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A multifidelity approach to design and analysis for complex systems seeks to exploit optimally all available models
and data. Existing multifidelity approaches generally attempt to calibrate low-fidelity models or replace low-fidelity
analysis results using data from higher fidelity analyses. This paper proposes a fundamentally different approach that
uses the tools of estimation theory to fuse together information from multifidelity analyses, resulting in a Bayesian-based
approach to mitigating risk in complex system design and analysis. This approach is combined with maximum entropy
characterizations of model discrepancy to represent epistemic uncertainties due to modeling limitations and model
assumptions. Mathematical interrogation of the uncertainty in system output quantities of interest is achieved via a
variance-based global sensitivity analysis, which identifies the primary contributors to output uncertainty and thus
provides guidance for adaptation of model fidelity. The methodology is applied to multidisciplinary design optimization
and demonstrated on a wing-sizing problem for a high altitude, long endurance vehicle.
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1. INTRODUCTION

Numerical simulation tools provide essential support to all aspects of discovery and decision processes for complex
systems, with applications ranging from characterization of system properties via inference, to prediction of system
performance, to decision in the form of design, planning, optimization, and control. For a particular application, it
is often the case that engineers, scientists, and decision-makers have available to them several different numerical
models, in addition to experimental data. These numerical models may vary in “fidelity” or “skill” with respect to
different quantities of interest. The models may encompass different resolutions, different physics, and different mod-
eling assumptions. A multifidelity approach to modeling complex systems seeks to exploit optimally all available
models and data. Such an approach requires systematic methods to select models with the appropriate skill for the
prediction/decision task at hand. It also requires ways to synthesize information and data from different models and
experiments. This paper proposes a mathematical and computational framework that lays the foundation for a multi-
fidelity approach to modeling complex systems for design and analysis.

We propose a mathematical and computational multifidelity framework based on estimation theory. Building on
the work of [1], we view the analysis or design task as a problem of Bayesian estimation, where models and ex-
periments are used in concert to conduct a series of observations of the key parameters. If, for example, the goal is
optimal system design, then our task is to estimate the (unknown) optimal values of design parameters. Each model or
experiment is viewed as providing a measurement that feeds into the estimation process. A Bayesian characterization
of design parameters represents the level of uncertainty in each parameter at any point during the design process.
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Filtering methods are employed to synthesize multifidelity estimates and to evolve our estimate of the system state.
Global sensitivity analysis provides a rigorous means to identify key component or subsystem contributors to uncer-
tainty in quantities of interest for informing resource allocation decisions. The result is a multifidelity methodology
that determines, with confidence, when high, medium, and low fidelity analyses are appropriate to support an analysis
or design task. Further, rather than discard information as higher fidelity results become available, our approach fuses
information gained from each analysis step throughout the decision process, resulting in more confident estimates of
output metrics of interest.

Our approach is applicable in many different settings. For example, in modeling subsurface flows through karst
aquifers, models can range from simple continuum pipe flow models [2, 3] to high-fidelity models that couple Stokes
and Darcy systems [4, 5]. Climate modeling to estimate global mean temperature change in response to an emission
scenario is another example where a host of different modeling options exist, such as simple climate models [6]
that may consider only atmospheric effects averaged over one or more dimensions to three-dimensional atmospheric-
ocean general circulation models [7]. In both cases, a rigorous approach to managing model options, their differing
estimates, and their uncertainties would better inform the decision-making process. In this paper, we demonstrate how
our approach applies to the case of multifidelity modeling in the conceptual design of multidisciplinary engineering
systems. Decisions made in this design phase have tremendous implications for downstream programmatic cost and
schedule, as well as for the ultimate system capabilities that can be realized. Challenges arise in the conceptual design
phase because of the common use of simplified disciplinary analysis models. Indeed, according to [8], “No model is
perfect. Even if there is no parameter uncertainty, so that we know the true values of all the inputs required to make
a particular prediction of the process being modeled, the predicted value will not equal the true value of the process.
The discrepancy is model inadequacy.” It is critical that decision processes for complex systems start accounting for
model inadequacy, which in this work, following [9] and [10], we refer to asmodel discrepancy.

Recent work related to the quantification of model discrepancy in engineering applications has focused on model
uncertainty—uncertainty involved in selecting the best model from a set of possibilities [11]. In that body of work,
model uncertainty is quantified in terms of model probabilities, which are defined as the degree of belief that a model
is true, given that the true model is in the set of models considered [12]. There are many techniques for assigning
model probabilities, such as expert opinion, which was incorporated in the work of [13] and [14] for nuclear safety
problems; the Akaike information criterion and Bayesian information criterion discussed in [12] and [15]; and a
Bayesian statistical framework proposed in [11] based on comparing experimental data to model outcomes. Once
model probabilities have been assigned, it is common to fuse estimates from the various models through techniques
of the adjustment factors approach [14], and Bayesian model averaging [16].

This previous work on quantification of model uncertainty assigns a model probability to each model in the
selection set, to encompass the degree of belief of each model relative to the other models. Our approach differs in
that we assign a probability distribution to the output of each individual model, on the basis of the model discrepancy
associated with that particular model. Our approach also differs in that we fuse information from various modeling
sources with the tools of Bayesian inference, where it is implied that each model yields some quantity of information
that, regardless of fidelity level, leads to better estimates in terms of diminished variance. This is not the case for
the methods of Bayesian model averaging and the adjustment factors approach, where it is common for the estimate
arrived at through fusing information from several models to have a larger variance than the estimates from the
individual models alone.

Model discrepancy present in decision-making processes leads to risk in the form of variance in estimates of
quantities of interest (e.g., quantities related to system performance, cost, or schedule). Our goal is to mitigate this risk
by providing a systematic means of managing and fusing information from different available modeling options. There
is a wide body of work related to quantification of risk in probabilistic terms, particularly in the nuclear engineering
community, where considerable efforts are put into the probabilistic risk assessment of complex nuclear facilities that
began with the work of [17]. Probabilistic risk assessment generally defines risk on the basis of severity of a failure
event and how likely that event is to occur. Our view of risk, particularly in the context of conceptual design where
we may be more concerned about performance estimates than the occurrence of rare failure events, is more in line
with the views of the financial engineering community, where risk has been viewed as being directly proportional to
the variance of a quantity of interest outcome, such as in mean-variance optimization of modern portfolio theory [18].
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Quantifying and subsequently mitigating this type of risk is critical in conceptual design, where the goal is to minimize
risk in the selection of a particular system architecture or architectures with which to proceed to the preliminary design
phase.

