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In this paper, we offer a short overview of a number of methods that have been reported in the computational-mechanics
literature for quantifying uncertainties in engineering applications. Within a probabilistic framework, we describe
the characterization of uncertainties using mathematical statistics methods, the propagation of uncertainties through
computational models using either Monte Carlo sampling or stochastic expansion methods, and the sensitivity analysis
of uncertainties using variance- and differentiation-based methods. We restrict our attention to nonintrusive methods
that can be implemented as wrappers around existing computer programs, thus requiring no modification of the source
code. We include some recent advances in the propagation and sensitivity analysis of uncertainties that are characterized
by arbitrary probability distributions that may exhibit statistical dependence. Finally, we demonstrate the methods
integrated in the proposed overview through a nonlinear engineering application relevant to metal forming.

KEY WORDS: uncertainty quantification, stochastic modeling, representation of uncertainty, Monte
Carlo, polynomial chaos, stochastic response surface method, stochastic sensitivity analysis

1. INTRODUCTION

Advances in sensing technologies, physical modeling, and high-performance computing are profoundly changing
the synergistic integration of experiments, physical understanding, and computation into predictive simulations that
support scientific discovery and engineering. Chief among these changes is the increasingly central role attributed to
the acknowledgment and examinationexiperimental, modeling, and computational limitatidhat are inevitably

present in attempts to simulate complex natural and engineered systems. The field of uncertainty quantification seeks
to establish theory, methods, and computer programs for the characterization, propagation, and management of the
ensuingparametric uncertainties, modeling errors, and computational erimogredictive simulations.

A number of frameworks are available for uncertainty quantification, such as those based on fuzzy-set theory,
interval theory, evidence theory, and probability theory. Here, we adopt a framework based on probability theory,
which facilitates a unified treatment of parametric uncertainties and modeling errors.

The first step in a probabilistic uncertainty quantification most often involves the use of mathematical statistics
methods tacharacterizethe uncertain features associated with the model under study as one or more random vari-
ables, random fields, random matrices, or random operators. The second step is to use the proplagédethis
characterization of inputs into a characterization of predictions. This can be achieved in several ways, for example,
using either Monte Carlo sampling or stochastic expansion methods. The latter methods most often involve character-
izing the predictions as a polynomial chaos expansion. Several approaches are available to calculate the coefficients
in this expansion, for example, embedded projection, nonintrusive projection, and interpolatory collocation. Lastly,
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the third step involves making the probabilistic model useful in the analysis and design of the natural or engineered
system under study, for example, by carrying sensitivity analyset® enable the reduction of uncertainties, by using
decision-theoretic methods to validate the analysis [1], or by using optimization methods to improve the design [2].

In this paper, we draw together a number of methods reported in the computational-mechanics literature for the
characterization, propagation, and sensitivity analysis of uncertainties. We restrict our attention to methods that afford
a nonintrusive implementation, that is, they can be applied as wrappers around existing computer programs without
requiring modification of the source code. We include recent advances in the propagation and sensitivity analysis
of uncertainties characterized by arbitrary probability distributions that may exhibit statistical dependence. We show
that these recent advances afford significant simplification of the construction of polynomial chaos expansions by
bypassing the need to revert to underlying statistically independent Gaussian or other “labeled” random variables.

This paper is self-contained in that we define most quantities and concepts when they first appear and we provide
enough details relevant to the implementation of the framework.

We do not intend this paper to be an exhaustive account of all the methods available for quantifying uncertainty.
Rather, we describe in detail a limited set of representative methods to illuminate key features and discern links
between the characterization, propagation, and sensitivity analysis steps in a probabilistic uncertainty quantification.

The remainder of this paper is organized as follows. In Section 2, we briefly discuss our system of notation. Next,
in Section 3, we outline a model problem, and in Sections 4, 5, and 6, we present the proposed overview of methods
for the characterization, propagation, and sensitivity analysis of uncertainties, respectively. Subsequently, in Section 7,
we provide implementation details, and finally, in Sections 8 and 9, we provide an illustration with numerical results.

2. NOTATION
In this paper, we use the following system of notation:
e A lowercase letter, for example, is a real deterministic variable.
e A boldface lowercase letter, for exampée= (z1, ..., z,,), is a real deterministic vector.
e An uppercase letter, for exampl¥, is a real random variable.
¢ Aboldface uppercase letter, for exampké,= (X, ..., X,,), is a real random vector.
e An uppercase letter enclosed between square brackets, for exfjple,a real deterministic matrix.

e A boldface uppercase letter enclosed between square brackets, for exatipilea real random matrix.

