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In modeling and simulation of material failure, a major challenge lies in the computation of stress redistributions during

the stochastic propagation of localized failures. In this study, an nth-order generalized local load sharing (GLLS) model

is introduced to account for the complexity of such local interactions in an efficient way. The rule is flexible, covering

a wide range of load sharing mechanisms between the equal load sharing and local load sharing types. A Monte Carlo

simulation model employing various orders of this GLLS rule is used to study the effect of such load redistributions

on the failure of a micron-scale carbon nanotube (CNT) fiber. These CNT fibers exhibit a hierarchical structure. At

the lowest length scale are single- or multi-walled CNTs with nanoscale diameters (e.g., 1–10 nm), which are aligned

and clustered to form small bundles at the next higher length scale (15–60 nm in diameter). Thousands of these CNT

bundles aggregate and align to create CNT fibers with micron-scale diameters. The results of this study indicate that the

mean strength of the CNT fibers reduces by approximately two-thirds of an order of magnitude when up-scaling from

an individual CNT to a CNT fiber. This dramatic strength reduction occurs at three different stages of the up-scaling

process: (1) from individual CNTs of length lt to CNT bundles of the same length; (2) from a CNT bundle of length

lt to a CNT bundle of length lb(lb=10lt); and (3) from CNT bundles of length lb to CNT fibers of the same length.

The specific strength reductions during these three stages are provided in the paper. The computed fiber strengths are in

the same general range as corresponding experimental values reported in the literature. The ability of the GLLS model

to efficiently account for different mechanisms of load sharing, in combination with the multi-stage up-scaling Monte

Carlo simulation approach, is expected to benefit the design and optimization of robust structural composites built up

from carbon nanotubes.

KEY WORDS: load sharing models, statistical size effect, statistical failure, carbon nanotubes, hierarchical
structure, Monte Carlo simulation

1. INTRODUCTION

In a typical failure scenario of solids under stress, accumulation of atomic scale instabilities triggers nucleation of
micro-flaws and micro-voids; the growth and coalesce of the latter leads to formation of macroscopic cracks and
ultimately results in a catastrophic rupture. Such a complex failure process involves (1) a large number of fine-scale
field quantities representing both material and mechanicalforcing components, and (2) the quasi-static or dynamical
evolution of these quantities at multiple length scales. Direct quantification or measurement of these field quantitiesin
space and time is challenging, if not impossible in some cases. In this sense, probabilistic descriptions and uncertainty
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quantification models are of paramount importance in the design of robust advanced materials and reliable prediction
of the stresses and strains at failure.

Recent dramatic progress in multi-scale research is closely connected with the rapid growth of nanotechnology
starting in the 1990s. Most bottom-up multi-scale modelingstrategies involve passing information regarding defects,
microstructure, and their interactions from the atomic scale to the micro-scale and eventually to the macro-scale. To
date, determinism has remained an almost universal strategy in most of these models, in which average properties,
constants, or representative unit processes are transferred up through the scales. While this approach works well
when the material response of interest is stable, such as in linear elasticity or small-scale plasticity, it becomes a
severe limitation when material behavior is governed by theonset of inhomogeneities and instabilities. Defects and
microstruture at all length scales are random in nature and failure properties, such as peak stress or peak strain, are
highly sensitive to these uncertainties. A deterministic simulation merely corresponds to a single point in the random
space of failure stress or strain and does not offer reliability or sensitivity information. To understand and quantify
uncertainty at different length scales and study how it impacts phenomena operating at other length scales, one needs
to develop a multi-scale stochastic modeling strategy to account for incomplete microstructure information, statistical
defects, random failure initiation, stochastic progression, large sample sets or ensemble, and scaling laws [1–6].

In modeling and simulation of material failure, a major challenge lies in the computation of stress redistribution or
in establishing a local load sharing rule during the nucleation and propagation of localized failure events. Considering
the large defect and micro-structural parameter space, as well as the need to simulate a very large number of samples
for each parameter set, it becomes prohibitively expensivecomputationally to employ sophisticated mechanics mod-
els. Consequently, it becomes highly desirable to seek empirical, but accurate and efficient, surrogate load sharing
models as an alternative. The main objective of this paper isto introduce such a surrogate model—namely, annth-
order one-dimensional (1D) and two-dimensional (2D) generalized local load sharing (GLLS) model—and to apply
it in simulation to study the statistical strength of micron-scale carbon nanotube (CNT) fibers. The characteristics
of load redistribution can be altered by the ordern of the GLLS rule, which can vary from ductile-like (diffuse)to
brittle-like (localized). The CNT fibers have a complex hierarchical nanostructure consisting of thousands of CNT
bundles, which in turn consist of dozens of CNTs. Each CNT hasrandom strength that leads to random strength bun-
dles, which in turn leads to random strength CNT fibers. As thesize scale increases, the mean strength and variance
are predicted in this study to decrease in a manner that depends on the details of the load redistribution (ordern).
At the end, model predictions are compared with some data found in the literature and recommendations for future
extensions are provided.

2. GENERALIZED LOCAL LOAD SHARING MODEL

Originally introduced to explain ruptures of bundles of threads [7], fiber bundle models have been applied to problems
involving cracks and fractures, earthquakes, and other breakdown phenomena. In such models, the fibers are usually
assumed to be aligned and loaded with the same force along thefiber direction. The strengths of the fibers are modeled
as independent and identically distributed random variables. Consequently, as the applied load increases, the weakest
fiber will break first. The load carried by this weakest fiber prior to failure is redistributed among the surviving ones.
The nature of this redistribution reflects the interaction of the components in a system.

