flow ~u and heat source termq′′′ were calibrated to represent a realistic situation. The heat transfer coefficienth appears
in the discretization of∇T over the boundary between fuel and coolant.

We use a fairly complex uncertainty structure in which the uncertainty quantifiers are dimensionless coefficients
in the representations of the dependency of material properties on temperature:

∆R(x, T ) = x0 · C0(T ) + x1 · C1(T ) + x2 · C2(T ) (38)

C0(T ) = 1; C1(T ) = T + 1; C2(T ) = 2T 2 − 1 (39)

thus resulting in three uncertainty quantifiers per physical parameter; the dimension of the uncertainty space is12.
Furthermore,x0, x1, x2 are randomly distributed with a probability density function estimated from the published

data [32, 33]. As a result, the experimental error∆R in measurement of a material propertyR is, in this case, not
randomly and uniformly distributed over the geometry of thereactor. Instead, it depends on temperature (and that
dependence itself is uncertain as quantified by the parameters x0, x1, andx2). Other expressions for uncertainty
representation are, of course, possible. Our main approachadmits any structure as long as the derivative∂J(x)/∂x
can be computed.

FIG. 1: Simplified 3-D model of the reactor core.
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The solution of the coupled system is resolved. In the central fuel element we use a finer 3D grid for evaluating
the temperature distributionTpin:

−∇ · K∇Tpin + q′′′ = 0 (40)

We chose the maximal fuel centerline temperature as a merit function. We note that over the continous spatial co-
ordinates this function is differentiable as long as the maximum is unique and regular in an optimization sense.
Nevertheless, to protect against nondifferentiability that may be induced by the discretization of the partial differential
equations, we use an approximation with another vector norm: J(T ) = max(Tcenterline) ≈ ‖Tcenterline‖100. The
approximation is differentiable since the argument of the norm never approaches zero.

For this model, the gradient information was obtained by direct coding. We are currently actively investigating the
use of automatic differentiation techniques to obtain gradients for our method when applied to nuclear engineering
applications [9].

4.2 Quality of the Information Matrix

In our numerical experiments, we consider an applied model with uncertainty space dimension12. To determine the
quality of the information matrix, we assume a uniform distribution for each of the12 parameters of our model from
Section 4.1. The range of values of each uniform marginal distribution is obtained by matching it with the mean and
variance of each parameter from a full nuclear reactor simulation model. This uniform distribution does not necessarily
match the full multivariate distribution of the full nuclear reactor simulation model, but it is more convenient to work
with. Starting from a uniform distribution on[−1, 1], we use the following values of the scaling and shift parameters,
as described in Theorem 3, whereA = (a1, · · · , a12)

T , andB = (b1, · · · , b12)
T :

(A,B) =




0.0094 0
0.0094 0
0.0097 0
0.0807 0
0.0819 0
0.0865 0
0.0734 0
0.0768 0
0.0841 0

1.9868× 10−5 0
1.8514× 10−5 0
1.9047× 10−5 0




(41)

Using this experimental setup, we analyze the properties ofthe information matrixFT F through the singular values
of the collocation matrixF, since the singular values ofF are the square root of the eigenvalues of information matrix
FT F, and the condition number of the information matrix is the square of that of the collocation matrix. Here, the
condition number of a non-square matrix is defined as the ratio of the largest and the smallest of its singular values.
As described in Section 3.1, we expect the properties of thismatrix to be a good indicator of the performance of the
model. In particular, we would like this matrix to be at a substantial distance from singularity and as close to identity
as possible (although for random designs like the ones considered here, this can be achieved only in the limit of an
infinite number of sample points; whereas we will use the approach for a relatively small number of samples).

