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ABSTRACT: This overview shows the mapping of specific visualization techniques, depth assessment of the structure 
of the underlying tissues and used wavelengths of radiation. Medical imaging is currently one of the most dynamically 
developing areas of medical science. The main aim of the review is a systematization of information on the current status 
of the microwave imaging of biological objects, primarily of body tissues. The main options of microwave sensing of 
biological objects are analyzed. Two basic techniques for sensing differing evaluation parameters are characterized. They 
are microwave thermometry (passive) and near-field resonance imaging. The physical principles of microwave sensing 
application are discussed. It is shown that the resonant near-field microwave tomography allows visualization of the 
structure of biological tissues on the basis of the spatial distribution of their electrodynamic characteristics - permittivity 
and conductivity. Potential areas for this method in dermatology, including dermatooncology, are shown. The known 
results of applying the method to patients with dermatoses are given. The informativeness of the technology in the early 
diagnosis of melanoma is shown. The prospects of microwave diagnostics in combustiology, reconstructive and plastic 
surgery are demonstrated. Thus, microwave sensing is a modern, dynamically developing method of biophysical assess-
ment of body tissues. There is a strong indication of the feasibility of application of microwave sensing in combustiology 
(in different periods of burn disease), as well as in reconstructive surgery. Further research in this and other areas of 
biomedicine will significantly expand the range of possibilities of modern technologies of visualization.
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I. INTRODUCTION

Medical imaging is currently one of the most dy-
namically developing areas of medical science.1–4 
Dozens of different imaging methods based on a 
wide range of physical principles are proposed, 
studied and tested, and almost all wavelength ranges 
are used to solve biomedical problems: from X-ray 
to microwave radiation.1,5–12 At the same time, the 
optical wave range is studied in the most in-depth 
way.

Within the framework of optical imaging, a 
comparison of specific imaging methods, the depth 
of assessment of the structure of the underlying 
tissues achieved with their help, and the radiation 
wavelengths required for their implementation are 
shown (Table 1).7,13,14 Among them, in recent years, 
optical coherence tomography has become widely 
used, which has found applications in dermatology, 

oncology and other areas of biomedicine.1,2 At the 
same time, the diagnostic value of this method re-
mains a subject of discussion even now.

Technologies based on the use of luminescence 
and fluorescence, including those involving the in-
troduction of probes, are actively developing. In 
particular, this principle is used for fluorescence 
microscopy, which makes it possible to obtain 
high-quality images of the tissue structure, but the 
penetration depth achieved is relatively small (up 
to 200 μm).7,14 Conversely, an improved version of 
the method, embodied in the form of multiphoton 
confocal laser scanning microscopy, allows you to 
visualize not only individual cell structures, but also 
macromolecules inside them.

A special aspect that limits the applicability of 
biophysical diagnostic and therapeutic technologies 
based on the effects of radiation is their safety for 
the patient and service personnel. In this regard, it 
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should be noted that a number of radiations are clas-
sified as ionizing (in particular, gamma and X-ray 
radiation), and therefore the issue of developing 
safe methods of diagnosis and treatment remains 
relevant. These include electromagnetic radiation 
of the microwave range, the possibilities of which 
for biology and medicine are just beginning to open 
up.7,15–20 On this basis, the purpose of the review is 
to systematize information about the current state of 
microwave imaging of biological objects, primarily 
body tissues.