To circumvent complex and time-consuming mechanics-basedcalculations for load redistribution following fiber
breaks, load sharing rules are employed. The two classical load sharing rules are the equal load sharing (ELS) rule
[7], where the load is uniformly (equally) distributed among all intact fibers, and the extreme local load sharing
(ELLS) rule [8, 9], where the broken fiber affects only the nearest surviving fibers. Although the mechanics are only
approximated, these rules can make possible relating analytically stochastic failure processes to statistical strength. For
instance, to relate load sharing to probabilistic bundle strength, Harlow and Phoenix [8, 9] proposed a simple ELLS
rule for 1D systems by transferring the load only to the two nearest surviving bonds. As a result, exact recursion
relations were established. Their work was later extended to account for the next-nearest neighbors by Phoenix and
Beyerlein [10].

In actuality, load redistribution lies in between the limits of ELS and ELLS. The variation is very broad and the
extent of re-distribution depends on many material/systemparameters. Hedgepeth and Van Dyke [11] developed a
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shear lag model to compute the stress concentration factorsas a result of a 1D row of breaks (cracks) by assuming
the elastically deforming matrix only serves as shear coupling between neighboring fibers. The Hedgepeth and Van
Dyke model was later extended to treat a general arrangementof fiber breaks [12] showing that details of stress fields
caused by breaks depend on the properties of the fiber, matrix, and fiber-matrix interface deformation.

In order to provide an efficient load sharing rule that can span the range between ELS and ELLS, annth-order
GLLS model is proposed in this study (a thermodynamic formulation will be reported in a separate paper). The two
limiting cases of the GLLS model, the zeroth-order GLLS and sufficiently high-order GLLS, reduce to the ELS
model [7] and ELLS model [8, 9], respectively. Instead of directly simulating a failure process for different material
microstructure parameters, the GLLS model introduces simple rules that can be empirically calibrated to account for
a variety of complex local interactions. In this way, GLLS helps to circumvent the issue ofincomputability[13] in
nonlinear mechanics or the so-called “curse-of-dimensionality” in mathematics.

2.1 An Illustrative Elastic Beam Model

To illustrate the mechanisms behind the rules used in GLLS, aproblem involving load redistribution in an elastic
beam-spring assembly is considered first. The elastic beam model consists of a large number of parallel and aligned
elastic springs attached to two parallel beams. The lower and upper beams are modeled as perfectly rigid and elastic,
respectively. The springs, with identical length at rest, behave linearly elastic until breaking at a certain strengthlimit
under an incremental load. When a spring is broken, the released force serves as an upward perturbing force acting on
the upper beam. The resulting deformation of the upper beam leads to redistribution of this force among the remaining
intact springs, which determines the local load sharing rule.

For an infinitely long elastic beam lying on elastic springs with spacingl, following classical beam theory, the
Green’s function is analytically given as

G(x) =
λl

2k
e−λ|x| [cos(λx) + sin(λ |x|)] (1)

which corresponds to the deformation of the beam at locationxdue to a unit point force applied at the origin. Parameter
λ = (k/4lEI)

1/4 indicates the degree of localization, withEI andk denoting the bending stiffness of the beam and
the elastic constant of the springs, respectively. For sufficiently smallλ, the deflection becomes almost identical
throughout the beam, and the redistribution of the force corresponds to the ELS rule. As parameterλ increases,
the size of the neighborhood participating in load sharing is reduced, and the load sharing becomes more localized,
approaching the ELLS model. This trend is illustrated in Fig. 1 where beam deflection profiles resulting from a broken
spring atx = 0 are graphed for different values ofλ. Consequently, with the use of a single parameterλ, a wide range
of load redistribution patterns can be obtained between thetwo extreme cases of ELLS and ELS.

2.2 Generalized Local Load Sharing Rules

This section describes thenth-order GLLS model for 1D and 2D systems. The familiar ELLS model is described first
in order to distinguish it from thenth-order nearest neighbor GLLS.

2.2.1 One-Dimensional ELLS Model

Consider a 1D system of bonds in which load sharing follows the ELLS rule [8, 9]. As shown in Fig. 2(a), when
the central bond is broken, the load released from the brokenbond is shared equally by the two nearest-neighboring
bonds. If any of the nearest-neighboring bonds are already broken [Fig. 2(b)], the load meant to be redistributed to
this bond will be equally shared by its two nearest neighbors. This load sharing process continues iteratively. The
criterion for the iterations to stop is when the shared load on any broken bond becomes negligibly small. Analytical
expressions can be established for the load distribution ratios of the 1D ELLS model. For example, for the case shown
in Fig. 2(b), the ratios of the load distributed to the nearest surviving bonds to the left and to the right are calculated as
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FIG. 1: Beam deflection profiles resulting from a broken spring atx = 0 for different values of the localization
parameterλ (k = 1, l = 1).
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FIG. 2: Schematic of the load distribution for the 1D ELLS model (continuous, intact bonds; dashes, current broken
bonds; dots, pre-existing broken bonds).
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wherei represents the iteration step. For the case shown in Fig. 2(a), the load distribution ratios are obviously equal
to (1/2,1/2). The load distribution ratios for the broken bond in Fig. 2(c) can be derived using straightforward math-
ematical induction as

rL =
R

L + R
rR =

L

L + R
(3)

whereL andR denote the distances to the left and right nearest survivingbonds from the broken bond.

