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1. INTRODUCTION

Particle image velocimetry (PIV) is a nonintrusive technique for quantitative measure-
ment of the velocity fi elds (Adrian et al., 2011; Raffel et al., 2018). PIV can analyze 
the velocity fi eld information of fl uid motion from the images and visualize it, helping 
researchers to understand more complex fl ow phenomena. There are many PIV meth-
ods like 2D planar PIV, which can be used for measuring two-dimensional fl ows in a 
plane or tomographic PIV, which can be used for volumetric fl ow measurements.

Since 1984, PIV has become one of the standard techniques for fl ow measure-
ments and has been widely adopted in fl uid mechanics research. The principle has 
not changed drastically in the last 35 years. Seeding particles are inserted into the 

DEVELOPING PARTICLE IMAGE 
VELOCIMETRY SOFTWARE BASED 
ON A DEEP NEURAL NETWORK

Wojciech Majewski,1,* Runjie Wei,1 & Vivek Kumar2

1Microvec Pte Ltd., Singapore 
2Indian Institute of Technology, Kanpur, India

*Address all correspondence to: Wojciech Majewski, Microvec Pte Ltd., Singapore, E-mail: 
  wmajewski@piv.com.sg

As an experimental technique for fl uid mechanics, particle image velocimetry (PIV) can extract 
global and quantitative velocity fi eld from images. With the development of artifi cial intelligence, 
designing PIV method based on deep learning is quite promising and worth exploring. First, in 
this paper, the authors introduce the optical fl ow neural network based on one proposed in the com-
puter vision community. Second, a data set including particle images and the ground truth fl uid 
motion is generated to train the parameters of the networks. This leads to a deep neural network 
for PIV which can provide estimation of dense motion (down to maximum one vector for one pixel) 
with the high degree of effi  ciency. The featuring of particle image extracted by the neural network 
is also investigated in this paper. It is found that feature matching improves the accuracy of esti-
mation. The proposed network model is fi rstly evaluated by a synthetic image sequence of turbulent 
fl ow. An experiment measuring the fl ow over an aerofoil is used to validate the practicability. The 
experimental results indicate that compared with the traditional cross correlation method, the pro-
posed deep neural network has advantages in accuracy, spatial resolution, and effi  ciency.

KEY WORDS: particle image velocimetry, estimation of fl uid motion, deep neural net-
works



Journal of Flow Visualization and Image Processing 

360 Majewski, Wei, & Kumar

fl ow, and the inherent assumptions are, that they follow the fl uid motion exactly, that 
they are distributed homogeneously and their displacement within interrogation region 
is uniform. Double-pulse lasers, capable of sending two pulses within a very short 
time, are used to generate light sheet with special optics. This laser light illuminates 
a plane, making the seeding particles to follow the visible fl ow. The light scatters off 
the particles, and an image is taken by a camera, capturing an instantaneous snapshot 
of the fl ow showing the particles clearly. A second image is taken shortly afterwards, 
illuminated by the second pulse of the PIV laser, and the displacement of the particles 
between these two images can be seen. By applying a cross correlation algorithm 
(Raffel et al., 2018) on the grid of interrogation regions as low as 16 × 16 pixels, the 
velocity vectors can be calculated showing the direction and speed of the fl ow for 
each interrogation region. When the analysis for the entire image has been completed, 
the resulting velocity fi eld, vorticity fi eld, and many other fl ow characteristics can be 
seen and analyzed. 

Currently multigrid iterative calculation based on image deformation is the most 
common method in use (WIDIM for short) (Scarano, 2005), the algorithm reduces 
the interrogation region size step by step. Starting from 64 × 64 pixels down to 
16 × 16 pixels gradually the number of vectors is getting higher, and the calculated 
velocity fi eld resolution results in a higher precision fi eld. Most traditional com-
mercial and free PIV software is based on this model. The FFT correlation analysis 
calculates the statistical average displacement within the window, is limited by the 
size of the interrogation region. There were many attempts to bring the size of the 
interrogation region to a lower size like 8 × 16 or even 8 × 8, but the calculated 
results have not been satisfactory as shown by Marusic (2019) in his keynote paper 
presented at the 2019 ISPIV in Munich. The resolution of the vector fi eld obtained 
in such a way is not suffi cient to see and understand the turbulent fl ows in the 
boundary layers.