Our approach begins with defining a design or analysis case of interest, followed by the analysis of that case by a
model whose model discrepancy has been quantified. This then allows us to assess risk in terms of the variance of an
output quantity of interest. We employ methods of Bayesian inference and global sensitivity analysis to reduce this
variance by systematically incorporating higher fidelity models in the design process. We set up this problem in Sec-
tion 2. Our approach and background material on each component of it is developed in Section 3. A discussion of the
application of our methodology to multidisciplinary design optimization and the results of applying our approach to a
wing-sizing problem for an aerospace vehicle are presented in Section 4. Conclusions and future work are discussed
in Section 5.

2. PROBLEM SETUP

Throughout this work, for clarity of the exposition, we will consider a system consisting of two subsystems. However,
the methods developed here can be extended to any number of subsystems. We denote the two subsystems asA and
B. For each subsystem, we have a set of modeling options available, which we denote asA andB for subsystems
A andB, respectively. Each modeling choice for each subsystem is responsible for estimating a vector of quantities
denoted asqA ∈ RoA , whereoA is the number of outputs of subsystemA, andqB ∈ RoB , whereoB is the number of
outputs of subsystemB. Theith modeling choice employed for each subsystem during a design or analysis process
is written asAi andBi, wherei ∈ {1, 2, . . . , K} andK ≥ 1. For modeling choiceAi for subsystemA, we estimate
qAi asQAi(dAi) = gAi(dAi) + εAi(dAi), wheredAi are the inputs to modeling choiceAi, dAi ∈ RkAi , where
kAi is the number of inputs to subsystem modelAi, εAi(dAi) is a stochastic process representing the discrepancy
in sourceAi, andgAi : RkAi → RoA . Similarly, for modeling choiceBi for subsystemB we estimateqBi as
QBi(dBi) = gBi(dBi) + εBi(dBi), wheredBi are the inputs to modeling choiceBi, kBi is the number of inputs to
subsystem modelBi, dBi ∈ RkBi , εBi(dBi) is a stochastic process representing the discrepancy in sourceBi, and
gBi : RkBi → RoB .

We define the vector of outputs from the modeling choices of the two subsystems aszi, wherezi = (qAi ,qBi)
T .

A system level scalar quantity of interestc, is then estimated asC = fMi(Zi) + εMi(Zi), whereMi = {Ai,Bi} ⊂
A × B is the system level modeling choice at theith iteration comprising a selection of a modeling option for each
subsystem,εMi(Zi) is a stochastic process representing the discrepancy infMi(Zi), fMi(Zi) : RkAi

kBi → R, and
Zi = (QAi ,QBi)

T . In this work we do not consider other options for estimatingc from z and focus instead on the
choices to be made at the subsystem level. The result of exercising a modeling choice,Mi, is a conditional distribution
p(c|dMi ,Mi), wheredMi = (dAi ,dBi)

T .
In general we may have many different subsystems or disciplines in a system of interest, each of which may

have available many different modeling options. The goal of our multifidelity approach is to find a search algorithm,
or policy, that optimally chooses when to use a particular modeling option, given some objective function. If we
denote the modeling option employed at timet (here, time indexes each time a model choice is made, e.g., the first
modeling choice occurs att = 1, the second att = 2, etc.) asMt, then at timet we have a history setHt =
{(M1,dM1), . . . , (Mt,dMt)}. A search algorithm can then be defined as a policy,π(Mt+1|Ht), that maps a given
history set to the next modeling option to be employed.

The particular objective we consider here focuses on maximizing the expected variance reduction in a given quan-
tity of interest at each successive modeling choice stage. Assuming we are at timet, our current quantity of interest
variance is given as var(C|dMt ,Mt), whereC|dMt ,Mt ∼ p(c|dMt ,Mt). Under a particular policyπ(Mt+1|Ht),
the expected variance of our quantity of interest at timet+1 is given asE[var(C|dMt+1 ,Mt+1)]. We consider an ex-
pectation of the variance here because we may not know in advance the discrepancy associated with modeling choice
Mt+1 and we may also not know the values ofdMt+1 at which the models will be evaluated. The expected variance
reduction,R, is then given as

R(π(Mt+1|Ht)) = var(C|dMt ,Mt)− E[var(C|dMt+1 ,Mt+1)]. (1)
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Thus, we wish to find a policyπ∗(Mt+1|Ht) where

π∗(Mt+1|Ht) = arg max
π∈Π

R(π(Mt+1|Ht)), (2)

whereΠ is the set of admissible policies. Here, we assume that the policy is initialized by a prescribed first modeling
choice,M1.

3. APPROACH

To manage multifidelity models by finding an optimal policy according to (2), we must have a means for estimating
the discrepancy associated with a modeling option. Once we have estimated the discrepancy we must estimate the
expected variance reduction under a particular policy, as given by (1). For this, we need to be able to apportion the
variance of a given to quantity among its contributing factors. In the following subsections we discuss our discrep-
ancy quantification procedure, as well as how we approach variance apportionment. Following that, we present our
optimal policy for selecting the next modeling option. We conclude this section with some considerations of model
fusion opportunities and a step-by-step procedure for model management and information synthesis in multifidelity
engineering tasks.

3.1 Quantification of Model Discrepancy

Mathematical models of reality implemented in computer codes contain many different sources of uncertainty. Among
these are parameter uncertainty, residual variability, parametric variability, observation error, code uncertainty, and
model discrepancy [8]. Following [8], parameter uncertainty relates to uncertainty associated with the values of model
inputs; residual variability relates to the variation of a particular process outcome even when the conditions of that
process are fully specified, parametric variability results when certain inputs require more detail than is desired (or
possible) and are thus left unspecified in the model; observation error involves the use of actual observations in a
model calibration process; code uncertainty results when a code is so complex or computationally involved that it
may not be possible to execute the code at every possible input configuration of interest, thus there is some additional
uncertainty related to regions of the input space that have not been interrogated; and model discrepancy relates to the
fact that no model is perfect, and thus some aspects of reality may have been omitted, improperly modeled, or contain
unrealistic assumptions.

The work presented here focuses entirely on model discrepancy and how it relates to model fidelity. We propose
an association between high model discrepancy, quantified in terms of model output variance, with low model fidelity.
Thus, as model discrepancy is reduced, model fidelity increases. While there are many different ways of viewing
what is meant by model fidelity, the connection with model discrepancy we propose here provides us with a readily
quantifiable notion of fidelity that permits us to incorporate probabilistic methods of Bayesian inference and global
sensitivity analysis for information synthesis and fidelity management.