II.  OPTIONS FOR MICROWAVE SENSING OF 
BIOLOGICAL OBJECTS

The analysis of the specialized literature on the 
methodology and methodological apparatus of mi-
crowave imaging implemented in biomedicine al-
lows us to distinguish two main sensing techniques 
that differ in the estimated parameters: microwave 
thermometry (passive) and near-field resonance 
tomography.15–17,21

In the framework of microwave thermometry 
(radiometry), the volume dynamics of the subsur-
face temperature distribution is recorded by the 
trapping device.5,18,22–24 At the same time, it is known 
that in a number of pathological conditions (for ex-
ample, in oncomammology), there is a significant 
local hyperthermia, which will be detected using a 
microwave sensor.18,25

On the contrary, in recent decades, near-field 
resonant microwave tomography has been actively 
developed, which makes it possible to visualize the 
structure of biological tissues based on the spatial 
distribution of their electrodynamic characteristics 

– dielectric permittivity (ε) and conductivity 
(σ),18,21,26–29 describing the type and structural fea-
tures of the biological object.21,27,30,31 The possibility 
of using such a variant of tomography for diagnostic 
purposes is due to the fact that during the formation 
of pathological changes in biological tissues, there 
is a distinct change in their electrodynamic char-
acteristics.21,22,27,30–34 The physical principles of the 
method will be discussed in more detail in the next 
section of the review.

Currently, work is underway to improve the 
characteristics of microwave diagnostics in the fol-
lowing directions: the development of new algo-
rithms for processing the received microwave signal 
and the development of new geometric designs of 
emitting and receiving antennas, the development 
and creation of new contrast agents, the introduction 
of the possibility of using data from other diagnostic 
methods as preliminary information.

A wireless interrogation system to acquire 
sensing data in the far field region of wireless 
communication was developed in Yao et al.35 us-
ing reactive impedance surface ground based 
patch antennas. To provide the required features, 
a number of ultra-wide-band (UWB) antennas 
have been proposed: planar UWB antennas,36 
square monopole antennas,37 square patch anten-
nas,38 hook-shaped monopole antennas,39 tapered 
slot antennas,40 metamaterial-based UWB anten-
nas,41,42 flexible coplanar waveguide fed fishtail an-
tennas,43 semi-circular antennas,44 different types 
of Vivaldi antennas,45,46 and many more. A novel 
antenna miniaturization technique was introduced 
in Mosallaei and Sarabandi47 using reactive imped-
ance surface as a substrate, which can be used as a 

TABLE 1: Methods of bioimaging
Method of bioimaging Depth of investigation Wavelength

Optic sensing
Microscopy 100–200 μm 400–1200 nm
Optical coherence tomography 1–2 mm 600–1200 nm
Optical acoustic tomography 2–20 mm 600–1200 nm
Optical diffusion tomography 1 mm–10 cm 700–950 nm
Microwave sensing
Microwave bioimaging 1–30 mm 20–50 cm
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perfect electric conductor as well as perfect mag-
netic conductor surface to enhance the bandwidth 
and radiation performance.

The variety of antenna systems currently used 
for microwave imaging of biological tissues is pre-
sented in Table 2.48

III.  PHYSICAL PRINCIPLES OF MICROWAVE 
NEAR-FIELD TOMOGRAPHY

The absolute majority of work in the field of mi-
crowave sensing of biological objects is associated 
with the solution of the wave problem when radia-
tion passes through the studied biological medium 
or reflected from its elements (from the potential 
foci of the pathological process; Fig. 1).49 A specific 
feature of the diagnostic technology we are devel-
oping is the study of the dielectric parameters of an 
object through scanning it with the near field of the 
sensor.

As mentioned above, near-field resonant mi-
crowave diagnostics is based on the measurement 
of the electrodynamic characteristics of biological 
tissues. Work in this direction from a biomedical 
perspective is relatively recent, but the physical 
principles underlying near-field microwave tomog-
raphy have been studied much more fully. Thus, 
the fundamental basis of the method is the mea-
surement of the impedances located on the surface 
of the biological object of a system of electrically 
small antennas with different localization scales 
of the probing electric field.16,18,21,22 Based on the 
values of the impedances (active and reactive re-
sistance) of the antennas, the spatial distribution of 
the permittivity and electrical conductivity of the 
tissues is reconstructed on the basis of a special 
mathematical apparatus.5,16,21