We tried two different experiments. For the first experiment, we obtained a total of54 sample points. We used
36 sample points as training data, and the other18 as testing data. For the full model of dimension12 we have455
multivariate polynomials up to degree3 in the full basis; the collocation matrix will be of the size468 × 455. In
the following section, we will compare the prediction results of full basis and truncated basis. Using the Hermite
polynomial basis with455 polynomials, with36 sample points including function and derivative information, we
observed that the numerical rank of the collocation matrix is 433, which means that the corresponding information
matrix is singular. The condition number of the collocationmatrix is 1.9806 × 1017. We ran the same experiment
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for the orthogonal basis described in Corollary 2. We definedthe index set based on total degree of the polynomial
basis, which we require to be less than or equal to3, that is,||p||1 ≤ 3. Using standard distributionU [−1, 1] and the
Gram-Schmidt method, we can get the univariate basis up to degree3 in one dimension as:w0(x) = 1, w1(x) = x,
w2(x) = x2 − (1/3), w3(x) = x3 − (9/10)x.

Then, based on Corollary 2, the tensor product of the univariate basis is an orthogonal basis for the multivariate.
We use the same36 sample points as for Hermite polynomials, which means the collocation matrix will be of size
468×455, and we get the full rank collocation matrix with condition number1.4408×105, a far better result compared
with the Hermite polynomial case. For the second experiment, we obtained a total of108 sample points. We use72
sample points as training data, and the remaining36 sample points as testing data, and the size of the collocation
matrix will be936×455. Using the Hermite polynomial basis with455 polynomials, with72 sample points including
function and derivative information, the condition numberof the collocation matrix is4.8289× 1013.

Using the same orthogonal basis constructed in the first experiment, with the same72 sample points as for Hermite
polynomials, we obtained the condition number4.0397 × 103 for the collocation matrix, which corresponds to a far
better conditioned information matrix. In Fig. 2, we plot the the singular values of the collocation matrix in log scale
for both our tensor product orthogonal basis and the Hermitepolynomial basis, for the first experiment, with a total
of 54 sample points. We see that for Hermite polynomials, the singular values distribution drops more quickly, so
the corresponding information matrix will be farther away than the one for our orthogonal design. Also, we can see
that for our orthogonal basis, most of the singular values are large, which means the variance of the corresponding
coefficient is small.

In Fig. 3, we plot the the singular values of the collocation matrix in log scale for both our tensor product orthog-
onal basis and the Hermite polynomial basis, for the second experiment, with108 sample points. We observe a result
similar to that of the first experiment.

4.3 Using the Tensor Product Orthogonal Basis within Stepwi se Regression

Once we produced an orthogonal basis as described in Section3, an important issue was how to harness its potential
promised by our analysis in Section 3.2. In particular, we are interested in identifying regression procedures using this
basis, which has a small generalization error; that is, we seek procedures that do well on data on which they have not
been trained.
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FIG. 2: Ordered singular values of the collocation matrix for54 sample points.
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FIG. 3: Ordered singular values of the collocation matrix for108 sample points.

Since small generalization error is connected with the ability to fit a model well on a small set of predictors [34],
a natural question to ask is, what is the best subset of this basis that will predict the output? Stepwise regression [35]
gives an approach to truncate the basis. It is a systematic method for adding and removing terms from a multilinear
model based on their statistical significance in a regression, based on hypothesis testing, such asF andt tests [35].

For the modelLxJ = LxΨT β + ε, stepwise regression is based on theF test. The method begins with an
initial model and then compares the explanatory power of incrementally larger and smaller models. At each step, we
compute theF statistic of each coefficient and then compute thep value, which is the probability with respect to
theF distribution to test models with and without a candidate term. If a term is not currently in the model, the null
hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject
the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis
is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed
from the model. The method proceeds as follows.

Step 1: Fit the initial model.

Step 2: If any terms not in the model havep values less than an entrance tolerance (that is, if it is unlikely that they
would have a zero coefficient if added to the model), add the one with the smallestp value, and repeat this
step; otherwise, go to Step3.

Step 3: If any terms in the model havep values greater than an exit tolerance (that is, if it is unlikely that the
hypothesis of a zero coefficient can be rejected), remove theone with the largestp value, and go to Step2;
otherwise, end.

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method
may build different models from the same set of potential terms. The method terminates when no single step improves
the model.