2.2.2 One-Dimensional nth-Order GLLS Model

Thenth-order GLLS rule is used to describe general failure phenomena, wheren corresponds to the size of the “dam-
age zone”. The concept of the damage zone is employed to account for inelastic mechanisms, such as yielding, soften-
ing, and micro-cracking. The damage zone is centered arounda broken bondi and for thenth-order GLLS rule consists
of n sites to the left andn sites to the right of bondi, denoted asDi = {i − n, i − n + 1, · · · , i − 1, i + 1, · · · , i + n}.
When bondi breaks, its nearest surviving bonds within the damage zone will share a certain ratioξ (0 ≤ ξ ≤ 1) of
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the released load. This ratioξ is calculated based on the algorithm described in the next subsection. The remaining
ratio of the released load (1− ξ) will be equally shared by all surviving bonds in the system.If there are no surviving
bonds within the damage zone, the load will be equally sharedby all surviving bonds in the system. When the size
of the damage zone is equal to zero (i.e., no local interactions), the corresponding zeroth-order GLLS model reduces
to the classical ELS model, where 100% of the load released bya broken bond is equally shared by all the surviving
bonds in the system. At the other end of the spectrum, when thedamage zone is as large as the entire system (i.e.,
extreme local interactions), the GLLS model becomes the ELLS model. As illustrated in the previous subsection, the
ELLS rule corresponds to an extreme localization of load sharing, since all the load formerly carried by the broken
bond is transferred only to the nearest surviving bonds. In this case, zero percent of the released load from a broken
bond is equally shared by all surviving bonds in the system.

The localization parameterξ is similar to parameterλ in the elastic beam model and indicates the degree of
localization for a particular microstructure. For example, in a polymer composite,ξ depends on the shear lag behavior
between the matrix and the reinforcement. Specifically, (1-ξ)/ξ indicates the ratio between the global and local effects
induced by a local failure.

2.2.3 Two-Dimensional nth-Order GLLS Model

The 2D GLLS model is developed around a 2D discrete lattice consisting ofN1 × N2 bonds. LetS = {(i, j)|1 ≤
i ≤ N1, 1 ≤ j ≤ N2} index a discrete set of sites for the bonds on the rectangularlattice. Figure 3 shows two
types of 2D nearest neighborhoods for a square array: (a) eight bonds in Moore’s model [14] and (b) four bonds in
Von Neumann’s model [15]. In this work, the eight-bond Moore’s model is selected for all cases considered. For each
case in Fig. 3, the damage zone for the first-order GLLS rule isoutlined by dashed lines, while for the second-order
rule by bold lines. Note that the GLLS rule is not restricted to a square array. A hexagonal arrangement, for instance,
can also be considered. For simplicity, all nearest-neighboring bonds in Moore’s neighborhood are treated equally;
i.e., one-eighth of the load from a broken bond is assigned toeach nearest neighbor. Other non-uniform distribution
schemes can be assigned, such as those based on Hedgepeth andVan Dyke’s model [11].

To implement annth-order GLLS rule numerically in a 2D lattice system, a force-controlled quasi-static algorithm
is described below. It is assumed that the strength of each bond is provided by randomly sampling from a given
probability distribution with no correlation among the strengths of individual bonds. The elastic modulus of the bonds
is assumed to be deterministic and identical for all bonds.

1. Determine the strengthskl; (k,l) ∈ S of each bond by randomly sampling from a prescribed probability distri-
bution. Initialize forcesf (0)

kl = f0 for every (k,l) ∈ S. The value forf0 is selected so that no failures (breaks)
are observed initially to any of the system’s bonds.

         (a)                                                                   (b)

y 

x 

y 

x 

FIG. 3: Moore’s neighborhood [gray area in (a)] and Von Neumann’s neighborhood [gray area in (b)] of the broken
bond (black square), with the first- and second-order damagezones indicated with dash and bold lines, respectively.
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2. Identify the weakest bond (i,j) that is to be broken in the current loading step t:

(i, j) = argmax
(k,l)∈S

(

rkl =
f

(t)
kl

skl

)

(4)

3. The total force on the entire systemF (t) is adjusted to a level leading to failure of the weakest bond (i,j) at the
current loading step t:

F (t) =
1

rij

N1
∑

k=1

N2
∑

l=1

f
(t)
kl (5)

Compute the displacementu(t) = F (t)
/

(Nsκ), whereκ is the elastic modulus of the bonds andNs is the number

of surviving bonds. Update the force on the broken bondf
(t)
ij = 0.

4. Identify thenth-order damage zoneDij of the broken bond (i,j) (e.g., 24 bond sites for the second-order GLLS
rule as shown in Fig. 3).

5. Distribute the load of the broken bondf (t)
ij equally to all the bonds (intact or broken) in its nearest eight-

bond Moore’s neighborhoodNij . For any pre-existing broken bond (k,l) ∈ Nij , the load allocated to it is
equally redistributed (i.e., one-eighth) to each bond of its own nearest eight-bond Moore’s neighborhoodNkl

that belongs toDij ; i.e.,Nkl ∩ Dij . This re-distribution process continues iteratively until the load shared by
any pre-existing broken bond (p,q) ∈ Dij becomes negligibly small.

