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The Padé-Legendre method has been introduced as an effective approach to characterize uncertainties in the presence
of strongly non-linear or discontinuous system responses—thus, it supports forward propagation. The method is based
on the construction of a ratio of polynomials that approximate the available data. Two criteria for the choice of the best
approximant are considered and an optimization approach is proposed. Moreover, the approach is applied in a case in
which the discontinuity in the system response is due to limited data, to demonstrate how the successive addition of
data transforms the rational approximant into a simple polynomial interpolant (the denominator becomes a constant).
Finally, the present method is applied to estimate an input parameter characterized by a sharp discontinuity, using
Bayesian inference starting from observations of the system response—thus, it also supports backward propagation.
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1. INTRODUCTION

In many physical problems governed by non-linear mathematical models, a discontinuous behavior of the output of
interest is observed in response to a smooth variation of the system inputs. The analysis of this behavior is partic-
ularly important in situations in which variability in the output has to be characterized statistically. In recent years,
uncertainty quantification (UQ) has gained popularity as a methodology to assess the effect of variability and lack of
knowledge on the output of a computational model. This problem is referred to as a forward uncertainty propagation
problem, and contrasted to situations in which starting from observed system performance (output) one infers the
input quantities (backward uncertainty propagation). Probabilistic methodologies based on sampling can be readily
applied by converting the source of uncertainties (boundary conditions, model parameters, etc.) into random variables
or fields. This approach leads to a comprehensive statistical characterization of the outputs but suffers from a slow
convergence that makes its application to realistic problems impractical. More recently, the use of a polynomial basis
to represent the dependency of the solution on the uncertain inputs has gained popularity [1–3] because of its perfor-
mance in computing statistical moments. The main reason behind the effectiveness of polynomial-based approaches
is the underlying assumption that the system response is smooth and can be approximated accurately with low-order
polynomial expansions. In strongly non-linear problems, such as compressible fluid dynamics, multi-material heat
transfer, multi-phase flows, etc., the potential lack of smoothness can lead to an inaccurate polynomial reconstruction
of the system response because of the occurrence of Gibbs oscillations. In this paper, we explore a recently developed
technique for handling discontinuous responses, the Padé-Legendre (PL) approach [4, 5]; the PL method uses a ratio
of polynomial expansions to reconstruct the surface response and allows one to represent genuinely discontinuous
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functions without oscillations. Two main extensions are considered in this paper, the first is related to the use of an
optimization approach to define the parameters in the PL reconstructions (as multiple choices are available with a
given set of data). The proposed automatic parameter selection is shown to be effective in multi-scale situations in
which a discontinuity is the result of limited data (or a coarse grid representation), and the successive addition of
data leads to a smooth response. In this case the algorithm correctly reverts to a pure polynomial reconstruction (the
denominator becomes a constant). The second contribution is the formulation of the PL approach within a Bayesian
inference procedure. The presence of a discontinuity in the input can lead to a purely posterior condition and inhibit
the convergence of the inversion procedure.

1.1 Stochastic Collocation Method

In recent years, two alternative approaches to Monte Carlo simulations have found relatively widespread use in proba-
bilistic UQ: stochastic Galerkin [1, 6–9] and stochastic collocation [10–13]. Stochastic Galerkin approaches are based
on a representation of the uncertain solution as a functional expansion in terms of polynomials. These schemes are
intrusive, in the sense that the deterministic solvers are modified to incorporate the stochastic expansions. On the other
hand, in the stochastic collocation method the deterministic solver is used unmodified for simulations at sets of input
values, typically corresponding to quadrature points, resulting in a non-intrusive approach.

Mathematically, we write the output,u, as a linear combination of the orthogonal basis polynomials,Φi of the
random input,ξ:

u(x, ξ) =
∞∑

i=0

ûi(x)Φi(ξ), (1)

wherex is the physical coordinate and̂ui are the coefficients to be determined. The summation in Eq. (1) is truncated
at a finiteN ∈ N, so that the coefficients can be computed from available data. This results in a projection of the real
solutionu into the space spanned byΦ0, Φ1, ...ΦN :

uN (x, ξ) =
N∑

i=0

ûi(x)Φi(ξ). (2)

To calculate the coefficientŝui, we utilize the orthogonality properties ofΦi. Taking discrete scalar product with
Φk for k = 0, 1, ..., N , we get uncoupled equations forûk:

ûk =
〈u, Φk〉N
〈Φk,Φk〉N . (3)

The scalar product is defined as

〈φ, ψ〉N =
N∑

j=0

φ(ξj)ψ(ξj)wj , (4)

where the quadrature pointsξj and the associated weightswj are predefined forξj characterized by standard proba-
bility distributions [14].