The measurement of the antenna impedance 
is implemented in a special resonant sensor, sche-
matically shown in Figs. 2 and 3. The sensor is a 
microwave resonator in the form of a segment of a 
transmission line (coaxial, two-wire, or strip).21,30,31 
At one end of this segment there is a probing near-
field antenna (measuring capacity), at the oppo-
site end there is a magnetic frame. The resonator 
is excited and its response is received by means of 
magnetic coupling loops located near the magnetic 

frame of the resonator. All elements of the resonant 
system, with the exception of the measuring tank, 
are located in a metal cylindrical housing. The nat-
ural resonant frequency of the sensor, as a rule, is in 
the range of 600–800 MHz, the characteristic Q-fac-
tor is 150.

When the near-field antenna contacts the sur-
face of the biological object, changes occur in the 
resonant frequency of the sensor and the amplitude 
of the signal at the resonance (Fig. 4), the values of 
which determine the antenna impedance.

A diagram illustrating the deep probing of bio-
logical tissues under near-field microwave imaging 
is presented in Fig. 5. Near-field antenna located 
on the surface of the studied object, its quasi-static 
electric field penetrates the medium to a depth de-
fined by the antenna design and the size of the ap-
erture (D). As the aperture D increases, the depth of 
penetration of the electric field into the medium will 
increase.30,31,50,51

The study of heterogeneous biological envi-
ronments is carried out as follows. First, the mea-
surements are carried out by the sensor with the 
lowest value of D1 and, accordingly, with the low-
est sounding depth (h1), the measurement results 
reflect the integral properties of the medium in 
the near-surface layer with a thickness of h1. For 
a sensor with a depth of sensing integral proper-
ties of the medium in the near-surface layer with 
a greater thickness, etc. Knowing the responses of 
measuring systems with different sounding depths, 
it is possible to restore the deep structure of an 
inhomogeneous medium. For tomography of a 
three-dimensional inhomogeneous medium based 
on the methods of one-dimensional subsurface 
diagnostics, the measurements should be supple-
mented by two-dimensional scanning along the ob-
ject surface.16,21

In the currently developed near-field diagnos-
tic systems, the key ratio probe aperture size (D)/
wavelength of the probing microwave signal (λ) 
reaches the level of 10–5 to 10–6, which, compared 
with wave methods, makes it possible to study the 
state and structural features of tissues by their elec-
trodynamic properties with a subwavelength spatial 
resolution (significantly less than the wavelength 
λ).
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FIG. 1: Principles of microwave radar-based imaging technology. Figure reproduced from (Adachi et al.) under a 
Creative Commons license.49
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Applied in near-field microwave imaging of 
the skin as a probe of element (measuring capacity) 
used regional capacity cylindrical capacitor, the 
external cover of which ends with a metal flange 
(Fig. 2). This configuration allows the antenna to 
realize the depth sensing required for the study of 
the structural layers of the skin. As shown in Fig. 
2, in such an antenna there are 3 main elements lo-
cated concentrically from the inside to the outside: 
a central conductor, a fluoroplast insulator and an 
external capacitor plate with a round metal flange. 

Figure 5 shows the distribution of the probing elec-
tric field. 

Thus, the near-field resonant microwave sound-
ing, due to its physical principles, makes it possible 
to vary the depth and surface area of the study of 
biological objects, using as diagnostic criteria the 
electrodynamic characteristics of the medium and 
its dielectric permittivity and conductivity.

IV.  APPLICATION OF MICROWAVE IMAGING 
IN DERMATOLOGY, INCLUDING IN 
DERMATO-ONCOLOGY

The most accessible and easiest biological tissue 
for conducting a microwave study is the skin. 
That is why the first attempts to clinically test 
the method of microwave sensing were made in 
dermatology.