3. MODEL PROBLEM

In applications in computational mechanics, models are built to understand and predict the behavior and evolution of
complex natural and engineered systems. These models are implemented in more and more sophisticated computer
programs. Often, an implementation of a model in a computer program—which we term, hereaftapgational
modet—exhibits certain features that may be considered uncertain. The objective of uncertainty quantification lies
in the characterization, propagation, and sensitivity analysis of these uncertainties, ultimately allowing quantitative
statements about, and some insight into, the impact that these uncertainties have on predictions. This uncertainty
guantification may serve to guide the allocation of resources aimed at reducing uncertainties or constitute an essential
prerequisite to model validation or design optimization in the presence of uncertainties, among other purposes.

In this paper, we think of a computational model as a (possibly nonlinear) mapping of a set of input variables into
a quantity of interest. Correspondingly, we consider the nonlinear mapping

y:g(xla"'axm)v g:R7n_>R7 (l)

whereg is the computational modet, = (x4, . .., z,,) the input variables, angdthe quantity of interest
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In this paper, without loss of generality, we assume the quantity of interest to be scalar. We note that although
easily obtained, we do not consider the extension to a vector-valued quantity of interest for the sake of simplicity
of notation and interpretation. Please note that when a vector-valued quantity of interest is considered, an analysis
that treats all its components simultaneously can often provide a more informative uncertainty quantification than an
analysis that treats these components separately and thus misses information about their mutual dependence [3].

For example, if the computational model were a finite element model for the mechanical deformation of a structure,
the input variables could be parameters involved in the description of the geometry, the boundary conditions, and the
material properties, and the quantity of interest could concern a displacement component at a prescribed location.

We assume that the uncertainties that affect the computational model can be associated with uncertainties in the
input variables or a subset of these input variables, which we term, hereaftanaéeain input variablesWe will
comment on the generality of this assumption in Section 4.1. Then, the objective lies in the characterization of the
uncertainties in the uncertain input variables, the propagation of these uncertainties through the computational model,
and the sensitivity analysis of these uncertainties to allow some insight into their impact on the quantity of interest.

4. CHARACTERIZATION OF UNCERTAINTIES
4.1 Types of probabilistic approach

Within the probabilistic framework, several approaches are available for introducing uncertainties into computational
models. Common approaches include the following ones:

(i) Parametric approachegefer, for example, to [4-8]) are adequate when the uncertain features of the compu-
tational model can be associated with uncertainties in some or all of its parameters. Parametric approaches
consider parameters to be geometrical characteristics, boundary conditions, loadings, physical or mechanical
properties, or any combination of these. Parametric approaches involve the characterization of some or all pa-
rameters as random variables, stochastic processes, or both.

(i) By contrasthonparametric approachesre adequate when the uncertain features of the computational model
cannot be associated with uncertainties in some or all of the parameters. Such can be the case, for example,
when the uncertainties consist of modeling errors, that is, when the uncertainties stem from various modeling
assumptions and simplifications whose impact on the quantity of interest is incompletely known. A nonpara-
metric approach is an approach that involves the direct characterization of the computational model as a random
model without recourse to a characterization of its parameters as random variables, stochastic processes, or both.
For example, in structural dynamics, a class of nonparametric models was obtained in [9] by characterizing the
reduced matrices of (a sequence of) reduced-order models as random matrices.

(iif) Output-prediction-error approachésvolve adding a random noise term to the quantity of interest [10-12].

(iv) Generalized approachemwe hybrid approaches that couple parametric and nonparametric approaches. For ex-
ample, in structural dynamics, a class of generalized models was obtained in [13, 14] by taking into account
parametric uncertainties using the parametric approach and modeling errors using the nonparametric approach.

Throughout this paper, the reader may find it easiest to interpret the model problem in the context of a parametric
approach, that is, to think of the uncertain input variables (x4, ..., z,,) as geometrical characteristics, boundary
conditions, loadings, physical or mechanical properties, or any combination of these and of the computational model
as providing a mapping from these uncertain input variables to the quantity of injelNestertheless, we note that the
model problem affords a level of abstraction that also allows these uncertain input variables to be the entries of reduced
matrices and values taken by noise terms. Owing to this level of abstraction, the discussion of the characterization,
propagation, and sensitivity analysis steps to follow is very general, and it indeed applies to parametric, nonparametric,
output-prediction-error, and generalized approaches alike.
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4.2 Types of Probabilistic Characterization

The characterization of the uncertain input variables as a random vaXabte (X7, ..., X,,) with values inR™
requires the characterization of the probability distribution of this random variable:
Px = Pix,,.. x.) (2)

By the probability distribution Px of a random variableX with values inR™, probability theory understands a
function that assigns, to any meaningful suliseff R™, theprobability Px (B3) that the value taken hiX is in B.