6. Sum up all the loads resulting from the redistribution described in the previous step to determine the percentage
ξ of the loadf

(t)
ij of the broken bond that has been redistributed within the damage zoneDij . Then distribute

the remaining load(1 − ξ) × f
(t)
ij equally to all the surviving bonds in the system.

7. Go back to Step 2 for the next loading step with all the updated forces.

2.2.4 Illustrative examples involving the 2D nth-order GLLS model

• Example 1: Suppose that in the current load step bond (i, j) breaks and its nearest neighbors are all intact. Based
on the first-order GLLS rule and the algorithm described in the previous section, the load distribution factors
are calculated as shown in Fig. 4(a). Since there is no pre-existing broken bond in the nearest neighborhood,ξ

= 1 and all higher-order GLLS rules will yield the same results as the first-order rule.

• Example 2: Suppose two adjacent bonds (i, j) and (i, j+1) break simultaneously and all the bonds surrounding
them are intact. The load distribution factors are shown in Figs. 4(b) and 4(c) based on the first- and second-
order GLLS rules, respectively. It is also interesting to note the difference in the values of the localization
parameter:ξ = 0.9524 andξ = 1 for the first- and second-order rules, respectively. All higher-order GLLS rules
will yield the same results as the second-order rule.

• Example 3: Suppose four adjacent bonds (i, j), (i, j+1), (i+1, j), (i+1, j+1) break simultaneously and all the
bonds surrounding them are intact. The load distribution factors are shown in Figs. 4(d) and 4(e) for the first-
and second-order GLLS rules, respectively. Theξ values for the two rules are 0.7555 and 1, respectively. All
higher-order GLLS rules will yield the same results as the second-order rule.

The above examples confirm the following behavior for the GLLS model that has been postulated: for a sufficiently
high-order rule, that is when the damage zone is larger than the size of the cluster of breaks, load distribution and,
hence, failure progression become ”brittle-like” with localization parameterξ = 1.

Figure 5 displays a sample set of five stress-strain curves and corresponding snapshots at the peak load for a 50×
50 lattice system using the force-controlled quasi-staticiterative algorithm described earlier. The five curves and five
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 0.127 0.2857  0.2857 0.127 

 0.127 i, j  i, j+1 0.127 

 0.127 0.2857  0.2857 0.127 

      

      

 0.1429 0.2857  0.2857 0.1429 

 0.1429 i, j  i, j+1 0.1429 

 0.1429 0.2857  0.2857 0.1429 

      

     

 0.125 0.125 0.125  

 0.125 i, j 0.125  

 0.125 0.125 0.125  

     

(a) 

(b) (c) 

      

 0.1333 0.3111  0.3111 0.1333 

 0.3111 i, j  i, j+1 0.3111 

 0.3111 i+1, j  i+1,j+1 0.3111 

 0.1333 0.3111  0.3111 0.1333 

      

      

 0.2 0.4  0.4 0.2 

 0.4 i, j  i, j+1 0.4 

 0.4 i+1, j  i+1,j+1 0.4 

 0.2 0.4  0.4 0.2 

      

(d) (e) 

FIG. 4: Calculated load distribution factors (summing up toξ that can be less than unity) for examples involving:
(a) a single broken bond; (b) two simultaneously broken bonds using the first-order rule; (c) two simultaneously
broken bonds using the second-order rule; (d) four simultaneously broken bonds using the first-order rule; (e) four
simultaneously broken bonds using the second-order rule.

snapshots provided correspond to five different orders of the GLLS rule. For direct comparison the five curves and
snapshots correspond to the same sampling from a Weibull distribution for the strengths of the 50× 50 bonds of the
lattice system. The Weibull distribution selected has a characteristic strength of 50 GPa and a shape parameter equal
to 1.5 [refer to Eq. (8)]. The elastic modulus of the bonds is chosen to be equal to 1,000 GPa. The meaning of the
coloring in the snapshots is the following: a black pixel indicates an intact bond while a white pixel indicates a broken
bond. The snapshots indicate that as the GLLS order increases, the number of broken bonds at the peak load reduces.
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    n=0                      n=1                      n=2                            n=3                          n=4     

FIG. 5: A sample set of five stress-strain curves and corresponding snapshots at the peak load for a 50× 50 lattice
system. The five curves and snapshots correspond to five different orders of the GLLS rule. In the snapshots, a black
pixel indicates an intact bond while a white pixel indicatesa broken bond.

Figure 5 also indicates that as the GLLS order increases the localization effect becomes stronger, leading to a higher
degree of brittleness.

3. MULTI-SCALE STOCHASTIC MODELING OF HIERARCHICAL STRUCTURE OF CNT FIBERS

3.1 Hierarchical Structure of CNT Fibers

Due to the difficulty of dispersing CNTs homogeneously in a hosting matrix, micron-diameter CNT-based fibers have
become an ideal candidate for harnessing the strength of CNTs in structural fiber-reinforced composites. These CNT
fibers are fabricated by spinning millions of nanotubes; e.g., 105–106 multi-walled CNTs into a fiber with a diameter
in the range of 5–20µm [16]. To improve the packing density and alignment, CNT fibers can be further post-processed
with twisting, and a twisted fiber is also called a CNT yarn [17].