Another common algorithm used in PIV is an optical fl ow method (Horn et al., 
1981). It overcomes the limitation of interrogation region by its ability to extract the 
velocity fi eld at the maximum single pixel level. The optical fl ow method originated 
in the fi eld of computer vision. It relies on the optimization of an objective function, 
with the assumption of illumination invariance and the assumption of velocity fi eld 
smoothing. The objective function is constructed, and the corresponding velocity fi eld 
is obtained by minimizing the variational function of the objective function. The vari-
ational solution is solved to obtain the corresponding velocity fi eld.

Similar to the WIDIM correlation analysis, the more complete optical fl ow method 
is usually linearized around current estimates and embedded into a multiresolution py-
ramidal image structure obtained from successive low-pass fi ltering and subsampling 
of the image sequence (Ruhnau et al., 2005; Heitz et al., 2010), which can satisfy 
large particle displacement estimation. The estimation process is then incrementally 
conducted from "coarse to fi ne" along the multiresolution structure.
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In recent years, the optical fl ow method has received increasing attention in the 
fi eld of PIV. The researchers established the relationship between optical fl ow and 
physical properties of fl uids, thereby improving the accuracy of the estimation of fl uid 
motion by the optical fl ow method (Corpetti et al., 2006; Liu and Shen, 2008; Chen 
et al., 2015). However, due to the need for variational optimization, the computational 
effi ciency of the optical fl ow method is low. In addition, the hyper-parameters that 
are diffi cult to adjust, are limiting further the expansion and application of the optical 
fl ow method.

To overcome the limitations of the above correlation analysis and optical fl ow 
method, this paper shows a PIV algorithm based on deep learning to achieve maxi-
mum single-pixel, accurate and fast velocity fi eld estimation. Deep learning has had 
great success in the computer fi eld (LeCun et al., 2015; Krizhevsky et al., 2012). 
Prior to this, some research work combined PIV with deep neural networks (Rabault 
et al., 2017; Lee et al., 2017). These papers proposed the work of using a multilevel 
level regression, deep convolutional neural networks. At each level, the networks are 
trained to predict a vector from input image pairs to form a similar correlation anal-
ysis, that is, using a neural network to estimate a velocity vector in a particle image 
window. The low-level network is applied to estimation of large displacement, and 
the high-level networks are used to improve the spacial accuracy. The latest research 
results (Cai et al., 2019a,b) based on optical fl ow neural network, improve the de-
sign further by extracting dense velocity fi eld, and have high computational effi ciency 
when satisfying certain precision. 

The connection between fl uid fl ow and optical fl ow is explored in typical fl ow vi-
sualizations to provide a rational foundation for application of the optical fl ow meth-
od to image-based fl uid velocity measurements. The projected-motion equations are 
derived, and the physics-based optical fl ow equation is given. In general, the optical 
fl ow is proportional to the path-averaged velocity of fl uid or particles weighted with 
a relevant fi eld quantity. The variational formulation and the corresponding Euler–La-
grange equation are given for optical fl ow computation. An error analysis for optical 
fl ow computation is provided, which is quantitatively examined by simulations on 
synthetic grid images. Direct comparisons between the optical fl ow method and the 
correlation-based method are made in simulations on synthetic particle images and 
experiments in a strongly excited turbulent jet.

1.1  Introduction to Deep Neural Network

This paper further enhances the above literature. The starting point is a convolution 
neural network (CNN) proposed by researchers in the fi eld of computer vision, be-
cause of its highest level of accuracy in estimation of the rigid body motion (Hui et 
al., 2018). In order to adapt it to the fl uid motion measurement, the novel network 
structure is implemented, by partially modifying and adjusting the training parame-
ters. At the same time, the artifi cially generated PIV data set is used for network train-
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ing to obtain native deep neural network for PIV. The trained network model is used 
to test the experimental data and the real experimental data evaluation. This paper fo-
cuses on calculating the image velocity fi eld. The test results show that the proposed 
PIV algorithm based on deep neural network has obvious advantages and prospects in 
accuracy, resolution, and computational effi ciency. 

As shown in Fig. 1, the original network structure consists of two subsections: a 
compression encoder and an extension decoder (Cai et al., 2019b). The encoder is 
used for feature extraction of input images, while the decoder implements optical fl ow 
fi eld estimation from "coarse to fi ne" for these features.