FIG. 2: Electrodynamic model of resonance near-field 
measuring system: (1) exiting line; (2) receiving line; (3) 
resonator; (4) load of resonator; (5) near-field antenna as 
cylindrical capacitor; and (6) magnetic loop of resonator

FIG. 3: Measurement system and replaceable applicators 
with various depth of sounding

FIG. 4: Resonance characteristic of measurement sys-
tem: (1) without contact bio object and (2) with contact 
bio object

FIG. 5: Explanation of depth’s sounding by method of 
near-field resonance tomography
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The first works in this direction were carried 
out on the basis of the Nizhny Novgorod Research 
Institute of Skin and Venereology. Panteleeva et al. 
based on a comparative assessment of the dielectric 
permittivity and conductivity of the skin in the area 
of the palms and feet demonstrated the differential 
diagnostic value of the method of microwave diag-
nostics in psoriasis, eczema and keratodermia.52 It 
should be emphasized that the authors were able to 
show not only the presence of significant differences 
in the electrodynamic characteristics of the skin of 
patients with these dermatological diseases, but also 
the temporal dynamics of the parameters, their vari-
ability during periods of exacerbation and remission 
of pathology. It is established that the effective treat-
ment of the considered contingent of patients con-
tributes to the normalization of the indicators of ε 
and σ.

Kostrov et al. showed a marked decrease in both 
the dielectric constant and the skin conductivity in 
patients with psoriasis, atopic dermatitis and lichen 
planus in the acute phase.17 In this case, as in the pre-
viously mentioned study, the successful suppression 
of the activity of the pathological process ensured 
the optimization of the level of the indicator param-
eters of the microwave sensing. In addition, this 
publication demonstrates the heterogeneity of the 
considered pathology in terms of electrodynamic 
parameters: in the acute stage, the maximum devi-
ations from the physiological values were observed 
in patients with psoriasis, while in the period of re-
mission, the shifts ε and σ in the studied diseases 
were smoothed out until the statistical significance 
of the differences disappeared. Based on this, the au-
thors conclude that the differential diagnostic value 
of assessing the dielectric permittivity of the skin 
only in the active phase of the considered dermato-
ses. At the same time, the conductivity of the skin 
allows you to clearly distinguish between diseases 
in these conditions.

In another work of the team, the specificity of 
changes in ε and σ was confirmed in microbial ec-
zema compared with keratoderma.31

Interestingly, the depth of occurrence of patho-
logical foci in these diseases of the dermatological 
profile allowed using small-diameter sensors with 
a depth of 0.2–0.3 mm for microwave research. In 

addition, the microwave imaging allowed us to clar-
ify the boundaries of the pathologically altered skin 
area.53,54

A separate segment of the application of mi-
crowave sensing is dermato-oncology, in particu-
lar, the possibility of diagnosing melanoma using 
this method.3,17,21,24,30,50 The most accurate method 
of verification is the morphological assessment of 
biopsies, but its implementation is difficult both 
because of the invasiveness of the procedure, and 
the high risk of tumor metastasis induced by this 
manipulation.3,30,33,55 This determines the urgent 
need to search for informative, non-invasive and 
non-destructive methods for the diagnosis of mela-
noma and its differentiation in relation to clinically 
similar pathology.3,28,31,34 Taking this into account, 
a pilot study was carried out aimed at a compara-
tive analysis of the electrodynamic characteristics 
of intact skin, pigmented nevus and melanoma.17,30 
At the same time, the authors used a large sounding 
depth of 1.1 mm. It was found that the estimated 
parameters of microwave imaging under consider-
ation do not show significant differences between 
intact skin and pigmented nevus, whereas in the 
case of melanoma, a pronounced decrease in the di-
electric constant and conductivity was observed by 
two times relative to healthy areas, and in keratoma 
– by 1.3 times.

Also interesting data were obtained from 
the microwave analysis of the deep structure of 
healthy skin.18.25–20,53,56 On its basis, it is shown 
that as the depth of probing increases, an increase 
in the values of the indicators ε and σ is recorded 
compared with the upper (subsurface) layers of the 
skin. In general, despite the preliminary nature of 
the available research results, we can talk about the 
prospects of the method of microwave sensing in 
dermatology.