To establish a probabilistic representation of model discrepancy requires a means of producing probability distri-
butions from uncertainty information. This is because characterizations of uncertainty with probability distributions
are rarely constructed from complete uncertainty information. Instead, these characterizations are inferred in some
way from available information. In some cases, a great deal of information regarding the outcome of a particular ex-
periment (e.g., rolling a fair die or tossing a fair coin) may be had, and thus probability distributions may be assigned
with confidence. In most cases, however, such complete uncertainty information is not available (e.g., any form of
epistemic uncertainty, where epistemic uncertainty is uncertainty that derives from imperfect knowledge rather than
any intrinsic variability). However, it may still be desirable, or even critical, that particular quantities, such as the
likelihood of some event’s occurrence, be estimated. According to [19], information entropy provides a constructive
criterion for assigning probability distributions on the basis of incomplete uncertainty information, and distributions
assigned by maximizing information entropy are maximally noncommittal with regard to missing information. Thus,
in this work we assign to epistemic uncertainties probability distributions that maximize information entropy.

We create maximum entropy distributions for the model discrepancy of some modelMi that is used to estimate
some real-world quantityz∗ as follows. Let the estimate ofz∗ from the model bezi. First, following [20], we note
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that qualitatively,|z∗ − zi| should not be too large, otherwise we would not consider using modelMi. Given this
information, we assign a normalized prior density to estimate the real-world quantityz∗ in the form

p(z∗) =
√

ωZi

2π
exp

[
−ωZi

2
(z∗ − zi)2

]
, (3)

whereωZi
is a weight parameter for model choiceMi. Qualitatively, (3) states that we believe it is unlikely that

|z∗−zi| is much greater than1/
√

ωZi [20]. Quantitatively, (3) states that we believeP(|Z−zi| < 1/
√

ωZi) > 0.68,
P(|Z − zi| < 2/

√
ωZi

) > 0.95, andP(|Z − zi| < 3/
√

ωZi
) > 0.99, whereZ is a random variable with density

p(z∗). The assignment of this probability density requires the specification of the weight parameterωZi
. This can be

done by providing to an expert the model estimate,zi, as well as the conditions under which the model was run to
arrive at the estimate. The expert can then provide information relating to the uncertainty associated with the estimate.
This information can be in the form of a percentage ofzi, denotedγ, or an absolute quantity, denotedδ, giving the
range of the truez∗ (according to the expert) as eitherzi ± γzi or zi ± δ. Based on this expert input, a value can then
be assigned toωZi

, and the maximum entropy distribution forz∗ given this information is given by Eq. (3). For a
conservative estimate, the weight parameter can be set as1/

√
ωZi = δ or 1/

√
ωZi = γzi. For an aggressive estimate

of the uncertainty, the weight parameter can be set according to1/
√

ωZi = δ/3 or 1/
√

ωZi = γzi/3. We assume
in this work that our experts provide reasonable estimates for the range of the true quantities being elicited. Forming
consensus distributions from information elicited from several experts could be employed to relax this assumption as
discussed in [21], where a method for determining both the probabilistic and technical abilities of the experts is also
developed. The technical abilities of the expert are assessed by comparing their opinions to relevant historical data
or experiments. This information can be used to calibrate the experts as part of a weight determination process in
forming a consensus distribution from a weighted average of individual expert elicited distributions. Experts that are
trusted more on the basis of their probabilistic and technical abilities are assigned larger weights.

As shown in Eq. (3), we are considering only normal distributions in the suggested elicitation process. From an
information theory perspective, this is the most reasonable distribution given the information we are eliciting. If more
information were gathered, such as support bounds for model outputs or known bias, then this information could be
included in the construction of the model discrepancy distributions. However, more formal elicitation processes are
beyond the scope of this work.

3.2 Variance Apportionment

The goal of this work is to determine how to systematically manage levels of model fidelity according to (2). To achieve
this goal we utilize a method of variance apportionment known as global sensitivity analysis. Global sensitivity anal-
ysis is a rigorous means for apportioning model output variance among model factors. The objective of the method is
shown in Fig. 1, where the pie represents the variance in a model output, which is then decomposed according to factor
contributions. To achieve this decomposition, following [22], we consider a functionf(z) = f(z1, z2, . . . , zm) ∈ R
defined on the unit hypercubeIm = {(z1, z2, . . . , zm) : 0 ≤ zi ≤ 1, i = 1, 2, . . . , m}, wheref(z) belongs to a
vector spaceZ. Let (Im,B(Im), µ) be a measure space, whereB(Im) denotes the Borelσ-field on Im andµ is a
measure onB(Im), and letZ consist of all integrable functions with respect toµ. Further, letµ be a product measure,

FIG. 1: Apportioning output variance.
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dµ(z) = dµ(z1, . . . , zm) =
∏m

i=1 dµi(zi), with unit mass and a density defined asp(z) = dµ(z)/dz =
∏m

i=1 pi(zi),
wherepi(zi) is the marginal density ofzi. The inner product〈·, ·〉 : Z × Z → R induced byµ is given as

〈f, g〉 =
∫

Im

f(z)g(z)dµ(z), (4)

wheref(z), g(z) ∈ Z.
We may decomposeZ into subspaces defined as

V0 := {f ∈ Z : f = C, whereC ∈ R is a constant},
Vi := {f ∈ Z : f = fi(zi) is a univariate function and

∫

I1
fi(zi)dµi(zi) = 0},

Vij := {f ∈ Z : f = fij(zi, zj) is a bivariate function and
∫

I1
fij(zi, zj)dµk(zk) = 0, k = i, j},

...

Vi1,...,is
:= {f ∈ Z : f = fi1,...,is

(zi1 , . . . , zis
) is ans-variate function and∫

I1
fi1,...,is

(zi1 , . . . , zis
)dµk(zk) = 0, k = i1, . . . , is},

...