The algorithm to compute the approximation ofu is as follows. First, perform deterministic calculations at the
predefined collocation pointsξj . Next, calculateûk from Eq. (3). Than, plug the coefficients into Eq. (2) to obtain
the expression for the approximationuN as a function of the uncertain input,ξ. With this expression, one can now
efficiently sample a large number of (approximated) solutions according to the distribution ofξ to generate random
realizations of solutionu or compute its statistics. In the following, we will compare this method [referred as stochastic
collocation (SC)] to the present Padé-Legendre approach.

The simplest way is to generalize discrete scalar product (4) to operate on a tensor grid and use the tensor product
of the one-dimensional polynomial basis. One can alternatively use a sparse grid instead of the tensor grid in high
dimensions to alleviate the curse of dimensionality—the required data grow exponentially with respect to the number
of uncertain variables [11, 12, 15, 16].
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1.2 Padé-Legendre Approximant

In this section, we introduce the PL method in multi-dimensional settings. For the sake of simplicity, the approximation
is formulated in a two-dimensional problem. In addition, we will consider only the isotropic cases; i.e., we consider
the same number of data points in each direction on a tensor grid. Let us assume that we have(N +1)× (N +1) data
points. The focus on this section is on the algorithm to compute the PL approximant. Readers who are interested in a
more detailed discussion of the overall approach are referred to our previous work [4].

In the PL method, we represent the approximation of solutionu as a rational function of the uncertain variables.
We construct the PL response surface on the combination of physical and stochastic spaces. Denoting the PL approx-
imation asR(u), we write

R(u)(x, y) =
P (x, y)
Q(x, y)

=
∑M

i=0 p̂iΦi(x, y)∑L
i=0 q̂iΦi(x, y)

, (5)

whereM andL are the orders of the expansions at the numerator and denominator, respectively. We use Legen-
dre polynomials for basisΦ, although other bases are also possible. Here,x andy are either physical or stochastic
variables; in the latter case we assume their probability distribution to be uniform in a known interval.

We constructR(u) to be a good approximation tou. This is done by minimizing the linear PL approximation
error:

vi = 〈P −Qu,Φi〉N , (6)

for all two-dimensional polynomial basisΦi of total degree at mostN . The discrete scalar product is defined as in
Eq. (4). In multi-dimensional settings, it is generally impossible to enforce thatvi vanishes for allΦi. In our proposed
method, we require thatvi = 0 only for all polynomial basis of total degree at mostM and thatvi is minimized in
a least-squares sense for polynomial basis of total degree fromM + 1 to M + K for some positive integerK. This
basis of total degree fromM + 1 to M + K is used to calculate denominatorQ to ensure that productuQ is smooth.
WhenuQ is smooth, it can be well approximated byP , which is a polynomial of degree at mostM by the standard
stochastic collocation approach.

Before we proceed to describe the algorithm to calculatep̂ and q̂, let us note that we have four parameters for
construction of the PL approximant—N , M , L, andK. Figure 1 shows the relationships among these parameters. In
our previous work [4], the sensitivity of the approximation with respect to these parameters was investigated; in the
next section we propose an automatic selection algorithm based on the desired properties of the approximant.

In order to calculate the coefficients in Eq. (5), we first calculateq̂i from the following system of equations:



〈uΦ1,Φc(M)+1〉N · · · 〈uΦc(L), Φc(M)+1〉N

...
.. .

...
〈uΦ1, Φc(M+K)〉N · · · 〈uΦc(L), Φc(M+K)〉N







q̂1

...
q̂c(L)


 = 0. (7)

The system of Eq. (7) is the result of substituting the spectral expansions ofP andQ into Eq. (6) and requiring
errorvi to be zero fori = c(M) + 1, . . . , c(M + K).