We recall that the characterization of the uncertain input variables as a random variable with a certain probability
distribution is very general and allows this random variable to be discrete, continuous, or a combination of these. By
adiscrete random variabl&X with values inR™, probability theory understands a random variaKldghat can take
only specific values from a finite or listable subsef®f. By a continuous random variabl&X with values inR™,
probability theory understands a random varialethat may take any value in a subset (or set of subset®)’bf
and whose probability distributiofPx admits aprobability density functiopx, that is, a functiorpx from R™
into R™ = [0, 400 such thatPx (B) = [, px (x)da for any meaningful subsé of R™.

Further, we recall that probability theory provides varigtettistical descriptors-such as moments, cumulants,
and quantiles—that can be deduced from a given probability distribution. The best-known statistical descriptors are
themean vectorn x and thecovariance matri¥C'x| given bymx = me xdPx and[Cx| = me (x—mx)(x—
mx)TdPx assuming these integrals are bounded; otherwise, the mean vector and the covariance matrix do not
exist. When the random variabl is continuous, the expressions ferx and[Cx] (if they exist) read asnx =
Jam Tox (z)dz and[Cx] = [ (x — mx)(x — mx) px (x)de.

Two characterizations of the required probability distributié are most often encountered:

(i) The first type involves the direct characterizationfof. Specifically, a characterization of this type is most
often obtained by selecting a probability distribution that depends on a finite humber of parameters and then
assigning adequate values to these parameters. For example, if a Gaussian probability distribution was selected
and adequate values assigned to its mean and variance, a characterization of this first type would be obtained.

On the one hand, the parameter-dependent probability distribution can be selectéabated” probability
distribution that depends on only a small number of parameters, for example, by selecting it as a Gaussian or
uniform probability distribution. On the other hand, it can be obtained by expressing the required probability
distribution in a versatile manner as a function of a very large number of parameters, for example, by selecting it
as a mixture model [15]. We note that catalogs of available “labeled” probability distributions can be found, for
example, in [16]; if an adequate “labeled” probability distribution is not available, the possibility of constructing

a new, adequate probability distribution can be considered using, for example, the maximum entropy principle,
limit theorems, or coarse graining or other approaches.

(i) The second type involves an indirect characterization of the required probability distriliegiohis type
relies on the fact that the probability distribution of a random variable changes when this random variable is
transformed under a (possibly nonlinear) mapping. A characterization of the second type is most often obtained
by fixing the probability distributionPs of a random variabl& = (=, ...,=,) with values inR? and then
characterizing the uncertain input variables as a transform&ioa f(Z) of = under a (possibly nonlinear)
mappingf from R? to R™, thus implying the probability distributiox as the image oPz underf. By the
image Px of Pz under f, probability theory understands the probability distributi®g that assigns, to any
meaningful subseB of R™, the probabilityPx (B) = P=({§ € R? : f(&) € B}).

The probability distributionPz of the random variabl& with values inR¢ is most often fixed as a uniform,
Gaussian, or other “labeled” probability distribution. The mappfrig most often obtained by selecting a map-

ping that depends on a finite number of parameters and then assigning adequate values to these parameters.
As in the first approach, a parameter-dependent mapping can be obtained either by selecting a “labeled” map-
ping that depends on only a small number of parameters [6, 17] or by expressing the required mapping in a
versatile manner as a function of a very large number of parameters, for example, by expressing the required
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mapping as a high-order polynomial [18—-22]. We note Bateed not have as many componentsXgshat is,
d may be smaller tham, thus indicating the usefulness of this second type of characterization in obtaining a
reduced-dimensional characterization of the uncertain input variables [6, 17].