V12...m := {f ∈ Z : f = f12...m(z1, z2, . . . , zm) is anm-variate function and∫

I1
f12...m(z1, z2, . . . , zm)dµk(zk) = 0, k = 1, 2, . . . , m}. (5)

Any two functions,fi1,...,is(zi1 , . . . , zis), fj1,...,jp(zj1 , . . . , zjp), with at least one index differing are orthogonal

〈
fi1,...,is , fj1,...,jp

〉
= 0. (6)

As shown by [22], we may writeZ as the direct sum of the subspaces defined above,

Z = V0 ⊕
∑

i

Vi ⊕
∑

i<j

Vij ⊕ · · · ⊕
∑

i1<i2<···<is

Vi1i2...is ⊕ · · · ⊕ V12...m, (7)

which is often written more compactly as [23]

Z =
⊕

u⊆I
Vu, (8)

whereI := {1, 2, . . . , m} denotes the set of coordinate indices andV∅ = V0. As a result, we may writef(z) ∈ Z as

f(z) = f0 +
∑

i

fi(zi) +
∑

i<j

fij(zi, zj) + · · ·+ f12...m(z1, z2, . . . , zm) =
∑

u⊆I
fu(zu), (9)

wheref∅(z∅) = f0. The representation off(z) given in Eq. (9) is referred to as the high dimensional model represen-
tation (HDMR) and is unique up to the choice of the measureµ.

For global sensitivity analysis, we specify the measureµ as the ordinary Lebesgue measure and letZ be de-
fined as the space of square-integrable functions onIm, Z := L2(Im,B(Im),µ). If zi are assumed to be uni-
form random variablesZi, then we may square and integrate Eq. (9) and write the overall variance off(Z) (where
Z = [Z1, Z2, . . . , Zm]T ) as

var(f(Z)) =
∑

i

Vi +
∑

i<j

Vij + · · ·+ V12...m = V, (10)
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where individual variances are given by

Vi1,...,is := var(fi1,...,is(Zi1 , . . . , Zis)) =
∫

Is

(fi1,...,is(Zi1 , . . . , Zis))
2dzi1 . . . dzis . (11)

The variance decomposition given by Eq. 10 is precisely the qualitative notion depicted in Fig. 1. Main effect global
sensitivity indices are then defined as

Si1,...,is
:=

Vi1,...,is

V
. (12)

Calculation of these indices may be carried out in many ways, such as a Monte Carlo simulation approach known as
the Sobol’ method as shown in [24], a Fourier analysis based approach as shown in [25], a polynomial chaos expansion
based approach as shown in [26], and a sparse grid based approach as shown in [27].

3.3 A Model Management Policy

To construct an optimal policy according to (2), we first must consider what modeling options might be available at
any given time during a design or analysis task. Consider a system comprised of two subsystems,A andB as before.
For each subsystem we have a “low-fidelity” modeling optionALO andBLO, respectively, and the potential to obtain
or construct a higher fidelity modeling optionAHI andBHI , respectively. In this work we do not explicitly include the
cost of obtaining or constructing a modeling option, or the cost of using that option. Instead, we assume that fidelity
level can only be incremented one level at a time for one subsystem at a time. The explicit inclusion of cost in the
problem setup is a topic of future work. The progression from low-fidelity models to higher fidelity models one step
at a time is a typical practice and our aim here is to identify how to optimally perform that progression.

Assume that we have run the low-fidelity modeling optionM1 = {ALO, BLO}, and that subsystemA again
estimates the vector of quantitiesa and subsystemB estimates the vector of quantitiesb. Our quantity of interest isc
and is a function ofa andb. Our task is to determine which higher fidelity modeling option,AHI or BHI , we should
incorporate next. According to (2), the optimal selection will be the subsystem for which we obtain the largest expected
variance reduction in the quantity of interest when the fidelity of that subsystem is incremented. For subsystemA, the
expected variance reduction is given as

R(M2 = {AHI , BLO}) = var(C|dM1)− E[var(C|dM2)], (13)

and the current amount of variance ofC that subsystemA is contributing is given as

Savar(C|dM1) =
∑

a⊆DA1

Savar(C|dM1). (14)

We know qualitatively thatAHI is of higher fidelity thanALO, and thus, we believe we will have a better estimate
of the quantitiesa. Therefore, we will achieve between 0 andSavar(C|dM1) reduction of variance by incorporating
choiceAHI next. We capture this by introducing a parameterαa, where0 ≤ αa ≤ 1, and writing the expected variance
reduction as

R(M2 = {AHI , BLO}) = αaSavar(C|dM1). (15)

Similarly, we may write the expected variance reduction whenBHI is incorporated next as

R(M2 = {ALO, BHI}) = αbSbvar(C|dM1), (16)

where0 ≤ αb ≤ 1. If αaSa > αbSb, then the expected variance reduction that would result from incorporatingAHI

is larger than that expected from incorporatingBHI . If we have information about the higher fidelity modeling options,
we can incorporate it by assigning distributions to theαa andαb terms. Assuming in this work that we have no further
information about the higher fidelity options, we assume thatαa = αb. Then at any stage in a multifidelity design or
analysis task, according to (2) and the restriction to incrementing one fidelity level at a time for one subsystem at a
time, the optimal policy is to increment the fidelity of the subsystem with the largest sensitivity index.
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3.4 Information Fusion

In complex system analysis and design processes it is typical to discard information gained from lower fidelity models
once information from higher fidelity models has been obtained. In the example of the previous subsection, once we
run, say,{AHI , BLO} the results from{ALO, BLO} may be discarded. Here we take a different approach and consider
fusing the information gained from every source. In the language of estimation theory, we view the outputs (with
associated model discrepancy) calculated from each modeling choice as measurements that can be used to estimate
the true output. That is, for each modelMi, we have a measurementZi|dMi

. Here we work with a single quantity
and note that the process developed here can be applied to all outputs of the models. We denote the true (unknown)
output asz∗. In order to obtain the best possible estimate ofz∗, we wish to use not just the last, but all of the possible
measurements,Z1|dMt

, Z2|dMt
, . . . , Zt|dMt

, where here we assume the input spaces for each modeling option are
the same to ensure we are fusing information for the same input configuration. How to deal with the situation where
the input spaces for the modeling choices differ is a topic of future work.

The information fusion takes place via a Bayesian updating process. Following [28], we treat the distribution
associated with the model outputs as a likelihood function and assume a diffuse uniform prior. Thus, our posterior
density ofz∗ given thet model measurements is

p(z∗|{Z1|dMt , Z2|dMt , . . . , Zt|dMt}) ∝ L(z∗ − z1|dMt , z
∗ − z2|dMt , . . . , z

∗ − zt|dMt), (17)

whereL(·, ·, . . . , ·) is the likelihood function. Since our model discrepancy procedure developed in Section 3.1 results
in normal distributions for each measurement, we may analytically update mean and variance information forz∗ as
new models are exercised. If our model discrepancy were quantified in a manner that resulted in arbitrary distributions,
then the posterior density would still be given by Eq. (17); however, this could result in the need for expensive
sampling-based procedures such as Markov chain Monte Carlo to obtain samples of the posterior. The specification
of an arbitrary joint distribution among dependent model discrepancies terms for several models would also be a
challenging task. Thus, here we assume our model discrepancy terms are always normally distributed. In the following
two paragraphs we demonstrate how this assumption allows us to update mean and variance information for two
cases. First, we consider the case of known correlation between models, and second, we consider the case of unknown
correlation between models.