The pyramid feature extraction encoder consists of two network threads that com-
press two input images to form two pyramids of multiscale high-dimensional features. 
This function is implemented by a set of convolutional layers, with image pair input 
{ }1, 2

kF . The subscript is the image number, and k is the feature at different scales (for 
example, 0F  is the highest layer with full resolution, and 1F  is the second layer with 
1/2 resolution). There are 6 pyramid feature levels. Therefore, the encoder contains 
6 layers of down sampling convolution operations. 

The optical fl ow estimation decoder estimates the velocity fi eld from coarse to fi ne 
by using a multilevel deconvolution layer. At each pyramid level (for example, the 
second layer in Fig. 1), by using the same resolution as the encoder. The feature (i.e., 

2F ) and the estimated velocity fi eld from the previous layer (i.e., the third layer of 
x ). For example, in the second layer of the decoder, this function can be simply ex-
pressed as
 ( )2 2 2 3

1 2, ,E F F xx =  .                          (1)

Among them, the function E of the decoder represents a series of operations at each 
pyramid level, which can be summarized as follows: 

FIG. 1: Schematic diagram of the improved CNN network structure
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(1) Feature deformation: In order to solve the velocity fi eld estimation problem of 
large displacement, Hui et al. (2018) propose to reduce the distance between features 
F1 and F2 by feature warping (i.e., distortion), with F2 passing the predicted velocity 
of the previous layer x . Compared with the image deformation method used in the 
correlation analysis method WIDIM or multiscale variational optical fl ow solution, the 
feature-based deformation can make the network more accurate and more effi cient. 

(2) Feature matching and subpixel refi nement (M:S module in Fig. 1): Pixel match-
ing by calculating the correlation between feature F1 and deformed feature F2, re-
sulting in a rough velocity vector estimation, however, the correlation matching only 
achieves maximum pixel-level precision. Therefore, the estimated velocity fi eld needs 
to be refi ned to subpixel precision by minimizing the feature space distance. 

(3) Velocity fi eld regularization (R module in Fig. 1). In order to smooth the esti-
mated velocity fi eld and avoid the occurrence of outliers, the proposed network uses 
feature-driven local convolution operations to achieve velocity fi eld regularization. The 
regular term in the split optical fl ow objective function is similar. However, the regular-
ization function of the proposed network is adaptively learned for the local character-
istics of the optical fl ow fi eld, and its convolution kernel is obtained through training.

The proposed network training uses the following loss function:

                            ossL i i
i

eε = λ∑  .                         (2)

It consists of output errors of different layers with different weighting coeffi cients. 
Among them, i denotes different levels, ei denotes the error metric between the pre-
dicted velocity fi eld and the real velocity fi eld, and λi denotes the weight of different 
levels.

In order to make it more suitable for complex fl ow fi eld motion estimation, the 
network structure and training parameters of the proposed network need to be modi-
fi ed. The improved ideas include: fi rst, add the reverse convolutional layer extraction 
velocity fi eld in the decoder part, replacing the last in the original network structure. 
The interpolation operation of one layer is shown in the newly added part of Fig. 1. 
Second is to redistribute the weight of the loss function and increase the proportion 
of the layer 0 network. Third is to re-adjust the parameters of the data normalization 
operation.

2. PIV DATA SET GENERATION AND NETWORK TRAINING

2.1  Generating PIV Data Sets 

The proposed fl ow estimation algorithm needs to adopt the supervised learning strat-
egy. However, training the neural network through supervised learning requires real 
value data to optimize the model parameters. Unfortunately, PIV experiments often 
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fail to obtain accurate velocity fi elds, therefore a synthetic data sets are needed to per-
form CNN training. According to the general method of experimental fl uid mechan-
ics, we fi rst generate the particle image and the fl ow velocity fi eld, and then move the 
position of the particle symmetrically through the motion fi eld to obtain the image 
pair, see the example in Fig. 2. Every single data item contains an image pair (input) 
and a true velocity fi eld (output). In Step 1 and Step 2, a particle image and a fl ow 
motion pattern are generated. In Step 3, the positions of the particles are shifted sym-
metrically by the fl ow motion to generate an image pair and true theoretical result.