These two types of characterization are strongly interrelated. From a theoretical point of view, under certain con-
ditions, either one can be converted into the other using, for example, the Rosenblatt transformation [23]. From a
computational point of view, the literature on random number generation provides generators for many (possibly mul-
tivariate) probability distributions (refer, for example, to [24]) g&neratoris a method for computing an ensemble
of samples from a given probability distribution starting from an ensemble of samples from a (possibly multivari-
ate) uniform, Gaussian, or other “labeled” probability distribution. A generator most often computes each sample
for the given probability distribution by transforming each corresponding sample for the uniform, Gaussian, or other
“labeled” probability distribution through an appropriate mapping. Thus, by identifying the given probability distri-
bution with Px, the uniform, Gaussian, or other “labeled” probability distribution with, and the mapping witlf,

a generator provides, for a characterization of the first type, an equivalent characterization of the second type.

4.3 Types of Interpretation of Probability

The following two types of interpretation of probability are most often encountered:

(i) The first type involves the well-known interpretation of probability as describangbility or, equivalently, as
referring to a frequency of occurrence.

(i) The second type involves the interpretation of probability as describétgta of (possibly incomplete) knowl-
edge construing high probabilities as descriptors of possibilities that are most strongly indicated by this state
of knowledge and lower probabilities as descriptors of less plausible alternatives. The interpretation of proba-
bility as describing a state of knowledge allows probability theory to be developed as a logical framework for
inference and decision making in the presence of incomplete knowledge and missing information.

4.4 Types of Available Information

In applications in computational mechanics, #vailable informatior—from which the characterization of the uncer-
tain input variables must be inferred—maost often consists of the following sources of information:

(i) First,dataare most often available either in the form of results obtained from newly conducted real experiments
or in the form of higher-fidelity computational models.

(i) Next, in most applications in computational mechanics, there are mechanical and physical laws that apply to
the natural or engineered system under consideration. Most often, the applicable lawsnmepbaeical and
physical constraintghat restrict the values that the uncertain input variables may take. Examples include posi-
tiveness and symmetry constraints imposed on mechanical properties involved in the description of the consti-
tutive behavior of materials [17, 25] and positiveness, symmetry, stability, and causality constraints imposed on
reduced matrices and other features of reduced-order models for the dynamical behavior of structures and other
systems [8, 9, 26—31]. These constraints act as sources of information when a characterization of the uncertain
input variables of a computational model is being inferred because in order to be consistent with the applicable
mechanical and physical laws, this characterization of these uncertain input variables must assign a vanishing
probability to those values of these uncertain input variables that do not satisfy these constraints.

A frequently encountered example is that mechanics and physics require Young’s modulus—a mechanical prop-
erty involved in the description of linearly elastic isotropic constitutive behavior of materials—to be positive;
thus, in order for a characterization of an uncertain Young modulus to be consistent with mechanics and physics,
it must assign a vanishing probability to negative values of this Young modulus.
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(ii) Variousother sources of informationan also contribute to the available information, for example, previous
studies of the computional-mechanics application under consideration. The combined information provided by
the mechanical and physical constraints and these other sources of information is often referredpoias the
information[19, 20, 22, 32-38].

Even though they are of a different nature than the sources of information mentioned previously, the following
considerations may also play a role in obtaining the characterization of the uncertain input variables:

(iv) Itis desirable that the characterization of the uncertain input variables provides a context that allows the subse-
guent propagation and sensitivity analysis steps to be implemented efficiently and in a manner wherein compu-
tational errors are amenable to analysis and can be decreased by expending a higher computational effort.

(v) Itis desirable that the characterization of the uncertain input variables is parameterized so as to allow those of
its features to be varied with respect to which informative sensitivity analyses can be conducted.

4.5 Characterization Using Mathematical Statistics Methods

The previous sections indicate that probability theory provides significant freedom as to the type of input variables in
which uncertainties can be introduced (Section 4.1), the type of characterization that can be adopted for the uncertain
input variables (Section 4.2), and the type of interpretation that can be conferred on probabilities (Section 4.3). Corre-
spondingly, research in computational mechanics has yielded many methods for the characterization of uncertainties,
each one conforming to some interpretation and allowing some characterization of uncertain input variables to be de-
duced from available information. Providing an exhaustive account of all available methods and listing yet-unfinished
ones is beyond the scope of this paper; instead, we confine ourselves to a succinct presentation of some of the funda-
mental methods involving an interplay between modeling considerations and mathematical statistics methods:

(i) In an application wherein probabilities are held to refer to variability, so called “frequentist” mathematical
statistics methods (refer, for example, to [39, 40]) can be applied as follows:

(i.1)

(i.2)

When a very large amount of data is available, in addition to physical and mechanical constraints, one of

the previously mentioned versatile characterizations involving a very large number of parameters can be
selected. Adequate values for this very large number of parameters can then be inferred from the very large
amount of data using, for example, the kernel density estimation method [39], which can use coordinate

transformations or local bandwidth adaptations to account for mechanical and physical constraints.