Correlations in models of different fidelity levels are expected to exist because the same physics may be used to
model certain phenomena in different models and similar data sets may have been used to calibrate any empirical
aspects of the models. The correlation manifests itself in the discrepancy of each model output when compared to
reality. Given that similar physics and information are employed in some models, it is likely that the errors these
models make in estimating reality are correlated. If we assume the correlations are known from historical data, then
following [28] we may write the posterior forz∗ as

p(z∗|{Z1|dMt , Z2|dMt , . . . , Zt|dMt}) =
1√

2π var(Z∗)
exp

(
− (z∗ − E[Z∗])2

2 var(Z∗)

)
, (18)

where

E[Z∗] =
eT Σ−1z1:t

eT Σ−1e
(19)

var(Z∗) =
1

eT Σ−1e
, (20)

e = (1, . . . , 1)T , z1:t = [z1|dMt , z2|dMt , . . . , zt|dMt ]
T andΣ is the covariance matrix. Lettingσ2

i = var(Zi|dMt)
andρij be the correlation between modeling optionsi andj, the covariance matrix is written as

Σ =




σ2
1 ρ12σ1σ2 · · · ρ1tσ1σt

ρ21σ2σ1 σ2
2 · · · ρ2tσ2σt

...
...

. ..
...

ρt1σtσ1 ρt2σtσ2 · · · σ2
t
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To demonstrate this approach, assume we have outputs from two models that we wish to fuse,Z1|dM2 and
Z2|dM2 . Then the fused estimate,Z∗, is a normally distributed random variable with mean

E[Z∗] =
(σ2

2 − ρ12σ1σ2)z1|dM2 + (σ2
1 − ρ12σ1σ2)z2|dM2

σ2
1 + σ2

2 − 2ρ12σ1σ2
, (21)

and variance

var(Z∗) =
(1− ρ2

12)σ
2
1σ

2
2

σ2
1 + σ2

2 − 2ρ12σ1σ2
. (22)

Fused estimatesZ∗ are shown in Fig. 2 for several different correlation cases. The figure reveals how the Bayesian
update combines information and also demonstrates that accounting for correlations is critical. The top three plots
in the figure demonstrate how information from similar models is fused. On the far left, the models are assumed to
be uncorrelated and the updated estimate has smaller variance and an averaged mean from the two sources. As we
move to the right, the correlation between the information sources increases, which increases the variance of the fused
estimate (as can be seen by the diminished height of the probability density function) and pushes the fused estimate
in the direction of the information source with the lower model discrepancy. This can be seen clearly on the rightmost
plot, where the fused estimate is actually to the left of either of the two previous estimates. This can be explained
by considering that highly correlated estimates are more likely to both be on the same side of the true quantity (e.g.,
either both to the left or both to the right), and therefore the updating procedure pushes the new estimate toward the
information source in which we have the most confidence, since that estimate is more likely to be closer to the true
value of the quantity being estimated. The bottom three plots in Fig. 2 demonstrate how the higher fidelity model is
trusted more when one of the models is considerably more inadequate. On the far left, the models are again assumed
to be uncorrelated and the updated estimate is very nearly the same as the estimate from the higher fidelity information
source, though again, the variance of the combined estimate is less than either of the two previous estimates. As we
move to the right, the correlation between the sources of information increases, which again increases the variance of

FIG. 2: Examples of the resultant fused probability densities given two initial densities to be fused. The top three
plots fuse information from similar models while the bottom three plots fuse information from a high fidelity and low
fidelity model. The correlation between models is increasing from left to right in the figure.
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the fused estimate and pushes the fused estimate in the direction of the higher fidelity model estimate. However, for
this case, as we move to the far right plot and high correlation, instead of increasing, the variance of the fused estimate
actually decreases, as can be seen by the increased height of the probability density function of the fused estimate
as compared with the middle plot. This can be explained by considering that in this plot we have assumed a high
correlation between a high fidelity model and a very low fidelity model, which suggests that the adequacy of our low
fidelity model has been understated (since it is so highly correlated with a model in which we have great confidence),
and thus the low fidelity model is providing us with more information than its level of fidelity implies.

While it is likely that models are correlated, we may not know the covariance matrixΣ. For this situation, following
[28], we recommend assuming an inverse Wishart density as a prior forΣ,

p(Σ) ∝ |Σ−1|(δ+2t)/2 exp(−δtr[Σ−1Σ0]/2), (23)

whereΣ0 is a symmetric positive definite matrix constructed by using data fromδ sources (e.g., experts) that con-
tains initial estimates of the entries of the true covariance matrix. Assuming an inverse Wishart distribution for the
covariance results in a posterior density forz∗ of

p(z∗|{Z1|dMt
, Z2|dMt

, . . . , Zt|dMt
}) ∝

(
1 + (z∗ − E[Z∗])2

(δ + t− 3)var(Z∗)

)−(δ+t)/2

, (24)

where

E[Z∗] =
eT Σ−1

0 z1:t

eT Σ−1
0 e

(25)

var(Z∗) =
δ + (E[Z∗]− z1:t)T Σ−1

0 z1:t

(δ + t− 3)eΣ−1
0 e

. (26)

Under these assumptions, the posterior distribution ofz∗ is a Student’st-distribution withδ+t−1 degrees of freedom.

3.5 Algorithm

We now establish an algorithm for fidelity management and information synthesis that incorporates the tools of global
sensitivity analysis and model fusion. First, we select a modeling choice and design or analysis case to analyze. Next
we quantify the uncertainty in system outputs caused by model discrepancy of the component models employed in
the design or analysis process. Once this uncertainty is quantified, we fuse information from previously exercised
modeling options. We then use the fused estimates of the component outputs to estimate the quantity of interest and
the variance of the quantity of interest. Finally, we use global sensitivity analysis to identify key sources of variability
in our quantity of interest, which provides the basis for allocating resources to increase the fidelity levels of the most
significant contributors to that variability. The full procedure is given below in Algorithm 1, where we also assume
we have a quantity of interest variance constraint, which is used to stop the procedure when enough confidence is
achieved.