(1) Generate particle images. To generate particle images, a particle image gen-
erator can be used, assuming that a particle can be described by a two-dimensional 
Gaussian function:

 

2 2
0 0

0
2

( ) ( )( , ) exp 1
8 p

x x y yI x y I
d

⎡ ⎤
⎢ ⎥− − − −

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,                      (3)

where I0 is the peak intensity in the Gaussian center, dp denotes the particle diameter, 
and (x0, y0) is the position of the particle. Note that I0, dp, and (x0, y0) can be diverse 
from each particle. Furthermore, let us defi ne the particle seeding density of the image 
as ρ  (unit: particle per pixel, ppp), which is a global parameter for an image and af-
fects the particle number in the observed domain. With specifi ed values of I0, dp, and 
(x0, y0), a typical particle image can be produced. Parameters for defi ning an image 
can be randomly selected in a proper range, as shown in Table 1. Figure 3 displays 
three examples of particle images produced by different parameters. All the images 
are in the resolution of 256 × 256 pixels. 

(2) Generate fl ow velocity fi eld. Computational fl uid dynamics (CFD) is used to ar-
tifi cially generate the fl ow velocity fi eld. In order to increase the diversity of dataset, 
various fl ow modes are used in this paper. CFD can simply simulate some standard 
fl ow fi elds, such as uniformity, fl ow fi eld, reverse step fl ow fi eld, and cylindrical fl ow 
fi eld (hereinafter referred to as uniform, back-step, cylinder, respectively). In addition, 
this paper obtains more fl uid motion data directly from some open source literature, 
such as Carlier (2005) and Resseguier et al. (2007), respectively provide the same free 

FIG. 2: Principle of generating dataset for training of the deep neural network for PIV



365Particle Image Velocimetry Software Based on a Deep Neural Network

Volume 27, Issue 4, 2020

TABLE 1: Ranges of parameters for generating particle image

Parameter Range Unit

I0 200–255 Particle per pixel

dp 1–4 Pixel

ρ 0.05–0.1 Gray value

FIG. 3: Illustration of the PIV data set generation

turbulent fl ow fi eld (referred to as DNS turbulence) and the surface fl ow fi eld (surface 
quasi geostrophic, SQG) simulation model. In addition, the Johns Hopkins turbulence 
database (JHTBD) (Li et al., 2008) also provides a variety of turbulent velocity fi eld 
data. Table 2 gives a list of the types of fl uid motion velocity fi elds used, where the 
diversity of fl ow fi elds can be increased by adjusting different velocity magnitudes 
and different Reynolds numbers. For example, for cylinder fl ow simulation, fl ow 
fi elds at different Reynolds numbers (Re = 40, 150, 200, 300, and 400) can be used to 
enhance the range of training data, to ensure that the algorithm is applicable to differ-
ent vortex shedding fl ows.

TABLE 2: Description of the motion fi elds for neural network training

Case Name Description

Uniform Uniform fl ow in the whole image domain

Back-step Backward stepping fl ow

Cylinder Vortex shedding fl ow over a circular cylinder

DNS-turbulence A homogeneous and isotropic turbulent fl ow

SQG Sea surface fl ow driven by a surface quasi-geostrophic model

JHTDB-channel Channel fl ow provided by Johns Hopkins turbulence databases



Journal of Flow Visualization and Image Processing 

366 Majewski, Wei, & Kumar

By randomly combining the particle image generated above and the fl ow veloc-
ity fi eld, a PIV data set can be formed, as shown in Fig. 2. For this paper more 
than 13,000 particle image pairs and velocity fi eld true values were used, involving 6 
different fl ow fi eld experiments, more than 10 different operating conditions (such 
as different Reynolds numbers), with an average of about 1000 data samples per 
operating condition. By randomly combining the particle image generated above 
with the fl ow velocity fi eld, an initial CNN model with trained parameters is 
obtained.

As mentioned above, real life PIV experiments often obtain imperfect and noisy im-
ages full, as compared to ideal images used for CFD calculations. The system trained 
purely based on CFD often fails to produce accurate results when experimental and 
imperfect image pairs are used as input. In order to address it, a second step of train-
ing the CNN model is performed by adding noise during particle image generation 
and changing the brightness of the image based on Gaussian curve.

The particle size in the fi rst image is randomly selected according to the uniform 
distribution between 1 and 5 pixels, and the particle concentration is randomly se-
lected according to the uniform distribution between 0.01 and 0.19. The particle size 
of the second image is changed compared to the fi rst image, and the variation range 
is randomly selected according to the uniform distribution between –20% and 20%. 
Then each row or column of the image is multiplied by a Gaussian curve, and the row 
and column are random.