The matrix-vector product on the right-hand side of Eq. (7) is a column vector ofvi for the polynomial basis of
total degree fromM +1 to M +K. This system of equations is over-constrained given thatc(M +K)−c(M) > c(L)
wherec(s) = (s + 1)(s + 2)/2. We can obtain the optimal solution in the least-squares sense by using the singular
value decomposition of the matrix on the left-hand side of Eq. (7) [17]. This givesq̂i, which allows us to evaluate
denominatorQ. OnceQ is known, the computation of numerator coefficientsp̂i is similar to calculating collocation
coefficients forQu:

p̂n =
〈P, Φi〉N
〈Φi, Φi〉N =

〈Qu,Φi〉N
〈Φi, Φi〉N i = 1, 2, ..., c(M). (8)

We now havêqi from Eq. (7) and̂pi from Eq. (8) to plug into Eq. (5), thus obtaining the PL approximant foru.
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FIG. 1: Schematic representation of the parameters introduced in the Padé-Legendre surface construction and their
relationship. The parameterL is not presented in the diagram but has to satisfy the inequalityc(M+K)−c(M) > c(L)
wherec(s) = (s+1)(s+2)/2. The light grey area is wherevi vanishes and the dark grey area is wherevi is minimized
in least-squares sense.

2. EXTENSIONS AND REFINEMENT OF THE PL APPROACH

In this section, we describe three topics that extend the PL methods: (1) automatic parameter selection (APS), (2)
convergence for smooth functions, and (3) the PL method in the inversion problem.

2.1 Automatic Parameter Selection (APS)

The formulation of the Pad́e-Legendre approximation requires specification of the Padé parameters—K, M , andL.
The choice of parameterN is usually dictated by existing data and/or available computational resources. In many
cases, a priori knowledge of the underlying function can help an experienced user make a good choice, but in many
cases it is difficult to do so without trial and error. An algorithm to automatically select these parameters is a key
component of the success of the approach.

In order to compare whether one solution obtained using a parameter set is better than another, one needs a metric.
The algorithm proposed here involves two different metrics: the traditionalL2 approximation error and a smoothness
indicator based on the concept of total variation (TV).

2.1.1 L2-Norm Error Estimate

In the present approach, theL2-norm error estimate is simply the weightedL2-norm of the difference between the
data and the approximated solution. The weights are derived from the quadrature rule since the data are not uniformly
distributed. The difference is only taken at the data point to avoid further interpolation. Mathematically, theL2-norm
error estimate is

E2
L2

= ‖ũ− u‖2L2
=

Nq∑

j=1

wj [ũ(xj)− u(xj)]2, (9)
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whereNq, xj , andwj are defined in multidimensional settings [2],u is the given data, and̃u is the approximated
solution. Further, we normalize this error estimate by theL2-norm of the data,

‖u‖2L2
=

Nq∑

j=1

wju(xj)2, (10)

resulting in the final expression for the normalizedL2-norm error estimate

e2
L2

=
‖ũ− u‖2L2

‖u‖2L2

=

∑Nq

j=1 wj(u(xj)− ũ(xj))2∑Nq

j=1 wju(xj)2
. (11)

Note that the above error estimate is scaled, although it does not have an upper bound. From now on, we refer to
the normalized version of the error estimate (11) as theL2-error estimate.

2.1.2 Smoothness Indicator

TheL2-error estimate is an indicator of how well the approximation interpolates the data points; however, it does not
provide information about the approximation in between the data points. In fact, when a discontinuity is present, a
large error occurs between data points due to the Gibbs phenomena. A smoothness indicator (SI) is designed to detect
artificial oscillation between data points.

The smoothness indicator here is based on the TV concept. In one dimension, the total variation of a functionf
over an interval[a, b] is defined as the following:

TV (f, [a, b]) = sup
P

nP−1∑

i=0

|f(xi+1)− f(xi)|, (12)

where the supremum is over the set of all possible partitionsP = {x0, x1, . . . , xnP } of the interval[a, b] = [x0, xnP ].
Note that the smallest partitions that would give the (largest) TV value are whenx1, . . . , xnP−1 are the locations

of the local extrema off . Adding a point that is not a local extrema to this partition does not change the value of the
summation in Eq. (12). Therefore, iff is known at a finely resolved grid inx, the TV can be accurately estimated as
the sum of the differences off between the pairs of all adjacent points; i.e.,

TV (f, [a, b]) ≈
Ng−1∑

i=1

|f(xi+1)− f(xi)|, (13)

for largeNg andx1 < x2 < · · · < xNg are nodes on a fine grid for interval[a, b].
In multi-dimensional settings, we simply apply the one-dimensional formula (13) in different dimensions and

locations. For example, in three dimensions, assume that the grid(x, y, z) is of sizeN1 × N2 × N3, then we apply
Eq. (13) in the first dimensionN2 × N3 times, each along the samex but at different(y, z). Similarly, we perform
the one-dimensional TV calculationN1 × N3 times in the second dimension andN1 × N2 in the third dimension.
Overall, ford-dimensional problems, we apply one-dimensional formula (13) a total of

Napplications = Ng ×
(

1
N1

+
1

N2
+ · · ·+ 1

Nd

)
(14)

times, whereNg =
∏i=d

i=1 Ni is the total number of the grid nodes. For an isotropic grid ind dimensions, withN1

nodes in each direction, this number becomesd×Nd−1
1 .