Algorithm 1: Following the selection of thetth modeling choice,Mt

1: Set the input case to analyzedMt (this could include a system analysis or a system optimization).
2: Quantify model discrepancy forMt.
3: Calculatezi|dMt for i = 1, . . . , t− 1.
4: Fuse output information from modeling choicesM1, . . . ,Mt to obtain fused estimateZ∗.
5: Estimate quantity of interest statistics,E[C|Z∗] and var(C|Z∗).
6: Check variance constraint satisfaction: If var(C|Z∗) ≤ κ, STOP.
7: Apportion output variance according to component contributions using global sensitivity analysis.
8: Increase model fidelity of the subsystem with the largest sensitivity index.
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The variance of a quantity of interestC results from uncertainty in model outputs. In our methodology, this
uncertainty is due to model discrepancy, which has been elicited from expert opinion. If untrustworthy information
is used in quantifying model discrepancy, then it is possible that the algorithm presented here for multifidelity model
management could lead to inappropriate model choices as a design or analysis process proceeds. This is due to the
sensitivity of the calculation of the senstivities indices on input uncertainties. How sensitive the sensitivity analysis
results are to incomplete or untrustworthy information in quantifying input uncertainties is problem specific. For
example, for some systems, a discipline may employ a model with a small amount of discrepancy but have a large
impact on a particular quantity of interest’s variance. In this case, small errors in the discrepancy quantification could
lead to large errors in the senstivity index estimates. It may also be the case that for some systems, a discipline employs
a model with a large amount of discrepancy but has a negligible impact on the variance of a quantity of interest. In
this case, errors in the quantification of discrepancy will not have a large impact on the sensitivity index estimates.
The main situation of concern is the case where two disciplines have similar sensitivity indices. Here one needs to be
careful because errors in discrepancy estimates could lead to either of the disciplines having the true larger sensitivity
index. In this case, incrementing the fidelity of both disciplines may be the most reasonable course of action. If only
one discipline may be incremented at a time, then incrementing the more convenient discipline (in terms of model
availability, execution time, etc.) is recommended.

4. APPLICATION TO MULTIDISCIPLINARY DESIGN OPTIMIZATION

Our approach is applicable in many settings. Here we show how it can be used to manage models and reduce risk
for engineering design decisions. In particular, we focus on a multidisciplinary design optimization (MDO) problem
for conceptual (early stage) design. To demonstrate our approach in the MDO context, a wing-sizing problem that
could be encountered in the early conceptual design phase of a high altitude, long endurance (HALE) unmanned
aerial vehicle (UAV) is considered. Section 4.1 provides background on multifidelity MDO. The design problem is
discussed in Section 4.2 and the results are presented in step-by-step fashion in Section 4.3. For purposes of this
demonstration, we assume that the outputs of the disciplinary models are all pairwise independent.

4.1 Multifidelity MDO

MDO is a tool that has been used successfully throughout design processes to enable improvements in the perfor-
mance of aerospace vehicles, ground vehicles, electrical circuits, computers, and many other products. For example,
in the case of an aerospace vehicle, by simultaneously considering the effects of aerodynamics, structures, and con-
trols, MDO can achieve substantially improved performance in metrics such as minimum weight, maximum range,
minimum fuel use, etc. It is often the case that the many different disciplines represented in an MDO process will
each have several different modeling options available for use. Each of these options is likely to have different levels
of computational cost and model fidelity. Multifidelity optimization methods seek to combine performance estimates
from the different modeling options, often striving to use inexpensive lower fidelity analyses to accelerate convergence
toward the optimum of a high-fidelity design problem.

In existing multifidelity optimization methods, it is common to treat the models as a hierarchy and replace or
calibrate low-fidelity information with high-fidelity results [29–35]. For example, Refs. [29] and [30], employ a trust-
region based model-management method by scaling or shifting the gradients of the low-fidelity objective function and
constraints to match those of a high-fidelity model. In cases where gradients are not available, calibration techniques
such as efficient global optimization [31] and surrogate management framework [32] are often employed.

Here we follow our methodology for managing and fusing information from multifidelity models developed in
Section 3. Our proposed approach to managing and fusing information leads to a new view of multifidelity MDO.
In our approach, rather than treat the models as a hierarchy, we treat the models as individual information sources.
By endowing each model with uncertainty in the form of model discrepancy, we are able to maintain confidence
in estimates from each model and fuse these estimates rather discard information from lower fidelity models. To
implement our methodology in the MDO context, Step 1 of Algorithm 1 becomes the solution of a deterministic
MDO problem,

Volume 4, Number 1, 2014



12 Allaire & Willcox

min
dMt

c|dMt ,Mt

s.t. h(dMt
) = 0,

g(dMt
) ≤ 0,

dMt ∈ DMt ,

(27)

whereh andg are sets of equality and inequality design constraints, respectively, andDMt
is the set of allowable

values of the design variables. The solution of this MDO problem provides us with a designd∗ that minimizes
the objective function and satisfies the constraints for the current modeling choiceMt. This step can potentially
be carried out with a number of different MDO techniques, such as all-at-once, individual discipline feasible [36],
multiple discipline feasible [37], bilevel integrated system synthesis [38], concurrent subspace optimization [39],
and analytical target cascading [40]. We leave the decision of how to solve the deterministic MDO problem to the
practitioner.

4.2 Wing-Sizing Problem Description

The objective of the conceptual design of the HALE vehicle is to minimizec, the mass of fuel used for a fixed range
mission in cruise conditions. The design variablesd, are the wing spanb, and the aspect ratio AR, which impact both
the aircraft takeoff mass and the lift-to-drag ratio. The component outputsz are the lift and drag coefficients (CL

andCD respectively) and takeoff mass (mTO). The Breguet range equation calculates the quantity of interest, which
here is the mass of fuel used for a fixed range mission. The inputs, outputs, and quantity of interest are summarized
in Table 1. The calculation of the lift and drag coefficients and the takeoff mass involves modeling the aerodynamic
and structural components of the design. For this problem we have two different models for each discipline, which
represent two levels of fidelity for each. These models are referred to as the low- and medium-fidelity aerodynamics
and the low- and medium-fidelity structures models.

Both the low- and medium-fidelity aerodynamics models have the same inputs and are used to compute the lift and
drag coefficients of the vehicle; that is,zaero= [CL, CD]. The low-fidelity aerodynamics module assumes a constant
value for the coefficient of lift of 0.6, which is representative of typical HALE wing profiles. The medium-fidelity
model uses a more advanced technique to compute the coefficient of lift based on lifting line theory [41]. The drag
coefficient is calculated in both models as the sum of wing friction, profile, and induced drag multiplied by a factor of
1.3 to account for fuselage and empennage drag. These drag components are calculated using the methods found in
[42].