There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better
fit. In this sense, stepwise models are locally optimal but may not be globally optimal as opposed to globally optimal
model selection methods such as best subset, LASSO, or LAR. On the other hand, our model has455 polynomials,
which is a very large basis, and thus computational effort may be a difficulty for those methods. Another concern for
our method originates from the fact that in our case stepwiseregression performs the modeling by analyzing a large
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number of terms, and selecting those that fit well. Thus, theF values for the selected terms are likely to be significant,
and hypothesis testing loses its inference power. If the objective of modeling is to test the validity of a relationship
between certain terms or to test the significance of a particular term, stepwise regression is not recommended [35];
also see [36] for a discussion of pseudoness of theF statistic. If the objective is to predict, however, as is thecase
here, stepwise regression is a convenient procedure for selecting terms, especially when a large number of terms are
to be considered. As a result, we choose stepwise regressionas our basis truncation method.

We use thestepwisefit function in MATLAB (implementing an algorithm from [37]), and define thep value
for basis to enter and exit as0.05. We tried both starting with nothing (no polynomials) in themodel and everything
(all 455 polynomials) in the model.

We use the same two sets of data as in the previous section. Forthe first experiment, we will have36 sample points
for training and18 sample points for testing.

For the orthogonal basis obtained from Corollary 2, starting with nothing in the model, we got65 polynomials
in the final model. When we started with all of the455 polynomials in the model, we got371 polynomials in the
final model. In Fig. 4, we show the function value errors, withand without basis truncation, with(O) standing for
the orthogonal basis case. We report relative function value errors, ordered from smallest to largest. Starting with
nothing in the model results in far fewer polynomials than starting with everything in the model. It also results in
better estimation error for the testing data.

For Hermite polynomials (one of the recommended polynomialsets used in uncertainty quantification [31]), start-
ing with nothing in the model, we got65 polynomials in the final model, while starting with all of the455 polynomials
in the model, we got424 polynomials in the final model.

In Fig. 5, we compare the relative function value errors of truncated orthogonal basis starting with nothing in the
model with those of the Hermite polynomials using the full basis and two methods of stepwise regression.

Then, to get a more general view of the prediction error of both models, we permute the54 sample points randomly
30 times. Each time, we randomly take36 points as training data, and take the other18 points as testing data. In Fig. 6,
we show the boxplots for the relative function errors of the forward truncated orthogonal model compared with those
of three kinds of Hermite polynomial basis: full Hermite polynomial basis, forward truncated Hermite polynomial
basis, and backward truncated Hermite polynomial basis.

In Fig. 7, we show the sample mean and standard deviation of the relative function value errors for the forward
truncated orthogonal model compared with those of three kinds of Hermite polynomial basis.
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FIG. 5: Relative function value errors for the truncated orthogonal basis compared with those of Hermite polynomials.

1 6 11 16

10
−8

10
−7

10
−6

10
−5

10
−4

Sorted Function Errors Index

R
el

at
iv

e 
F

un
ct

io
n 

E
rr

or
s 

in
 L

og
 S

ca
le

 

 

(O)truncated with nothing in the initial model

(H)without basis truncation

1 6 11 16

10
−8

10
−7

10
−6

10
−5

10
−4

Sorted Function Errors Index

R
el

at
iv

e 
F

un
ct

io
n 

E
rr

or
s 

in
 L

og
 S

ca
le

 

 

(O)truncated with nothing in the initial model

(H) truncated with nothing in the initial model

1 6 11 16

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Sorted Function Errors Index

R
el

at
iv

e 
F

un
ct

io
n 

E
rr

or
s 

in
 L

og
 S

ca
le

 

 

(O)truncated with nothing in the initial model

(H) truncated with everything in the initial model

FIG. 6: Boxplot of relative function value errors in log scale for the forward truncated orthogonal basis compared
with those of truncated Hermite polynomials with54 sample points.
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FIG. 7: Sample mean and standard deviation of relative function value errors in log scale for the forward truncated
orthogonal basis compared with those of truncated Hermite polynomials with54 sample points.

We conclude from Figs. 6 and 7 that stepwise regression workssubstantially better for the orthogonal basis com-
pared with the Hermite basis, resulting in better estimates(by more than an order of magnitude) and fewer polynomials
in the final model, when the number of sample points is very limited.