The initial results of the calculations obtained after adding this extra training lay-
er, showed a very promising improvement as compared to system trained only with 
perfect images, and we will continue adding more similarly generated data set to im-
prove the accuracy of the CNN model. Further detailed studies are needed to assess 
the level of improvements.

2.2  Network Training

Once the structure of the convolutional neural network is determined and there is 
a data set available for training, the parameters of the network can be trained by 
defi ning a minimized loss function (for convolution operations, the unknown param-
eter is the convolution kernel). As mentioned, the network structure used is shown 
in Fig. 1. The data set is generated by Fig. 4. The objective function of the network 
optimization is given in Eq. (2). Since the training data set is usually large, in order 
to speed up the training effi ciency, higher effi ciency can be adopted. The gradi-
ent-based optimization algorithm, such as the long gradient algorithm in the convo-
lutional neural network, uses the stochastic Adam gradient optimization algorithm. 
After 1.2 × 106 iterations, the network parameters tend to converge. The trained net-
work model is called deep PIV. Subsequent experimental tests are generated using this 
training.
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3. SIMULATION IMAGE TEST RESULTS AND DISCUSSION

3.1  Introduction to Turbulent Particle Image

In order to verify the accuracy and reliability of the complex fl uid motion estimation 
algorithm, a simulation data set with real values is needed for corresponding testing. 
This chapter cites the two-dimensional turbulent fl ow particle image given in Carli-
er (2005). The image sequence describes direct numerical simulation (DNS) parti-
cle motion of two-dimensional turbulent fl ow fi eld, experimental Reynolds number 
Re = 3000, Schmidt number Sc = 0.7. The image sequence contains 100 samples, and 
the image size is 256 × 256 pixels. Figure 5 shows the particle image at t = 50 and 

FIG. 4: Particle image of DNS turbulent fl ow and the corresponding velocity fi eld with vor-
ticity (t = 50)

FIG. 5: Velocity fi elds and vorticity maps of DNS turbulent fl ow provided by WIDIM and 
deep PIV (t = 50)
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the corresponding real velocity fi eld. The DNS turbulent particle image dataset is an 
internationally accepted benchmark for PIV algorithm testing. 

When there is a real value as a reference, the most commonly used PIV algorithm 
is the root mean square error (RMSE), which is calculated as follows:

 

2 2

1

1= ( ) ( )
N

t e t e
RMSE i i i i

i
u u v v

N =

⎡ ⎤δ − + −⎣ ⎦∑  ,               (4)

where (ut, vt) and (ue, ve) represent the true velocity vector and the velocity vector 
estimated by the algorithm, respectively, i refers to all velocity vector numbers. Af-
ter acquiring the velocity fi eld information, the corresponding vorticity can be easily 
calculated from the velocity fi eld. In this way the algorithm's estimation of the vortex 
structure can be judged.

The proposed deep neural network is compared with the two more mature and rep-
resentative image velocimetry algorithms described in the introduction: WIDIM, and 
the optical fl ow method (Horn et al., 1981) with multiscale pyramid. Among them, 
WIDIM algorithm has low computational complexity and high robustness, but due to 
limited estimation resolution, the estimation of small-scale velocity fi eld of turbulent 
fl ow is not good enough. The optical fl ow algorithm has high calculation accuracy 
and can provide dense velocity fi eld (down to maximum single pixel level), but it 
requires more computation time due to variational optimization. Using deep neural 
network to achieve dense velocity fi eld estimation will be accurate, high resolution, 
and achieve near real-time calculation speed.

3.2  Test Results and Discussion

Figure 5 shows the velocity fi eld and vorticity map estimated by the WIDIM algo-
rithm and the deep PIV model at t = 50 in the turbulent particle image sequence. 
As can be seen from Fig. 5, the vorticity calculated by the WIDIM algorithm is not 
continuous enough. The values differ greatly, and the velocity fi eld and vorticity map 
calculated by the neural network model are basically consistent with the true val-
ues. Especially in the estimation of small-scale vortex structures, the advantage of the 
deep PIV neural network model is more obvious, which is due to the algorithm. It can 
provide a highly accurate dense velocity fi eld. 