As illustrated in Fig. 6, a CNT fiber or yarn exhibits a hierarchical structure. At the lowest length scale are single-
walled (or multi-walled) CNTs with nanoscale diameters (e.g., 1–10 nm) and micron-scale length (e.g., 10µm). At
the next length scale up are CNT bundles with diameters of e.g., 15–60 nm [18]. CNT bundles are naturally formed
by approximately 10–100 aggregated CNTs [18, 19] due to van der Waals forces. Due to overlapping of individual
tubes, the length of a CNT bundle is not well defined, and is generally up to a specific model to make an appropriate
choice (e.g., 36–360µm following a shear lag model). At the final length scale are the CNT fibers with micron-scale
diameters and a length similar to that of the bundles. A CNT fiber consists of thousands of CNT bundles that have
formed a network or web with a preferred orientation along a CNT fiber axis. As a result of differences in fabrication
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methods and fiber microstructure, the reported strengths ofCNT fibers vary widely with values ranging from 3.3 GPa
[20, 21] to 6.8 GPa [22]. These values are one order of magnitude lower than the strength of individual CNT’s as
reported, for example, by Yu et al. [23], Demczyk et al. [24],and Barber et al. [25].

Sensitivity to size and statistical variation in the strength of a CNT fiber demonstrated in experiments [22, 26]
indicate that CNT fiber failure is a multi-scale stochastic phenomenon. The failure process of a micron-scale CNT
fiber begins with the individual CNTs, which have been shown experimentally to have a strength following a Weibull
distribution with a mean of the order of 100 GPa and a large coefficient of variation of the order of –60% [25]. Growth
of statistical atomic defects leads to failure of certain flawed CNTs (the ones with the lowest strengths from the
Weibull distribution). The load released from a broken CNT is then transferred to neighboring CNTs within the CNT
bundle via slippage due to low inter-tube shear strengths. When a relatively weak CNT bundle reaches its strength
limit, its load will be distributed to neighboring CNT bundles. Consecutive failure of CNT bundles across the CNT
fiber will eventually lead to failure of the entire CNT fiber.

Sensitivity to defects and flaws at multiple length scales isconsidered a major issue in the pursuit of robust design
and fabrication of nanostructures. To further bridge the grand scale gap between CNTs and macroscopic composite
structures, the major engineering challenge is building anefficient and robust multi-scale structure hierarchically
based on models that account for uncertainty in material strength and structure. In addition to the uncertainty of
atomic defects that will propagate up to the micron-scale fiber is the topological uncertainty at the bundle and fiber
scales, such as bundle entanglement, chain ends, longitudinal variations of carbon contents (i.e., uncertainty in the
number of CNTs and bundles), surface defects, etc. [21].

To demonstrate how uncertainty propagates across different length scales, the main objective of this work is to
scale the effect of Weibull statistics of CNT strength [25] up to the micron-scale CNT fiber. A range ofnth-order
GLLS rules is applied to simplify the complex topology associated with actual CNT fibers. Following the hierarchical
structure of the CNT fibers illustrated in Fig. 6, the stochastic model used consists of two “up-scaling” processes [27]:
CNT-to-CNT bundle and CNT bundle-to-CNT fiber, as detailed in the following two subsections.

3.2 Up-Scaling from CNT-to-CNT Bundle

3.2.1 Statistical Strength of Individual CNTs of Length lt

The characteristic lengthlt and diameterd of individual single-walled CNT (SWCNTs) (refer to Fig. 6) are selected
as

lt = 10 µm and d = 1.7 nm (6)

SWCNT-bundle 

(d=17 nm) 

SWCNT-fiber 

(d= 0.46~0.6µm)  
SWCNT  

(d=1.7 nm)  

 

Weibull statistics  

 10µm  

 100µm  

 100µm  

FIG. 6: Hierarchical structure of CNT fibers (the parameter values shown correspond to the actual values used in the
simulation).
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The strengthSof an individual SWCNT with lengthltis modeled as a random variable assumed to follow a Weibull
cumulative distribution function:

PCNT(s) = 1 − exp

[

−

(

s

st

)α]

(7)

wherest is the characteristic strength andα is the shape parameter. For the purposes of this study, the values ofst and
α are selected as

st = 50 GPa and α = 1.5 (8)

These numerical values for the characteristic strength andshape parameter correspond to a mean value of 45.1 GPa
and a coefficient of variation (cov) of 67.9%.

3.2.2 Statistical Strength of CNT Bundles of Length lt (Up-Scaling from CNTs to CNT Bundles)

A CNT bundle is modeled here as10 × 10 = 100 individual CNTs assembled on a square grid and lying in parallel
along a CNT bundle axis. At this stage, the length of the CNT bundle is considered to be equal to the lengthlt =
10 µm of an individual CNT. The strengths of these 100 individualCNTs are modeled as independent and identically
distributed Weibull random variables with the parameters given in Eq. (8). The 2Dnth-order GLLS rule is used to
model the failure of this CNT bundle. An individual CNT within the bundle behaves elastically until it breaks at
its individual strength limit. The individual CNTs have a deterministic elastic modulus equal to 1,000 GPa that is
assumed to be the same for all 100 CNTs.