Finally, our smoothness indicator is the sum of all one-dimensional TV indicators from Eq. (13) divided by the
total number of applications [Eq. (14)]. For compactness, we write this as

ESI = SI(ũ, GF ), (15)
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whereũ is the approximated solution given on fine gridGF . Further, we normalize the smoothness indicator by the
data as follows:

eSI =
|SI(ũ, GF )− SI(u,GD)|

SI(u,GD)
, (16)

whereu are the data given on the data gridGD. Note that, similar to theL2-error estimate, the smoothness indicator
is non-dimensionalized and does not have an upper bound. If the approximated solution does not produce additional
extrema from what the data indicate, its smoothness indicator will be zero.

2.1.3 Using Two Metrics

We have defined two different metrics for each choice of the PL parameters. Some cases can be resolved easily;
e.g., those with both metrics higher than another one (or one equal and one higher). The remaining parameter sets
correspond to possible candidates, or, in optimization context, to a Pareto front.

Let P be this Pareto front withNs elements. We can sort the elements ofP based on one error estimate, say
eL2 . It is easy to show that this same ordering is also sorted according to the other error estimate,eSI, but in the
reverse order. With this ordering, writeP = {P1, P2, . . . , PNs

} whereeL2(P1) ≤ eL2(P2) ≤ . . . ≤ eL2(PNs
) and

eSI(P1) ≥ eSI(P2) ≥ . . . ≥ eSI(PNs).
Any choice inP is logically acceptable. The selection process presented hereafter is heuristic. Ideally, the best

choice should be based on its intended application. However, on the other hand, we would like to provide a readily
usable choice. To this end, we provide the users one initial choice and give them an option to seek other possible
choices as needed.

Our default choice isP1—most accurate but least smooth—based on the assumption that the smoothness require-
ment varies from one application to another. In many applications, it is sufficient to achieve a certain minimum level
of smoothness. On the other hand, theL2-norm is a more universal measure and the users generally want to achieve
the highest accuracy possible with respect to this metric. According to this argument, we also leave the possibility to
request for smoother and smoother solutions while lowering the accuracy with respect to the data. In this manner, if
the users require smoother solutions for their applications, the parameter selection algorithm would yieldP2, P3, . . .,
in order.

2.1.4 Example 1: Step Function

Consider a step functionf(x) = sign(x) wherex ∈ [−1, 1]. Let the number of given data pointsN = 30 and the data
are given on Legendre-Gauss-Lobatto (LGL) nodes [14]. Here, we illustrate the use of the APS algorithm.

Figures 2(a) and 2(b), shows all possible PL solutions up toL = 6 in terms of the two metrics,eSI andeL2. Note
that the SC solutions (L = 0) have much higher error estimates in this case.1 Excluding the SC solutions, we see that
there are two distinct trends: one for oddL and another for evenL. Roughly speaking, we observe that the odd-L
solutions have lowereL2 but highereSI, i.e., they are more accurate in theL2 sense but less smooth.

In Fig. 2(b), we define five particular parameter sets, S1-S5. Figures 3(a)–3(d) show these solutions as functions
of x. First, we compare S1 and S2 and observe that S1 is smoother. This is immediately clear from the fact that the S2
solution contains large undershoots near the discontinuity. However, the S2 solution is more accurate than S1. TheL2-
error in the S1 solution mainly originates at the points closest to the discontinuity, while the S2 solution interpolates
these points, and the error is generated as a result of a slight overshoot/undershoot further away.

Now, consider solutions S3, S4, and S5. These three solutions compose the Pareto front of this problem. It turns
out that S4 and S5 coincide perfectly, so we only need to compare S3 and S4. Again, we need a trade-off between
accuracy and smoothness as in the comparison between S1 and S2. The differences in the errors are much smaller
in this case, although they are still noticeable. Solution S3 is smooth and has anL2-error near the discontinuity; we
can visually see this in Fig. 3(c). On the other hand, solution S4 visually passes through all the data points but also

1As mentioned earlier, the SC method used here is based on the pseudo-spectral formulation in [18]. In this formulation, due to
aliasing error the solution is not necessarily an interpolation of the given data. Thus, theL2-error estimate is not exactly zero.