The root mean square error curves of the three different algorithms are shown in 
Fig. 6. As shown in Fig. 6, the performance of the WIDIM method is much worse 
overall than the multiscale optical fl ow method, showing that the correlation analysis 
based on window matching is small and the vortex structure estimation is insuffi cient. 
Deep PIV is superior to the variational optical fl ow method, and the RMSE is the 
smallest in the entire image sequence. This experiment shows that the use and im-
provement based on the convolutional neural network is very effective for PIV motion 
estimation, especially in the turbulent fl ow (including small-scale vortex structures).
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Table 3 also shows the time when different algorithms perform one calculation in 
the same experiment. The system confi guration used in the experiment is Intel Core 
i7 G7700 CPU 3.60 GHz and NVIDIA GTX 1080Ti GPU. Graphics processing unit 
(GPU) speeds up the execution of CNN model. Effi ciency has obvious advantages. 
Even if it is converted to CPU operation mode, the calculation time of CNN model 
is less than that of WIDIM method. It should be noted that the deep PIV proposed in 
this paper can extract maximum single pixel level from particle image, just like HS 
variable wavelength optical fl ow. Velocity fi eld, but the method based on deep neural 
network is much more effi cient than the HS method. In summary, in the two-dimen-
sional turbulent particle image test, the fi rst proposed deep learning motion estimation 
model is superior in accuracy and effi ciency as compared to traditional correlation 
analysis and optical fl ow method. 

In order to study the working principle of the PIV neural network more deeply, 
the turbulent particle image (t = 50) is processed by deep PIV as an example to ana-
lyze the output result of the network intermediate layer. As mentioned above, in the 
network structure (Fig. 1), the encoder function is to extract feature pyramids, while 
decoder implements coarse-to-fi ne velocity fi eld estimation for these features. Deep 
PIV uses network layering and the coarse-to-fi ne computational concept is very simi-

FIG. 6: RMSE error of different algorithms for turbulent particle image sequences

TABLE 3: Computational time of different methods for the DNS turbulent fl ow image pair

Method t/ms Number of Vectors

WIDIM (CPU) 509 61 × 61

HS (CPU) 2294 256 × 256

Deep PIV (GPU) 47 256 × 256
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lar to the multiscale pyramid iterative HS optical fl ow algorithm. There are three main 
differences between them: 

(1) when constructing a pyramid, the HS optical fl ow method is to down sample 
the image, while CNN model is to extract features while sampling; 

(2) in decoder calculation in the velocity fi eld, the CNN estimator operates in the 
above automatically extracted feature map; 

(3) all parameters of the fi lter (convolution kernel) in the neural network are trained 
from the data, and the HS method depends on the artifi cial selection and settings.

Figure 7 shows the characteristic output of the fi rst two layers of the encoder sub-
network under the trained convolution of the input particle image, corresponding to 
the F0 and F1 modules of Fig. 1. According to Fig. 7, the trained convolution kernel 
is anisotropic fi ltering operations on particle images (including smoothing, sharpen-
ing, particle stretching, particle magnifi cation, reduction, etc.) to form different tex-
ture features. Compared to the original particle image f, there are more texture fea-
tures. The image plays a benefi cial role in correlation matching and velocity fi eld 
calculation in the decoder algorithm.

Figure 8 shows the estimated velocity fi elds for different pyramid levels in the 
decoder subnetwork, corresponding to Level 3 to Level 0 layers in Fig. 1, and com-

FIG. 7: Characteristics of deep PIV extracted particle images
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pared with the multilayer HS optical fl ow method. As can be seen from Fig. 8, com-
paring any level of the output of deep PIV is more reasonable than the multiscale 
HS method. The reason for this difference may be that the deep PIV network uses 
image features for calculation, while the HS method directly uses down sampled 
particle images. At low resolution, the estimated velocity fi eld on the image will 
be used for the next level of deformation and so on, so it will also affect the fi nal 
output. The above is an analysis of the internal output and intrinsic principles of the 
deep PIV neural network. 

4. FLOW OVER AN AEROFOIL PIV EXPERIMENT RESULTS AND 
    DISCUSSION

In order to demonstrate the practicality of the particle image velocimetry algorithm 
based on deep neural network, deep PIV was tested with real PIV experimental data 
conducted in a wind tunnel. 