For the second experiment, we will have a total of108 sample points:72 as training points and36 as testing points.
As in the first experiment, we permute the108 sample points randomly30 times. Each time, we randomly take72
points as training data, and use the other36 points as testing data. In Fig. 8, we show the boxplots for therelative
function errors of the forward truncated orthogonal model compared with those of three kinds of Hermite polynomial
basis: full basis, forward truncated basis, and backward truncated basis.

In Fig. 9, we show the sample mean and standard deviation of the relative function value errors for the forward
truncated orthogonal model compared with those of three kinds of Hermite polynomial basis.

From Figs. 8 and 9, we conclude that, with more sample points (in which case, the collocation matrix of Hermite
polynomial basis is better conditioned), forward truncated orthogonal basis does almost the same as full Hermite
polynomial basis. On the other hand, we have only about60 polynomials in the forward truncated orthogonal basis,
as opposed to455 polynomials in Hermite polynomial basis, so our method doesthe same quality of work but with
a far smaller model. We also see from Fig. 8 that truncated orthogonal basis is much more stable than truncated
Hermite polynomials, as the length of the boxes indicated. We see from Fig. 9 that truncated orthogonal basis gives
better prediction error than truncated Hermite polynomials. We thus conclude that even in the larger sample size
case our method does better. We emphasize, however, that ourapplication regime of interest is the low-sample-size
case brought about by the need to evaluate expensive functions that is common in uncertainty quantification. As we
saw from Figs. 6 and 7, in that case the performance of the truncated orthogonal polynomial basis approach that we
advocate is even stronger compared to the Hermite polynomial variants.

5. CONCLUSIONS

We investigate polynomial approximations to the response of a system to a multidimensional uncertainty parameter.
Specifically, we investigate a regression procedure for obtaining the best polynomial approximation in the presence
of function and gradient information. Such an investigation is warranted by the increased availability of gradient
information, for example, by use of automatic differentiation tools.

Nevertheless, the use of gradients to approximate the system response also poses new challenges that we address in
this paper. We find that the use of the Hermite polynomial basis may result in an essentially singular information matrix
for the regression procedure, especially when the number offunction and derivative values only slightly exceeds the
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FIG. 8: Boxplot of relative function value errors in log scale for the forward truncated orthogonal basis compared
with those of truncated Hermite polynomials with108 sample points.
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FIG. 9: Sample mean and standard deviation of relative function value errors in log scale for the forward truncated
orthogonal basis compared with those of truncated Hermite polynomials with108 sample points.
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number of polynomials used. We remedy this situation by deriving an orthogonal basis with respect to anL2-type
inner product that includes both the function and its derivative.

We are interested in particular in obtaining tensor productbases. These bases give us two advantages. First, they
are easy to implement, regardless of the dimension. Second,when we want to do basis truncation according to the
importance of a certain variable, we can directly remove an unimportant variable without inadvertently deleting the
polynomials including important variables. We proved herethat such bases can be obtained under some restriction of
the maximum degree of the multivariate polynomials.

Numerical experiments demonstrate that the tensor productorthogonal bases constructed here result in substan-
tially better-conditioned information matrices. In addition, stepwise regression performs much better using this new
basis in terms of obtaining a smaller error in predicting function values and in a more parsimonious model. These
findings are validated by using a nuclear reactor core simulation example.

The work presented here needs to be expanded in several directions in order to increase its generality. In this paper
we have considered only random designs for sampling. A better-conditioned information matrix and more accurate
function approximation might be obtained by choosing a moreuniform design. In the application discussed here, such
designs must be constructed on somewhat nonrectangular domains. Another area for further study is model selection.
The numerical experiments suggest that pruning of the basisleads to better model prediction. Besides the stepwise
selection procedure used here, one might consider a shrinkage method, such as LASSO. This method chooses the
regression coefficient to minimize an`1-penalized least squares:

β̂
lasso

= argmin
b




‖y − Fb‖
2

+ λ

k∑

j=2

|bj |






whereλ ≥ 0 is a complexity parameter that controls the amount of shrinkage andk is the number of polynomials in
the basis. Note that the constant term,b1, is not part of the penalty. Choosingλ sufficiently large will cause some of
the β̂lasso

j to be exactly zero. Another important question is the generic issue of error models; we believe that in our
case it may make sense to assume a correlation between the errors at different sampling points as well as between
function and derivative information.
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