Before using the 2Dnth-order GLLS rule on the10 × 10 = 100 bundle, the closed-form solution for the mean
strength of a bundle consisting of an infinitely large numberof individual CNTs following the ELS rule is considered
for comparison purposes [7]:

µ∞
b−lt = st

(

1

α

)1/α

exp

[

−

(

1

α

)]

(9)

Using the values forst andα in Eq. (8), the mean strength of a bundle consisting of an infinite number of CNTs
following the ELS rule is computed as

µ∞
b−lt = 19.6 GPa (10)

It should be noted that the corresponding standard deviation of the bundle strength asymptotically approaches zero as
the number of individual CNTs approaches infinity.

To determine the corresponding mean bundle strengths according to the 2D zeroth-to-fourth-order GLLS rules
on the10 × 10 = 100 CNT bundle, Monte Carlo simulations are performed using theforce-controlled quasi-static
iterative algorithm described earlier. The following results are obtained using 10,000 sample functions, a sufficient
number to achieve convergence for all the orders considered

µ
(0)
b−lt

= 20.8 GPa; cov(0) = 9.1% (11a)

µ
(1)
b−lt

= 20.2 GPa; cov(1) = 9.2% (11b)

µ
(2)
b−lt

= 19.7 GPa; cov(2) = 9.6% (11c)

µ
(3)
b−lt

= 19.5 GPa; cov(3) = 9.9% (11d)

µ
(4)
b−lt

= 19.5 GPa; cov(4) = 10% (11e)

Although at this stage the length of the CNT bundle is equal tothe length of an individual CNT(lt = 10 µm), there
is a significant drop both in the mean value and the coefficientof variation of the bundle strength when compared to
the corresponding values for an individual CNT (having mean= 45.1 GPa and cov = 67.9%).

The mean bundle strengthµ(n)
b−lt

decreases as the order of the GLLS rule increases, while the cov exhibits the
opposite trend [Eq. (11)]. However, as indicated in Eq. (11), the effect of the order of the GLLS rule is relatively
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minor. The mean bundle strength based on the zeroth-order GLLS (ELS) rule for the finite-size bundle considered
here (µ(0)

b−lt
= 20.8 GPa) is higher than the closed-form solution for the infinitely large system (µ∞

b−lt
= 19.6 GPa).

Using a size effect justification, it can be claimed that the closed-form solution for the infinite-size system represents
a lower bound for the strength of any zeroth-order GLLS (ELS)finite-size system.

Using the generated strength values from the aforementioned Monte Carlo simulations (10,000 values for each
order of the GLLS rule), it is possible to estimate which probability distribution these values follow. The normal
probability paper plot in Fig. 7 indicates that the bundle strengths are not Gaussian (after all, strength is a physical
quantity that only takes non-negative values). This estimated non-Gaussian probability distribution of the strengthof
a CNT bundle of lengthlt is denoted byPb−lt(s).

At this juncture, it should be mentioned that although the CNT bundles considered in this study consist of10×10 =
100 individual CNTs arranged on a square grid, it is customary toconsider that CNT bundles are circular. For this
purpose, an ”equivalent” circular CNT bundle can be defined with a diameter of 17 nm as indicated in Fig. 6. The
main conclusion of this part of the up-scaling process (going from individual CNTs of lengthlt = 10 µm to10 × 10
CNT bundles of the same lengthlt) is that there is a significant drop both in the mean value and the coefficient of
variation of the bundle strength when compared to the corresponding values for an individual CNT.

3.3 Up-Scaling from CNT Bundle to CNT Fiber

3.3.1 Statistical Strength of CNT Bundles of Length lb

The lengthlb of the CNT fibers is one order of magnitude larger than the characteristic lengthlt of individual CNTs.
As lt was assumed to be 10µm in Eq. (6), the length of the CNT fibers is set equal to

lb = 100 µm (12)

The first step in up-scaling from the CNT bundle of lengthlt (examined in the previous section) to the CNT fiber of
lengthlb is to up-scale from a CNT bundle of lengthlt to a CNT bundle of lengthlb. This is accomplished using the
smallest value exact distribution of extremes (weakest link model).

FIG. 7: Normal probability paper plot for the strengths of CNT bundles of lengthlt = 10 µm obtained using the 2D
zeroth-to-fourth-order GLLS rules on 10× 10 CNT bundles (10,000 values are plotted for each order of the GLLS
rule).
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Denoting the probability distribution of the strength of a CNT bundle of lengthlb by Pb−lb(s), its functional form
is given by

Pb−lb(s) = 1 − [1 − Pb−lt(s)]
lb/lt (13)

Using Eq. (13) and the five probability distributions forPb−lt(s) established in Fig. 7 for the five different orders of
the GLLS rule, the resulting probability distributionsPb−lb(s) for the strength of a CNT bundle of lengthlb are plotted
in Fig. 8. The corresponding mean values and coefficients of variation are given by

µ
(0)
b−lb

= 17.9 GPa; cov(0) = 6.2% (14a)

µ
(1)
b−lb

= 17.3 GPa; cov(1) = 6.4% (14b)

µ
(2)
b−lb

= 16.7 GPa; cov(2) = 6.8% (14c)

µ
(3)
b−lb

= 16.6 GPa; cov(3) = 7.1% (14d)

µ
(4)
b−lb

= 16.5 GPa; cov(4) = 7.1% (14e)

As the smallest value exact distribution of extremes was used (weakest link model), there is a drop both in the mean
value and the coefficient of variation of the strength of the bundle of lengthlb [Eq. (14)], when compared to the
corresponding values for the strength of the bundle of length lt [Eq. (11)].