V.  PROSPECTS OF MICROWAVE 
DIAGNOSTICS IN COMBUSTIOLOGY AND 
PLASTIC AND RECONSTRUCTIVE SURGERY

Dermatology and dermato-oncology are closely 
related to other areas of medicine, the subject of 
which is the skin. In this regard, it is of scientific 
and practical interest to consider the possibilities 
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of microwave imaging in combustiology, treat-
ment of the consequences of burns and reconstruc-
tive plastic surgery.7,13,57–59 It is known that one 
of the most important tasks solved by a surgeon 
during the initial examination of a patient with a 
burn is to clarify the depth of the lesion and its 
boundaries, as well as the state of the parawound 
and marginal zones.10,13,32,39,60 This information is 
the key to the correct choice of treatment tactics 
and its success, as well as the effectiveness of sub-
sequent rehabilitation measures.7,57–61 In the condi-
tion of acute burn injury, alternative non-invasive 
rapid methods of assessing the condition of the 
wound are necessary. In recent decades, infrared 
thermography has been actively tested to solve 
this problem,62–64 but despite its certain diagnos-
tic value, it allows us to obtain information only 
about the surface temperature of the skin area. At 
the same time, the analysis of the depth tempera-
ture, physical and chemical parameters of the skin 
in the area of the wound and the parawound zone 
remains difficult. It is this aspect of the problem 
that can be studied using microwave sensing, the 
design features of which allow for non-invasive 
examination and accurate assessment of the elec-
trodynamic characteristics of the subsurface struc-
tures of the skin.54,65

The second, but no less significant area of po-
tential application of microwave sensing in patients 
with thermal trauma is the monitoring of the state 
of the wound in the dynamics of the treatment. It 
should be emphasized that microwave diagnostics is 
possible without removing temporary or permanent 
wound coverings, including using cellular technol-
ogies, which is an indisputable advantage of this di-
agnostic technique.13,32,60 This allows us to identify 
objective instrumental criteria for the condition of 
a burn wound in its thickness, without resorting to 
invasive procedures.

A special area for the possible application of 
microwave sensing is the treatment of the conse-
quences of burns (post-burn scars) at various stages 
of their formation, as well as reconstructive plastic 
surgery.7,10,13,32,57,59 In this regard, the considered di-
agnostic method can make it possible to predict the 
formation of pathological scars, taking into account 
their histological type, which, in turn, can optimize 

the treatment tactics of this condition of patients and 
assess the prospects for the recurrence of the patho-
logical process.

In relation to reconstructive plastic interven-
tions, it is advisable to perform a microwave assess-
ment of the preoperative condition of the skin in the 
area of the intended surgical manipulation and post-
operative monitoring of reparative and regenerative 
processes.

In general, integrating the research data in the 
field of microwave sensing of biological tissues, 
it is possible to identify a number of main areas 
that are logically grouped by localization (Table 
3). The most significant among them are the mam-
mary gland, skin, brain and limbs. It should be 
noted that the range of studied organs and tissues, 
for which the possibilities of the diagnostic tech-
nology under consideration are shown, are con-
stantly expanding.

VI. CONCLUSIONS

Thus, microwave sensing is a modern, dynamically 
developing method of biophysical assessment of 
the state of body tissues located subsurface. The 
diagnostic technology created on the basis of this 
method has a clear fundamental justification, its 
physical principles are well studied. Conversely, 
the biomedical aspects of the practical applica-
tion of microwave imaging still require careful 
development. Currently, the specialized literature 
provides information about the diagnostic infor-
mativeness of the method under consideration in 
the dermatological and dermato-oncological pa-
thology, but these data need to be confirmed and 
clarified. In addition, there are strong indications 
about the feasibility of using microwave sensing 
in combustiology (in different periods of burn 
disease), as well as in reconstructive plastic sur-
gery. Further research in this and other areas of 
biomedicine will, in our opinion, significantly ex-
pand the range of possibilities of modern imaging 
technologies.
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