International Journal for Uncertainty Quantification



Uncertainty Analysis for Discontinuous System Response 131

0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

e
SI

e
L

2

 

 

L=0

L=1

L=2

L=3

L=4

L=5

L=6

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

e
SI

e
L

2

 

 

L=0

L=1

L=2

L=3

L=4

L=5

L=6

S1 (15,3,2)

S3 (17,7,6)

S4 (22,6,5), S5 (22,7,6)

S2 (15,2,1)

(b)

FIG. 2: All possible PL solutions up toL = 6 according to theireSI andeL2 measures. (b) is a zoom-in of (a). Five
solutions are labeled as S1-S5 in (b) for further references (note: S4 and S5 coincide). The parameters in parentheses
are the PL parameters(M,K, L).

contains slightly larger undershoots than those in solution S3. The undershoots for both solutions are too small to
observe visually in Fig. 3.

2.1.5 Example 2: Square Wave

Consider a slightly more complicated function:f(x) = sign(x + 0.2) − sign(x − 0.5) wherex ∈ [−1, 1] andf is a
single square wave in the domain. The square wave spans the interval[−0.2, 0.5] with a height of 2. We will consider
two data sets,N = 20 andN = 40, both given at standard LGL points.
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FIG. 3: PL solutions (a) S1, (b) S2, (c) S3, and (d) S4 and S5 as defined in Fig. 2(b).

First, consider the case whereN = 20. Figure 4 shows all the PL solutions in the Pareto front with their corre-
sponding two metrics. Unlike in the earlier example of a step function, the SC solution is part of the Pareto front here
due to its loweL2; however, it does have a relatively higheSI. Upon closer inspection, we found that this SC solution
(P1) is highly oscillatory as seen in Fig. 5(a). In many applications these spurious oscillations are very undesirable;
for example, when one wants to find extrema values or detects regions of steep gradient. In such cases, users should
request the smoother PL solutions. The next solutionP2 in the Pareto front has smallereSI than that ofP1 by more
than an order of magnitude. This is usually an indication that the present Gibbs oscillation has been effectively sup-
pressed. Other solutions beyondP2 are smoother but less accurate as expected; however, the solutions only change
slightly. Figures 5(b) and 5(c), showP2 andP5, respectively.

Next, we consider the same underlying square wave function but with more data,N = 40. Figure 6 reports the
Pareto front of the PL solutions for this problem. Again, the SC solution is part of the Pareto front asP1. Here,P2 has
more than an order of magnitude smallereSI than that ofP1, suggesting that the Gibbs oscillation has been suppressed.
The PL solutions beyondP2 change only gradually as seen in Figures 7(a)–7(d). At closer observation, we see that
the solutionsP4 andP6 do not quite pass through the data points near the discontinuities in contrast toP2. However,
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FIG. 4: The Pareto front of PL solutions of the square wave problem withN = 20.
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FIG. 5: Some of the PL solutions in the Pareto front for the square wave problem withN = 20. (a)P1 (most accurate),
(b) P2, and (c)P5 (smoothest).

the solutionP2 has small undershoots near the discontinuities. This is the same behavior observed in the step function
example. We suspect that this behavior is not observed in the case ofN = 20, because there are not enough points
separating the two discontinuities.

2.2 Convergence for Continuous Functions

In Section 2.1, we defined smoothness indicator (16) of the approximated solution with respect to the given data. A
more subtle question to ask is: How smooth are the given data?

Note that we can easily talk about smoothness of the underlying function, which we rarely have access to in the
real applications. In fact, the general scenario is that we resort to an approximation precisely because we do not have
this knowledge.

So far, we have presented problems containing discontinuities as if to mean the underlying function exhibits some
discontinuities; e.g., a step function and its variations. However, the PL method is more useful beyond problems that
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FIG. 6: The Pareto front of PL solutions of the square wave problem withN = 40. Note that the exact plot ofP1 is
not shown (eSI = 1.54 andeL2 = 0.00259).
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FIG. 7: Some of the PL solutions in the Pareto front for the square wave problem withN = 40. (a)P1 (most accurate),
(b) P2, (c) P4, and (d)P6 (smoothest).
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contain discontinuities in this strict sense. In the usual absence of knowledge of the underlying function, a steep
gradient can be perceived as a discontinuity if the data are coarse enough. In such a case and when the given data are
scarce, the present approach proves to be just as useful.

In this section, we explore applications of the PL method on continuous functions with steep gradients. Loosely
speaking, for these functions, low-resolution data look discontinuous while high-resolution data look smooth. With
the automatic parameter selection in Section 2.1, we numerically show that the PL method degenerates to stochastic
collocation when sufficient resolution is achieved.