When only a small amount of data is available, in addition to physical and mechanical constraints, the
information contained in the data may be too vague to allow a very large number of parameters to be
accurately inferred. Then, a “labeled” characterization involving only a small number of parameters can
be selected, for example, from one of the available catalogs [16], and adequate values for these parameters
can be inferred from the data using, for example, the method of maximum likelihood [40], which is an
often used parameter-estimation method from “frequentist” mathematical statistics.

Care should be taken to select a “labeled” characterization that is consistent with the mechanical and phys-
ical constraints; for example, the Gaussian probability distribution should not be selected to characterize
an uncertain Young modulus because its support is the whole real line and its selection would thus lead to
the assignment of a nonvanishing probability to negative values of this Young modulus. If no adequate “la-
beled” characterization is available, the possibility of constructing a new, adequate one can be considered
using, for example, the maximum entropy principle, which allows mechanical and physical constraints to
be explicitly taken into account, or limit theorems, coarse graining, or other approaches.

(i) By contrast, in an application wherein probabilities are held to describe a state of knowledge, Bayesian math-
ematical statistics methods (refer, for example, to [19, 20, 22, 32-38]) can be applied. These involve an initial
encoding of all the available information except for newly available data—that is, the mechanical and physical
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constraints in addition to the other sources of information mentioned previously—miwr grobability distri-
bution This prior probability distribution is then updated by accounting for newly available data in accordance
with Bayes'’s rule to obtain posterior probability distribution

4.6 Characterization of Uncertainties in High-Dimensional Problems

The characterization of uncertainties is especially challenging in high-dimensional problems, that is, when the number
of uncertain input variables is large. In fact, when a probabilistic characterization must be inferred for a large number
of uncertain input variables, one of the most significant challenges is in constructing this probabilistic characterization
in a manner that is consistent with the applicable mechanical and physical constraints. Thus, in recent years, the focus
of much research has been on investigating how this characterization can be effected—using mathematical statistics
methods such as those that rely on the maximum entropy principle—in a manner that allows mechanical and physical
constraints to be explicitly taken into account. Please refer to [17, 25] for examples of positiveness and symmetry
constraints imposed on mechanical properties involved in the description of the constitutive behavior of materials
and to [8, 9, 26—31] for examples of positiveness, symmetry, stability, and causality constraints imposed on reduced
matrices and other features of reduced-order models for the dynamical behavior of structures and other systems.

In addition, recent research has also investigated dimension reduction methods [6, 41] and scalable algorithms [21,
22, 36, 42] as viable strategies for addressing challenges in characterizing uncertainties in high-dimensional problems.

5. PROPAGATION OF UNCERTAINTIES

The next step is to propagate the uncertainties introduced in the input variables through the computational model to
the quantity of interest. Probability theory effects this propagation as follows. Once the uncertain input variables are
characterized as a random variaBewith values inR™, the transformation aX through the computational modegl
provides the characterization of the quantity of interest as the random vaiakin values inR such that

Y =g(X1,..., Xm); 3)

this definition ofY” as the transformation oX throughg implies that the probability distributiofy of Y is the image
of the probability distributionPx of X underyg, that is, formally, for any meaningful subs8tof R,

Py(B) = Px({x € R™ : g(x) € B}). 4)

In other words, to obtain the characterization of the quantity of interest, probability theory equates the probabil-
ity Py (B) that its value is contained in any meaningful sutief R with the probabilityPx ({x € R™ : g(x) € B})

that the value taken by the uncertain input variables is contained in the corresponding{subsit” : g(x) € B}

of R™, which collects those values R™ that the computational model maps into valuefin

By deducing varioustatistical descriptorérom it, we can study the probability distributia® . The best known
statistical descriptors are tineeanm, and thevarianceo?., which are defined as follows:

my — / ydPy, 0% = / (y — my )2dPy, 5)
R R

assuming these integrals are bounded; otherwise, they do not exist. Because integrals with respect to a probability
distribution and an image of it are related by the “change of variables” theorem [43, 44], the mean and variance (if

they exist) are also obtained as, = [, g(x)dPx ando} = [;.. (g(x) — my)2dPX.
The propagation of uncertainties is most often implemented using either the Monte Carlo sampling method or
stochastic expansion methods, as described next.
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5.1 Monte Carlo Sampling Method