Both the low- and medium-fidelity structures models also have the same inputs and are used to compute the
takeoff mass of the vehicle; that iszstructures= [mTO] The low-fidelity model assumes a rectangular wing, while the
medium-fidelity model assumes an elliptical wing. For both models, the takeoff mass is the sum of the aircraft body
mass without the wing (a fixed parameter), the wing mass, and the fuel mass at takeoff. The fuel volume is assumed
to be 50% of the wing volume. The mass of the wing is calculated by sizing the cap and web of the wing’s structural
box beam to sustain the shear force and bending moment of the wing, which are both functions of the load factor and
the aircraft body weight and were calculated using the methods presented in [43].

TABLE 1: Inputs, component outputs, and quantity of interest
for the wing-sizing problem

Methodology quantity Wing-sizing problem quantity
d [ AR, b]T

zaero [CL, CD]T

zstructures [mTO]

c Mass of fuel used
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4.3 Results

Algorithm 1 is applied to the wing-sizing problem defined in the previous subsection. The results are discussed here
on a step-by-step basis through each iteration of the algorithm. As an example, the design goal is taken to be reducing
the variance of the quantity of interest estimate to an acceptable level. Here we define an acceptable level to be 50,000
kg2.

Iteration 1; M1 = {low-fidelity aerodynamics, low-fidelity structures}
Step 1. The first step in the algorithm in the context of MDO is solving the optimization problem using the lowest
fidelity models for both the aerodynamics and structures disciplines. In this work we used an all-at-once formulation
solved using sequential quadratic programming. Solving this optimization problem provides us with the design case
(inputs) we wish to analyze. Thus, we minimize the mass of fuel used subject to the low-fidelity aerodynamics and
structures models, which we denote byM1, over the possible values of the aspect ratio and span of the wing. The
results of this optimization are given in Table 2.

Step 2. The next step is to quantify model discrepancy forM1 so that we may assess the variance in the quantity of
interest estimate. Our expert stated the low-fidelity aerodynamics and low-fidelity structures models could produce
estimates of their respective disciplinary outputs within±15% of their true values given the design variables. Here it
should be noted that multiple outputs from the same discipline (e.g.,CL andCD from the aerodynamics model) are
not required to have the same model discrepancy. The method of mapping this model discrepancy information to a
probability distribution discussed in Section 3.1 is used to establish conservative maximum entropy distributions for
each disciplinary output as

CL ∼ N (0.6, 0.0081), (28)

CD ∼ N (0.0166, 6.22× 10−6), (29)

mTO ∼ N (8884, 1.78× 106), (30)

which are shown graphically in Fig. 3.

Step 3 and Step 4. These steps of the process are only necessary if more than one model has been used for a given
discipline. Since this is the first pass through the algorithm, only one model has been used for both aerodynamics and
structures, and thus these steps are unnecessary at this point.

Step 5 and Step 6. For this demonstration, Monte Carlo simulation is used to propagate disciplinary output un-
certainty to the quantity of interest estimate, though other techniques, such as using generalized polynomial chaos
expansions [44] and quasi-Monte Carlo [45] could also have been used. The Monte Carlo simulation is used to pro-
vide samples of the quantity of interest given samples of the discrepancy terms, which are added to the disciplinary
outputs of the modeling choice employed. Thus, only one run of each modeling choice is required. The calculation of

TABLE 2: Results of Step 1 of the algorithm for
the low-fidelity aerodynamics and low-fidelity
structures models

Variable Deterministic estimate
AR 26.98
b 34.99 m

CL 0.600
CD 0.0166

mTO 8884 kg
Mass of fuel used 3544 kg
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FIG. 3: Maximum entropy distributions of disciplinary outputs derived from model discrepancy information forM1

andM2. The aerodynamics estimates fromM1 andM2 have been fused with the procedure developed in Section 3.4.
TheM1 andM2 structures estimates are identical and are thus not fused.

the quantity of interest for this demonstration requires a negligible amount of time to complete once the disciplinary
models have been executed, and thus many thousands of samples could be had cheaply. We assumed convergence
when the variance of the quantity of interest and the global sensitivity indices varied less than one percent when 1000
new samples are added. Given this method, the mean of the mass of fuel used when estimated with the low-fidelity
aerodynamics and low-fidelity structures models is 3540 kg. The variance of the mass of fuel used is 325,280 kg2.
The variance calculated using the low-fidelity models for both aerodynamics and structures disciplines is greater than
the variance constraint of 50,000 kg2. Thus, we continue the algorithm.

Step 7 and Step 8. Since the variance constraint is not satisfied, it is necessary to apportion the variance between
the aerodynamics and structures disciplines to determine which discipline is responsible for most of the variation in
the quantity of interest. This is accomplished using global sensitivity analysis discussed in Section 3.2. The analysis
reveals that about 66% of the variance is caused by the aerodynamics model, with the remaining 34% being caused
by the structures model. This is shown in Fig. 4.

Given the results of the variance apportionment, the aerodynamics model is responsible for more of the variance
of the quantity of interest and thus the fidelity of the model for the aerodynamics discipline should be increased.

Iteration 2; M2 = {medium-fidelity aerodynamics, low-fidelity structures}

Step 1. With the medium-fidelity aerodynamics and low-fidelity structures models in place (denoted byM2), the
optimization problem is solved again. The results of this optimization are given in Table 3.

Step 2. After the optimization problem is solved, the next step is to quantify model discrepancy forM2 so that
we may assess the variance in the quantity of interest estimate. Our expert stated the medium-fidelity aerodynamics
model could produce estimates ofCL andCD within ±10% and±5%, respectively, of their true values given the
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66%

34%

 

 

Aerodynamics

Structures

FIG. 4: Quantity of interest variance apportionment between the aerodynamics and structures disciplines for the
low-fidelity aerodynamics and low-fidelity structures models.

TABLE 3: Results of Step 1 of the algorithm
for the medium-fidelity aerodynamics and low-
fidelity structures models

Variable Deterministic estimate
AR 20.90
b 29.18 m

CL 0.502
CD 0.0163

mTO 8484 kg
Mass of fuel used 3490 kg

design variables. The method of mapping this model discrepancy information to a probability distribution discussed
in Section 3.1 is again used to establish conservative maximum entropy distributions forCL, CD, and mTO as

CL ∼ N (0.502, 0.0025), (31)

CD ∼ N (0.0163, 6.61× 10−7), (32)

mTO ∼ N (8484, 1.62× 106). (33)

Note the takeoff mass distribution has changed as a result of different optimum design variables. These distributions
are shown graphically in Fig. 3.