2.2.1 Smoothness of Discrete Data

One possible way to rigorously define the smoothness of discrete data is through the smoothness of its standard
(highest-order) polynomial approximation with respect to the data. More precisely, define the data roughness as the
following:

DR(N) = eSI([M, K,L] = [N, 0, 0]), (17)

whereN is the number of given (LGL) data points and it is implicitly understood what underlying function is being
considered. Figure 8(a), shows the data roughness as a function of given data pointsN for the underlying function
f(x) = sign(x).

Note thatf contains a true discontinuity and the data roughness value increases withN . This makes sense because,
as more data are revealed, it becomes clearer that the underlying function contains a discontinuity. On the other hand,
for a smooth underlying function, the data roughness should decreases withN . Consider a smooth underlying function
f(x) = tanh(5x). The data roughness of this function is shown in Fig. 8(b). Note that the roughness approaches zero
asN increases. This makes sense intuitively because, as more data points are included, the data look smoother and
smoother.

In the next section, we consider a smooth underlying function and observe the behavior of the PL solutions asN
increases.

2.2.2 PL Behavior for Smooth Underlying Functions

Consider a testing functionf(x) = tanh(x/δ), whereδ is a tunable parameter dictating the smoothness of the data
sampled from this underlying function. The data roughness as defined in Eq. (17) for this testing function only depends
onδ and the number of data points,N .
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FIG. 8: Smoothness of data as a function of the number of data points for (a)f(x) = sign(x) and (b)f(x) =
tanh(5x). Only the even numbers of data points are shown.
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Table 1 shows the data roughness (DR) and the order of the denominator from the PL solutions obtained from the
APS algorithm with the lowesteL2 (most accurate and least smooth member of the Pareto front) forδ = 0.2, 0.3, 0.4,
andN ranging from 4 to 30. Only evenN results are shown. The oddN results have similar trends with different
starting points and values due to the middle data point being in the region of the steepest gradient.

From Table 1, we observe that when the data are sufficiently smooth, the SC solution (L = 0) becomes the most
accurate solution. In other words, for smooth underlying functions the PL method (with APS) degenerates to SC
when sufficient resolution is achieved. A non-constant denominator does not increase the accuracy, and using all the
available data to obtain the numerator part should give the most accurate representation.

More surprisingly, we observe that the orderL of the most accurate PL solution increases before the data are
smooth enough to yield the SC solution, instead ofL decreasing and eventually becoming zero. There is a critical
Ncrit for each smooth underlying function. ForN > Ncrit, the most accurate solution is the SC solution as seen
above. ForN < Ncrit, there is a trade-off between increasingM or L for a fixedN , since

c(L) + c(M) < c(M + K) ≤ c(N), (18)

where the first inequality was presented in Section 1.2 and the second is fromM + K ≤ N .
For a fixedN < Ncrit and fixedM , we found that increasingL tends to improve the accuracy of the approximated

solution. The same is true when increasingM , for a fixedN < Ncrit and fixedL. However, it is not clear why both
L andM increase asN increases, instead of one parameter dominating the other (one increasing while the other
is decreasing). It is difficult to provide a formal explanation of this behavior, especially because it is a result of the
quality metrics introduced before and the strategy used to select a set of parameters among all the possible approximant
surfaces. However, this behavior will be the subject of further studies.

3. THE PL METHOD IN INVERSION PROBLEMS

This section discusses how PL can be used in Bayesian inference problems. We start by briefly describing the inference
problem, then pointing out how PL can be used to accelerate the traditional approach and, finally, concluding with
some simple examples to illustrate the methodology.

TABLE 1: Data roughness (DR) and the denominator or-
der (L) of the suggested PL solutions from the APS for
the testing functionf(x) = tanh(x/δ) for variousδ and
N (the number of data points)

δ = 0.2 δ = 0.3 δ = 0.4
N DR L DR L DR L
4 1.698e+0 1 1.361e+0 1 9.532e-1 1
6 1.407e+0 1 7.242e-1 2 2.742e-1 2
8 9.744e-1 2 2.852e-1 2 1.045e-1 2
10 5.882e-1 4 1.474e-1 4 2.627e-2 4
12 3.281e-1 4 6.224e-2 4 7.192e-3 4
14 2.141e-1 6 2.508e-2 6 2.414e-3 0
16 1.311e-1 6 8.718e-3 6 6.083e-4 0
18 7.265e-2 8 3.359e-3 0 2.535e-4 0
20 4.124e-2 8 1.069e-3 0 8.143e-5 0
22 2.352e-2 8 3.840e-4 0 2.603e-5 0
24 1.257e-2 9 1.656e-4 0 8.291e-6 0
26 6.967e-3 0 6.731e-5 0 2.596e-6 0
28 3.665e-3 0 2.839e-5 0 1.143e-6 0
30 1.932e-3 0 1.059e-5 0 8.266e-7 0
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3.1 Bayesian Inversion Methodology