The Monte Carlo sampling method begins by generating an ensemisléndependent and identically distributed
(i.i.d.) samples from the probability distributidfy , written as follows:

{zg, 1 <L <V} (6)
The computational model is then used to map each samplefpnmto the corresponding sample froRy-, that is,
Yo = g(xe), 1<l<, (7)

to obtain the corresponding ensemble of i.i.d. samples fRomwritten as follows:
{ye, 1< <V} 8

Once these i.i.d. samples froRy are available, various statistical descriptors can be approximated using methods
from mathematical statistics. For example, the meanand the variance?. (if they exist) can be approximated as

my & my =

> (ye — my)2. ©)
=1

2|
2|+

.
>, o2 ~ (o})? =
=1

This implementation isonintrusivebecause it requires only the repeated solution—sequentially or in parallel—of
the computational model for different values assigned to its uncertain input variables; the computational model itself
need not be modified. Because the computational model must be solved for each of the i.i.d. sampi&g,ftben
computational cost of the Monte Carlo sampling method scales with the number of samples in the ensemble.

For many probability distributions, the literature on random number generation (refer, for example, to [24]) pro-
vides generators that can be used to obtain the required ensemble of i.i.d. samplg fromaddition, the literature
provides principles of construction, such as those based on the Rosenblatt transformation mentioned previously, for
use to obtain a generator if one should not be already available.

From a theoretical point of view, the law of large numbers and the central limit theorem (refer, for example,
to [24, 43, 44]) can be used to analyze the convergence of approximations of statistical descriptors of the quantity of
interest such as those in (9) with respect to the number of samples. Under certain conditions, the central limit theorem
ensures that accuracy improves with the square root of the number of samples. For examplexikts, the law
of large numbers ensures that the approximatigh of the mean converges to the exact valug as the number of
samplesv increases, and i3 exists, the central limit theorem ensures that the accuraey;ofmproves with the
square root of. From a computational point of view, numerical convergence studies can be conducted.

Regarding desideratum (iv) in Section 4.4, we note that the availability of a generator and the fulfillment of
conditions that imply convergence properties can play a role in obtaining the characterization of the uncertain input
variables.

5.2 Advanced Monte Carlo Sampling Methods

Much recent research has investigated how the computational cost of the Monte Carlo sampling method (Section 5.1)
can be reduced. Advanced Monte Carlo sampling methods have been proposed, which can reduce the number of
samples that must be used to achieve a target accuracy; please refer, for example, to [24] and [45] for details about
methods involving antithetic variables, control variates, importance sampling, stratified sampling, Latin hypercube
sampling, and quasi-Monte Carlo sampling. In addition, recent research has investigated the use of these advanced
Monte Carlo sampling methods in concert with reduced-order models; please refer, for example, to [46] and [47] for
details about the multilevel Monte Carlo method and the reduced-basis control-variate Monte Carlo method.
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5.3 Stochastic Expansion Methods

Stochastic expansion methods most often involve two steps. First, a surrogate model is fitted to the computational
model; then, the characterization of the uncertain input variables is mapped through this surrogate model—instead
of through the computational model—into the characterization of the quantity of intersstrégate modeis any

model that mimics the relationship that the computational model establishes between the uncertain input variables and
the quantity of interest and yet is computationally less expensive. Thus, the attraction of using a surrogate model in
the propagation of uncertainties is most often in gaining a computational speedup. Although many types of surrogate
model have been proposed, polynomial surrogate models are most often encountered.

5.3.1 Surrogate model

A succinct definition of a polynomial surrogate model is as follows. Let elemerts «4, . . ., «,, ) of N"* be referred
to asmulti-indicesand let a (multivariatejnonomiakz* associated with a multi-index be a function fronR™ into R
defined byz* = 2" x ... x %, Let the numbefx| = «; + ... + «, be referred to as theodulusof « and
also as theorder of x*. Let a (multivariate)polynomialbe a function fromR™ into R that maps anyt to a finite
sumy_  dox* with real coefficientsl,. Then, a polynomial surrogate modgl of order p—hereafter, termed a
surrogate modelunless the nature and the order of the polynomial require emphasis-is/ariate polynomial that
approximates the computational model as precisely as possible iPxtheeighted least-squares sense,

Z dox™

|x|=0

p
. 1
~ g’ = ) com™, where c= solution ofmin f/ dPX, (10)

dcR™
|x|=0

wherec = {c«, 0 < |a| < p} collects the coefficients andis the number of monomials ific*, 0 < |«&| < p}.
Because the objective function of the optimization problem in (10) gauges the precision of the approximation in
the Px-weighted least-squares sense, the precision of the approximation can be expected to be higher over subsets of
values of the uncertain input variables to whiei assigns a higher probability.