The fl ow over an aerofoil experiment was in an open circuit wind tunnel available 
at the Department of Aerospace Engineering, Indian Institute of Technology, Kanpur, 
India. The tunnel has a 3000-mm-long test section with a square cross section of 
610 mm × 610 mm. The tunnel has a square three-dimensional contraction section 
with 16:1 contraction ratio. 

4.1  Experimental Method and Basic Setup

A two-dimensional PIV technique was utilized to measure the instantaneous velocity 
fi elds in the spanwise or cross-fl ow plane over the fl ying wing model, as schemati-
cally shown in Fig. 9. The fl ow is seeded with the help of a commercial fog gener-
ator (Antari Z1500II-R) with Antari FLG fog liquid. The fog generator was placed 
at the diffusor section of the closed-circuit wind tunnel. A dual head Nd–YAG laser 
(Quantel Evergreen, 200 mJ/pulse, 15 Hz) was used for illuminating the fl ow fi eld of 
the seeding particles. A CCD camera (Imperx) with 8 MP resolution (3212 pixels × 
2488 pixels) was used for capturing the illuminated particles. The laser and the cam-
era were synchronized using a synchronizer (procured from IDTvision, USA). The 
camera fi eld of view was 135 mm × 101 mm. The PIV data acquisition was carried 
out using the MicroVec software (procured from Vision Asia, Singapore). The PIV 
measurements were carried out at 30% of the root chord location at the freestream ve-
locity, 30 m/s. We may mention that the measurements were carried out at the cross-
fl ow plane which perpendicular to the model surface, as seen in Fig. 9. However, two 
images are acquired, and these images were analyzed using Microvec 3.6.1 software. 
The software utilizes a traditional WIDIM cross-correlation algorithm and 16 pixel × 
16 pixel correlation window is used.

Figure 10 shows the estimated velocity vectors for the two algorithms in the jet 
aerofoil experiment with interrogation window of 16 × 16 pixels for WIDIM and 
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spatial resolution of maximum 1 × 1 pixel for deep PIV. Figure 11 shows the velocity 
amplitude map for the velocity fi eld. The results from both calculations are shown 
next to each other for comparison. 

In most regions, the vector of deep PIV is identical with that of the cross-correla-
tion WIDIM PIV. This implies that both deep PIV and traditional PIV can resolve 
the large-scale fl ow structures very accurately. The greatest difference appears in the 
region indicated by the red arrow, where the back fl ow is very strong due to the low 
pressure. The back fl ow causes high velocity gradient in this small region. Therefore, 
the resolution of the traditional PIV is insuffi cient to extract the small scales in this 
region. However, as shown in this fi gure, the deep PIV can resolve the back fl ow very 
well. It shows that the spacial resolution of deep PIV can achieve much more accurate 
results than the traditional PIV. It should be noted that the real PIV image used in the 
experiment is not included in the data set used in CNN network training. Therefore, 

FIG. 11: Estimated velocity fi eld amplitude map of aerofoil fl ow
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the experimental results also show that the deep neural network trained by artifi cially 
generating PIV data can also be successfully applied in real PIV experiments to ob-
tain dense velocity fi eld information. 

5. CONCLUSIONS

This paper attempts to study the particle image velocimetry with deep neural network, 
and combines artifi cial intelligence with traditional experimental fl uid mechanics. 
Firstly, the optical fl ow neural network from computer vision is used for motion esti-
mation. Based on its structure is based and with parameter improvement; subsequent-
ly, synthetic PIV particle image datasets are used for supervised training of neural 
networks; fi nally, a deep neural network model suitable for fl uid motion estimation 
is obtained. This network model can provide velocity fi elds down to maximum sin-
gle-pixel level resolution effi ciently and accurately. 

The preliminary experimental evaluation of the turbulent fl ow fi eld particle image 
is carried out. The test results show that the deep PIV model has advantages in accu-
racy, resolution and computational effi ciency compared with the traditional correlation 
analysis method and optical fl ow method. At the same time, the hidden layer of PIV 
neural network is discussed. The output and the intrinsic principle are used for sub-
sequent research. Finally, the algorithm is tested in the real jet PIV experiment. The 
result of deep PIV is equal and, in some instances, even better than commercial PIV 
software based on cross correlation. 

It is verifi ed that the particle image velocimetry algorithm based on deep neural 
network is practical and has wide application prospects.
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