In Bayesian inference problems, we are given some observablesd and are asked to obtain the unknown input param-
etersz of the forward model,G(z), that would likely generate those observables. The problem is complicated by the
fact that the observables usually are polluted with measurement noise,e:

d = dtrue + e = G(z) + e, (19)

wheredtrue is the solution of the forward model.
Following the Bayesian framework, we have

p(z|d) =
p(d|z)p(z)∫
p(d|z)p(z)dz

, (20)

where the shorthand notationp(z) represents the probability density function of the random variableZ atz [subscript
Z is omitted as it is clear whose probability densityp(·) represents]. Likewise,p(d|z) andp(z|d) are the conditional
probability of their corresponding variables. Since the denominator in Eq. (20) is simply a normalization, we can
re-express the relationship in terms of proportionality as

p(z|d) ∝ p(d|z)p(z). (21)

We call p(z) the prior probability density and it represents our knowledge of the distribution ofZ before we
incorporate the data,d. The density ofZ conditioned on the data,p(z|d), is called the posterior probability density.
Here,p(d|z) is called the likelihood function and, following the independence assumption of the measurement noise
e, can be expressed as

p(d|z) , L(z) =
nd∏

i=1

pei [di −Gi(z)], (22)

wherend is the dimension ofd. We use notationL(z) for the likelihood function for compactness and to emphasize
that it is a function ofz.

In this work, we will assume that the measurement noise is described by independent, Gaussian variables with
zero mean andσ2

e variance. With this assumption, the expression for the likelihood function becomes

L(z) =
nd∏

i=1

exp
(
− [di −Gi(z)]2

σ2
e

)
= exp

(
−‖d−G(z)‖2

σ2
e

)
, (23)

where‖ · ‖ is theL2-norm.

3.2 Using PL in Inversion Problem

The Bayesian framework poses the (inverse) solution as a posterior probability distribution over the input parameters.
Although the concept is straightforward, it can be difficult in practice, mainly because the posterior space cannot
easily be explored, especially in high-dimensional problems.

To alleviate this problem, several approaches have been proposed, for example, based on sampling [19]; one of the
most successful algorithms is based on the Markov chain Monte Carlo (MCMC) method [20, 21]. These approaches
require repeated runs of the forward model, and thus when the model is computationally expensive, the method
becomes prohibitive.

Many recent works focus instead on the introduction of surrogates for the forward model. In [22], the authors used
the stochastic Galerkin method to propagate prior uncertainty through the forward model, thus yielding an approxi-
mated forward solution from which the inverse solution can be obtained. In [23], stochastic collocation was used as a
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forward model surrogate for posterior evaluation. Similarly, in our work, we employ PL as a surrogate for the forward
model:

G̃N (Z) =
P (Z)
Q(Z)

=
∑c(M)−1

i=0 p̂iΨi(Z)
∑c(L)−1

i=0 q̂iΨi(Z)
≈ G(Z). (24)

The PL method is better suited for problems with discontinuities and, as seen in Section 2.2, degenerates to
standard stochastic collocation when dealing with smooth problems.

3.2.1 Example 1: Step Function

Consider a simple discontinuous forward model

G(Z) =
{

0 if Z ∈ [−1, 0],
1 if Z ∈ (0, 1], (25)

and use one single observationd = G(ztrue)+e to define a posterior densityp(z|d). The noisee is assumed Gaussian
with zero mean and standard deviation of 0.1. The prior distribution onZ is uniform on the entire domain[−1, 1]. The
original inputztrue = 0.5, and thus we expect most posterior probability to lie in the right half of the domain.

The SC and PL methods are used to construct surrogates of the forward model,G̃N (Z), with N = 10 for both
methods. Figure 9 shows the resulting posterior densities from the two methods. The SC solution exhibits the oscil-
latory characteristic of the Gibbs phenomenon as expected, given the discontinuity in the exact forward model. This
is undesirable as it suggests variation in probability where none exists. On the other hand, the PL solution is quite
uniform across the right half of the domain.

Note that both methods predict low probability in the region[0, 0.1]. This is clearly due to low data resolution
(N = 10).