It follows from standard optimization theory results—specifically, from the results that underpin the projection
theorem [48]—that the optimization problem in (10) has at least one solution if the computational model, as well as
all polynomials of order at mogt, are Px -square-integrable, that is,

| slyary <+ (11)

[ @ir <+ 0<lal <o (12)

and that the solution is unique if the following additional condition is also fulfilled:

/ ( Z dox™ ) dPx >0, vd € R¥, d+#0. (13)

|x|=0

In fact, the conditions in (11) and (12) ensure that the objective function in (10) is continuous and that given any coeffi-
cientsd, the optimization problem in (10) can be formulated equivalently as the optimization of this objective function
over the set of all coefficienis that satisfy [, |g(z dax™?dPx < [y 19(®) = 30y o dax™|*dPx.
This equivalent formulation converts the opt|m|zat|on problem in (10) into the optimization 0# a continuous objective
function over a closed and bounded set and therefore guarantees the existence of a solution. The condition in (13)
ensures that the objective function in (10) is strictly convex, thus guaranteeing uniqueness.

We note that the condition in (12) amounts to requiriig to have bounded moments of any order uRto
Further, it can be shown that the condition in (13) is fulfilled for any onddfr Px is a continuous probability
distribution; however, it is not necessarily fulfilled whék is a discrete probability distribution [49].
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From a theoretical point of view, results from approximation theory (refer, for example, to [49, 50]) can be used
to analyze the convergence of the surrogate model with respect to its order. If the conditions in (11)—(13) are fulfilled
for any order, it is desirable that the precision with which the surrogate model approximates the computational model
can be improved systematically and made arbitrarily high by increasing thegritheit is,

lim lg(x) — g (x)|*dPx = 0. (14)
p—+00 Jpm

Unfortunately, this convergence property does not always hold, its presence being dependent on the probability distri-
bution Px . In this regard, the following two results are available. First, it follows immediately from the Weierstrass
theorem that this convergence property holdB4f has a closed and bounded support. Second, and more generally,
the holomorphicity properties of integral transformations can be used to show that this convergence property holds if
there exists a constaft > 0 such that/,,, exp(B||x|)dPx < +oo [49, 50]; here|| - || is the Euclidean norm. For
example, ifPx were a (possibly multivariate) uniform probability distribution, this convergence property would hold
because of the first result, andifxy were a (possibly multivariate) Gaussian probability distribution, it would hold
because of the second result. The surrogate model usually converges to the computational model rapidly if the latter
is sufficiently smooth. From a computational point of view, numerical convergence studies can be conducted.

Regarding desideratum (iv) in Section 4.4, we note that the fulfillment of conditions that imply convergence with
respect to the order can play a role in obtaining the characterization of the uncertain input variables.

5.3.2 Propagation of Uncertainties

Once a surrogate model is available, stochastic expansion methods most often map the characterization of the un-
certain input variables through this surrogate model—instead of through the computational model—to obtain the
characterization of the quantity of interest. Unfortunately, unless the surrogate model perfectly mimics the computa-
tional model, the use of the surrogate model introduces an approximation error in the characterization of the quantity
of interest: the transformation oX through the surrogate modg? provides, as an approximation of the random
variableY, the characterization of the quantity of interest as the random vafiableith values inR such that

Y VP = g7(X), (15)

thus implying, as an approximation of the probability distributi®n of Y, the probability distributionP?. of Y? as
the image of the probability distributioRx of X by ¢?; that is, for any meaningful subsBtof R,

Py (B) ~ PL(B) = Px({z € R™ : ¢"(a) € B}). (26)

The desirability of the convergence property in (14) is further emphasized by the fact that owing to the relationships
that probability theory establishes between probabilistic modes of convergence [43, 44], the convergence of the sur-
rogate modef? to the computational modelin the Px -weighted least-squares sense implies the convergence of the
probability distributionP? of Y? = ¢g?(X) to the probability distributiorPy- of Y = ¢(X).