3.3.2 Statistical Strength of CNT Fibers of Length lb (Up-Scaling from CNT Bundles to CNT Fibers)

A CNT fiber of lengthlb = 100 µm is modeled here in the following way: a50×50 = 2, 500 square grid is considered,
but unlike the case of the10× 10 = 100 square grid considered for the CNT bundle, not all 2,500 locations are filled
with CNT bundles now. This is done to account for the well-known low packing densityρb of CNT fibers. Two
cases are considered: one with a packing density ofρb = 50% (1,250 CNT bundles randomly distributed over the
2,500 grid locations) and one with a packing density ofρb = 30% (750 CNT bundles randomly distributed over

FIG. 8: Probability distributions for the strengths of CNT bundlesof length lb = 100 µm obtained using the 2D
zeroth-to-fourth-order GLLS rules on 10× 10 CNT bundles.
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the 2,500 grid locations). The strengths of the individual CNT bundles are modeled as independent and identically
distributed random variables following the distributionsshown in Fig. 8 (depending on the order of the GLLS rule
used to establish the strength of the CNT bundles).

To determine the probability distribution of the strength of the CNT fibers according to the 2D zeroth-to-third-
order GLLS rules on the50 × 50 = 2, 500 CNT fiber, Monte Carlo simulations are performed again usingthe
force-controlled quasi-static iterative algorithm described earlier (using 5,000 samples for each case). It is obvious
that for every combination of a packing density value and an order of the GLLS rule used on the50 × 50 = 2, 500
CNT fiber grid four different probability distributions canbe computed for the strength of the CNT fibers, each one
corresponding to a different GLLS rule used on the underlying 10 × 10 = 100 CNT bundle grid. For simplicity, only
two of these four probability distributions are kept: one iscalled the upper estimate and the other the lower estimate
(the intermediate ones are not considered in this study).

At this juncture, it should be mentioned that although the CNT fibers considered in this study are based on a
50× 50 square grid, it is customary to consider that CNT fibers are circular. For this purpose, an ”equivalent” circular
CNT fiber can be defined with a diameter of 0.60µm for the case of packing densityρb = 50% and 0.46µm for ρb =
30%, as indicated in Fig. 6.

Figures 9 and 10 depict the resulting probability distributions for the strengths of the CNT fibers withρb = 50%
and 30%, respectively (based on 5,000 simulated values for each case), while Table 1 provides the corresponding mean
values and coefficients of variation. The normal probability paper plots in Figs. 9 and 10 indicate that the CNT fiber
strengths are not following a Gaussian distribution (only the zeroth-order GLLS rule yields curves that are reasonably
close to the Gaussian except for their left tails). Table 1 indicates a decrease in the mean value of the strength as the
order of the GLLS rule increases, and the opposite trend is observed for the coefficient of variation.

The main conclusion of this part of the up-scaling process (going from individual CNT bundles of lengthlb to
CNT fibers of the same length) is that there is a significant drop in the mean values of the fiber strength (Table 1)
compared to the corresponding values of the bundle strength[Eq. (14)].

It is very difficult to make direct comparisons of our numerically established results for fiber strength (Table 1)
with tensile test data, as it is practically impossible to ensure that the exact same types of CNT fibers are compared.
Consequently, the experimental results provided in the following should be used with great caution and certainly not

 ! 50 50

50% 10 10 

 ! 50 50

30% 10 10 

FIG. 9: Normal probability paper plots for the upper strengths of CNT fibers of lengthlb = 100 µm obtained using
the 2D zeroth-to-third-order GLLS rules on 50× 50 CNT fibers. Plot obtained usingρb = 50% and the 2D zeroth-
order GLLS rule on the 10× 10 CNT bundles. Each curve involves 5,000 simulated points.Case identified in Table 1
asρb = 50% (upper estimate).
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 ! 50 50

30% 10 10 

FIG. 10: Normal probability paper plots for the lower strengths of CNT fibers of lengthlb = 100 µm obtained using
the 2D zeroth-to-third-order GLLS rules on 50× 50 CNT fibers. Plot obtained usingρb = 30% and the 2D fourth-
order GLLS rule on the 10× 10 CNT bundles. Each curve involves 5,000 simulated points.Case identified in Table 1
asρb = 30% (lower estimate).

TABLE 1: Mean values and coefficients of variation for the strength ofCNT fibers of lengthlb = 100 µm estimated
from 5,000 simulated samples in each case.