3.2.2 Example 2: Diffusion Problem

The second example of using PL for the inversion problem involves the following diffusion problem:

∂u

∂t
− α

∂2u

∂x2
= 0

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

z

p
(z

|d
)

 

 

Exact

SC

PL

FIG. 9: Exact and approximated posterior density for a step-functionG(Z), using SC and PL withN = 10. Solid
line, exact; dotted line, SC; dashed line, PL.
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u(0, t) = c(z)

∂u

∂x
(1, t) = 0

u(x, 0) = sin(πx) (26)

whereα = 1 and we are interested in the solution at timet = T = 2. Here,c(z) is a simple discontinuous function
defined as

c(z) =
{

z − 2 if z < 0,
z otherwise.

(27)

Our forward model isG(Z) = u(x, T ;Z) + e. We want to infer the unknown input parameterz given a single
observationd(x) at ztrue = −0.8. The prior distribution onZ is uniform in the entire domain[−1, 1]. The noisee is
assumed to be Gaussian with zero mean and variance of 0.5.

Figure 10 shows the exact solution surface of this problem. The two horizontal axes define the physical and
uncertain variablesx andz, respectively, and the vertical axis defines the solutionu(x, T ; z). There is a single sharp
ridge along the parameter space atz = 0 as a direct result of the discontinuousc(z). For eachz, the solution is smooth
in the physical coordinatex.

Figures 11(a)–11(f) show the solution surface and posterior density from the SC surrogate withN = 11, 21, and
31. From the surface plots, we can clearly observe the Gibbs’ oscillation contaminating the solutions away from the
ridge, including the region aroundz = ztrue = −0.8. This has a significant impact on computation of the posterior
density. WhenN = 11 [Figures 11(a) and 11(b)], we observe three separate peaks corresponding to the most likely
value of parameterz of the data. By design, we know that the true value ofz is at the middle peak. The two side peaks
are spurious solutions caused by the discontinuity. As we increaseN to 21 and 31, we are left with only one globally
maximal peak. However, numerous locally maximal peaks are still undesirable as they are purely artifacts of the SC
method and have no direct connection to the given data.

Figures 12(a)–11(f) show the PL solutions for this problem. The data are given at the same locations as those in
the SC method above. Note that for both SC and PL the peak gets higher and steeper as we increaseN . This shows
our increasing confidence in predicting the unknown input parameter as we have more forward runs. Note also that
the PL method yields a smooth solution surface for all cases without Gibbs’ oscillation. For the same data, the PL
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FIG. 10: Exact solution surface of the diffusion problem.
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FIG. 11: (a), (c), and (e) Solution surface and (b), (d), and (f) posterior density from SC method with (a) and (b)
N = 11, (c) and (d)N = 21, and (e) and (f)N = 31.
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FIG. 12: (a), (c), and (e) Solution surface and (b), (d), and (f) posterior density from SC method with (a) and (b)
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method has higher accuracy than the SC method. The PL solution contains one consistent maximal peak aroundztrue,
while the SC solution contains multiple local maximal peaks.

For a quantitative measure, considerPfail = P (|z − ztrue| > emax), the probability that the predictedz is too far
away fromztrue. In this case, we arbitrarily choose the maximum acceptable differenceemax to be 0.3. Table 2 shows
Pfail from both SC and PL methods forN = 11, 21, and 31. For eachN , the PL method gives consistently lower
Pfail, indicating higher accuracy in inferring input parameterz.

TABLE 2: Pfail from SC
and PL methods withN =
11, 21, and 31

N SC PL
11 0.337 0.218
21 0.210 0.162
31 0.120 0.099

4. CONCLUSIONS

A novel approach—the Padé-Legendre method—for assessing uncertainty in problems characterized by strong non-
linear and possibly discontinuous system responses has been presented. The method uses a ratio of polynomials to
approximate discrete data and can be interpreted as an extension of the popular stochastic collocation approach in
which a polynomial interpolant is constructed. In the case, where the lack of smoothness in the data is due to limited
resolution, we demonstrated how the PL formulation reverts to a pure polynomial representation as apparent data
roughness decreases under increasing data resolution. In addition, we introduced an algorithm to extract a sequence
of candidate PL reconstructions that balance the interpolation error and the smoothness of the reconstruction. Finally,
we have investigated the use of the PL approach in Bayesian inference, demonstrating that in the presence of discon-
tinuous input parameters, the posterior distributions obtained using polynomial representations can be significantly
improved by reducing Gibbs oscillations in the emulators.
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