Step 3. The third step of the algorithm involves calculating the disciplinary outputs for previously used models using
the current optimum values of the design variables. Thus, the lift and drag coefficients must be computed using the
low-fidelity aerodynamics model with the design variables set to the values given in Table 3. This results in a lift
coefficient of 0.6 and a drag coefficient of 0.0185.

Step 4. Given there are now two estimates of both the lift and drag coefficients (a low- and medium-fidelity estimate
for each), the next step is to fuse this information together using the procedure developed in Section 3.4 to obtain a
better estimate of these disciplinary outputs. For this demonstration, we assume that all models are uncorrelated. This
results in the following new estimates of the distributions ofCL andCD:

CL ∼ N (0.525, 0.0019), (34)

CD ∼ N (0.0165, 6.09× 10−7). (35)
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These fused distributions are shown in Fig. 3.

Step 5 and Step 6. Using Monte Carlo simulation the mean of the mass of fuel used when estimated with the fused
aerodynamics and low-fidelity structures models is 3456 kg. The variance of the mass of fuel used is 138,370 kg2.
The variance calculated using the fused aerodynamics models and the low-fidelity structures model is greater than the
variance constraint of 50,000 kg2. Thus, we continue the algorithm.

Step 7 and Step 8. Since the variance constraint is not satisfied, it is once again necessary to apportion the variance
between the aerodynamics and structures disciplines to determine which discipline is responsible for most of the
variation in the quantity of interest estimate. The analysis revealed that about 25% of the remaining variance is caused
by the aerodynamics discipline, while 75% is caused by the structures discipline. This is shown in Fig. 5.

Given the results of the variance apportionment, the structures model is now responsible for more of the variance
of the quantity of interest estimate and thus the fidelity of the structures model should be increased.

Iteration 3; M3 = {medium-fidelity aerodynamics, medium-fidelity structures}

Step 1. With the medium-fidelity aerodynamics and medium-fidelity structures models in place (denoted byM3), the
optimization problem is solved again. The results of this optimization are given in Table 4.

Step 2. With the optimization problem solved, the next step is to quantify model discrepancy forM3 so that we may
once again assess the variance in the quantity of interest estimate. Our expert stated the medium-fidelity structures

25%

75%

Aerodynamics

Structures

FIG. 5: Quantity of interest estimate variance apportionment between the aerodynamics and structures disciplines for
the fused aerodynamics and low-fidelity structures models.

TABLE 4: Results of Step 1 of the algorithm for
the medium-fidelity aerodynamics and medium-
fidelity structures models.

Variable Deterministic estimate
AR 19.34
b 27.99 m

CL 0.497
CD 0.0166

mTO 8,464 kg
Mass of fuel used 3,539 kg
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model could produce an estimate of takeoff mass within±5% of its true values given the design variables. The method
of mapping this model discrepancy information to a probability distribution discussed in Section 3.1 is again used to
establish conservative maximum entropy distributions forCL, CD, and mTO as

CL ∼ N (0.497, 0.0025), (36)

CD ∼ N (0.0166, 6.87× 10−7), (37)

mTO ∼ N (8464, 1.79× 105). (38)

Note the lift and drag coefficient distributions have changed as a result of different optimum design variables. These
distributions are shown graphically in Fig. 6.

Step 3. In order to fuse the low- and medium disciplinary output estimates from both the aerodynamics and structures
disciplines, the disciplinary outputs for the low-fidelity models must be computed using the current optimum values
of the design variables. The low-fidelity disciplinary outputs of the aerodynamics model using the current optimum
design variables areCL = 0.6 andCD = 0.0191. The low-fidelity disciplinary output of the structures model using
the current optimum design variables is mTO = 8287 kg.

Step 4. Given there are now two estimates of all of the disciplinary outputs, the next step is to fuse this information
together using the approach discussed in Section 3.4 to obtain better estimates. This results in the following new
estimates of the distributions ofCL, CD, and mTO:

CL ∼ N (0.521, 0.0019), (39)

CD ∼ N (0.0168, 6.34× 10−7), (40)

mTO ∼ N (8446, 1.61× 105). (41)

FIG. 6: Maximum entropy distributions of disciplinary outputs derived from model discrepancy information forM1

andM3. The estimates fromM1 andM3 have been fused with the procedure developed in Section 3.4.
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These distributions are shown in Fig. 6, along with the previous estimates of the respective distributions.

Step 5 and Step 6. Using Monte Carlo simulation, the mean of the mass of fuel used when estimated with the fused
aerodynamics and structures models is 3517 kg. The variance of the mass of fuel used is 39,014 kg2. This variance is
less than the variance constraint of 50,000 kg2. Thus, we exit the algorithm.

The MDO problem we have considered here could be encountered in the early conceptual phases of a high altitude,
long endurance aerospace vehicle. Application of the approach to this design problem results in risk mitigation in the
form of an 88% reduction in the initial variance of the quantity of interest estimate. This is achieved via a systematic
means of fusing information from various models and managing model fidelity throughout the design process through
the application of the powerful tools of Bayesian inference and global sensitivity analysis.

5. CONCLUSIONS

Model discrepancy poses a serious risk to the critical decisions made using the outputs of computer models that sup-
port analysis and design. In many cases, achieving truly high-fidelity simulation capabilities may be unachievable;
instead, we must accept the inadequacy of our models and invest in strategies to account for it. The methodology pro-
posed here is a first step in this direction, using a probabilistic approach to endow all analysis models with quantified
uncertainties. These uncertainties are explicitly maintained and propagated through the design and synthesis process,
resulting in quantified uncertainties on the output estimates of quantities of interest. These output uncertainties pro-
vide rigorous guidance to manage multifidelity models, through identification of particular disciplines or subsystems
that contribute unacceptably high levels of uncertainty, and also provide design/analysis risk assessment, through
quantified uncertainty bands on simulation outputs. The proposed global sensitivity analysis approach to identifying
contributors to output variance is broadly applicable, while the proposed approaches to represent model discrepancy
and to fuse multifidelity information are limited to Gaussian distributions of uncertainty in model component outputs.
Extending these approaches to handle more general distributions is an important area of future work.
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