GLLS rule used on the50 × 50 CNT fibers

GLLS rule used on the
10 × 10 CNT bundles

µ
(0)
f (GPa)/cov µ

(1)
f (GPa)/cov µ

(2)
f (GPa)/cov µ

(3)
f (GPa)/cov

ρb = 50% (upper
estimates)

zeroth-order 15.2/0.54% 14.1/2.1% 13.9/2.5% 13.9/2.5%

ρb = 50% (lower
estimates)

fourth-order 13.8/0.58% 12.7/2.2 % 12.6/2.6% 12.6/2.7%

ρb = 30% (upper
estimates)

zeroth-order 15.2/0.70% 14.5/1.6 % 14.1/2.6% 14.0/2.7%

ρb = 30% (lower
estimates)

fourth-order 13.8/0.76% 13.1/1.6 % 12.7/2.7% 12.7/2.9%

for a direct comparison with our numerical results. A first set of test data by Li et al. [22] considered CNT fibers with
diameters in the range of 7.6–21.1µm (in contrast, our fibers have diameters of 0.46∼0.60µm), packing density of
bundles around 48% (one of our cases considers 50%, which is quite close to 48%), and a length of 10 mm (our fibers
have a length of only 100µm = 0.1 mm). Li et al. [22] tested six CNT fiber samples of this type and reported strengths
from 1.1 to 6.8 GPa. A second set of test data by Ma et al. [26] considered CNT fibers with a packing density of bundles
in the range of 30%–50%, but there was no mention about the diameter or length of these fibers. In this work, the
reported strengths were in the range of 0.9–1.6 GPa for epoxyinfiltrated fibers and 0.7–1.3 GPa for poly-vinyl-alcohol
infiltrated fibers. It is interesting to note the significant differences between these two sets of experimental data (most
probably due to the fact that the CNT fibers tested were quite different). The important conclusion here is that our
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numerically established values for the CNT fiber strengths are in the same general range as the experimental results.
Any more direct comparison beyond this statement of “in the same general range” would be meaningless considering
that: (1) there are very significant differences in the diameters and lengths of the fibers used in the experiments versus
those used in this paper; (2) all the strengths in this paper are determined using true (solid) cross-sectional areas,
while in the experimental works nominal cross-sections areused that incorporate the void parts of the cross-section
as a solid part; and (3) there might be other critical differences not clearly specified in the literature in the overall
configuration of the fibers used in the experiments versus thecorresponding configuration of the fibers considered in
this paper. The following general conclusions can be drawn now considering the entire up-scaling process from the
individual CNT to the CNT bundle and then to the CNT fiber: (1) there is a very significant reduction in strength
from a value of 45.1 GPa for an individual CNT to approximately 12.6–15.2 GPa (Table 1) for a CNT fiber, and (2)
there is an equally significant reduction in the coefficient of variation of the strength from a value of 67.9% for the
individual CNT to approximately 0.54–2.9% (Table 1) for a CNT fiber. It should be noted here that this numerically
established cov range of 0.54–2.9% for the strength of the CNT fibers is considered relatively low, as experimental
results usually indicate higher values [22]. It is believedthat this is due to a series of simplifying assumptions made
in this work, including bundle packing density constant along the length, fiber packing density constant from fiber to
fiber, assumption of independence for the random variables modeling the strengths of individual CNTs and individual
CNT bundles, etc. It is expected that when these assumptionsare relaxed in a future study, the coefficient of variation
of the fiber strength will increase.

4. CONCLUSIONS AND FUTURE WORK

In this study a GLLS model is introduced to study the statistical strength of a micron-scale CNT fiber, a nanocomposite
consisting of a hierarchical structure of CNTs aligned intoCNT bundles, and CNT bundles aligned into a CNT fiber.
The basic result of the model indicates that the mean strength reduces by approximately two-thirds of an order of
magnitude when up-scaling from a nanoscale CNT (1.7 nm in diameter and 10µm in length) to a micron-scale CNT
fiber (0.46∼0.60µm in diameter and 100µm in length). This strength reduction occurs at three different stages of
the up-scaling process: (1) up-scaling from individual CNTs of lengthlt to CNT bundles of the same length; (2)
up-scaling from a CNT bundle of lengthlt to a CNT bundle of lengthlb(lb = 10lt); and (3) up-scaling from CNT
bundles of lengthlb to CNT fibers of the same length. The specific strength reductions during these three stages are
provided in the paper.

The multi-scale stochastic model developed in this work accounts for a number of sources of uncertainty common
to most nanocomposites [21]:

1. Uncertainty due to atomic defect distribution, represented by Weibull statistics for the strength of individual
CNTs.

2. Bundle entanglement and misalignment, accounted for by varying the order of the GLLS rule.

3. Effect of spatially random distribution of CNTs within the CNT bundle, considered by using a Monte Carlo
approach to randomly distribute CNTs of randomly varying strength within the bundle grid.

4. Statistical size effect of CNT bundle strength accountedfor through a weakest link model (exact distribution of
extremes).

5. Effect of spatially random distribution of CNT bundles and voids within the CNT fiber, considered by using a
Monte Carlo approach to randomly distribute CNT bundles of randomly varying strength within the fiber grid.

Future work will include the investigation of the followingissues for a more thorough quantification of the CNT
fiber strength uncertainty (especially of its coefficient ofvariation that is currently predicted to be lower than what
experiments indicate):

1. Effect of random variation of carbon content along the fiber axis.
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2. Effect of random variation of fiber diameter and of bundle size.

3. Three-dimensional GLLS modeling using load transfer factors along the bundle and fiber axes.

4. Use of a random field model [28] to better model the random distribution of CNTs within a CNT bundle of
arbitrary length and of CNT bundles within a CNT fiber.

5. Effect of bundle clustering when up-scaling from a CNT bundle to a CNT fiber.
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