5.3.3 Polynomial Chaos Expansion

Let {d«, 0 < || < p} be a set of polynomialg that span the set of all polynomials of order at mpstnd
are Px-orthonorma) that is,

- VYo (x)pg(x)dPx = dap, 0<|al,|B|] <p, (17)

wheredqpg = 11if x = p andd4pg = 0 otherwise. Such a set is guaranteed to exist if the conditions in (12) and (13)
are fulfilled, but if it exists, it is not unique. Becau «, 0 < || < p} spans the set of all polynomials of order at
mostp, the optimization problem in (10) is equivalent to

p
heRk 9(x) = Z ho‘lb“(m)‘QdPX, (18)

p .
. 1
grgP = E gaV«, Where g = solution ofmin 5/
[|=0 ||=0
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whereg = {g9«, 0 < |&| < p} andp is the number ofPx -orthonormal polynomials i, 0 < |&| < p}. The
attraction of this reformulation is that upon expressing the stationarity of the objective function in (18), the following
constructive representation of the surrogate model is obtained:

p
g9~g" = gaba, Where gq :/ g(@)u«(z)dPx, 0<[a| <p. (19)
‘txl:O R’V?’L

By constructive, we mean that this representation can facilitate the implementation of the construction of the surrogate
model. Further, this representation allows the random varigBldefined previously to be written as follows:

YaYP=¢"(X)= ) gaba(X). (20)

|x|=0

Stochastic expansion methods refer to this characterization of the quantity of iniéfest, Zf’“‘:o gaWa(X),
as apolynomial chaos expansiofrurther, the coefficientg, are referred to apolynomial chaos coefficienend
the Px-orthonormal polynomialg, aspolynomial chaos

5.3.4 Implementation Using Nonintrusive Projection Methods

Several types of implementation are available for obtaining the surrogate model. Embedded projection methods [6, 51—
55], nonintrusive projection methods [51, 53-56], and interpolatory collocation methods [53-55, 57—62] are most
often encounteredEmbedded projection methodsimerically determine the surrogate model through a Galerkin
projection of the computational model onto a prescribed basis of orthonormal polynomials; this Galerkin projection
results in a so-called spectral problem whose assembly and solution most often requires modification of the source
code of the computational modeéllonintrusive projection methodgly on (multivariate) integration theory: they
numerically determine the surrogate model through an orthogonal projection that involves the use of a quadrature
rule to approximate integrals with respect to the probability distribution of the uncertain input variat#gsolatory
collocation methodsely on (multivariate) interpolation theory: they numerically determine the surrogate model by
interpolating between a set of solutions to the computational model. Whereas embedded projection methods require
modification of the computational model, nonintrusive projection and interpolatory collocation methods can be applied
as wrappers around an existing computational model without requiring modification of the source code.

We note that the literature sometimes refers to nonintrusive projection methods ptsudsspectral collocation
methodg[54, 56]; further, the literature sometimes refers to nonintrusive projection and interpolatory collocation
methods collectively asollocation method§s4, 56].

In this paper, we describe only nonintrusive projection methods; we refer the reader to the references mentioned
previously for details about embedded projection, interpolatory collocation, and other methods.

Nonintrusive projection methods approximate integrals with respect to the probability distritigtiarsing a
quadrature rule. Ajuadrature rulefor integration with respect t&x is a set{(x}, w)), 1 < £ < A} of nodesz) and
associated weights) that allow the integral of any continuous, integrable functfofflom R™ into R with respect
to Px to be approximated by a weighted sum of integrand evaluatio[ﬁﬁ,,aﬂm)dPX ~ 22:1 w) f(x)).

A first nonintrusive projection method exploits the fact that for certain “labeled” probability distribuftgns
recurrence relations that can be used to produce{sigfs 0 < |&| < p} of Px-orthonormal polynomials) 4
are explicitly known and can be read from tables in the literature [6, 51, 53, 54]. For example, the tabulated (ten-
sorized) normalized Hermite and Legendre polynomials constitute sequences of (multivariate) polynomials that are
of increasing order and orthonormal with respect to the (multivariate product of) univariate standard Gaussian and
uniform probability distributions, respectively. When such a sePgforthonormal polynomials is explicitly known
in advance, this first nonintrusive projection method provides the surrogate model as follows:

P A
g g =" ghba, where g} = wig(@))a(a}), 0<|al<p, (21)
|x|=0 (=1
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that is, it provides the surrogate model by approximating the integral with respBgt tovolved in the definition of
the coefficients in (20) using the quadrature rule for integration with respétt to

A second nonintrusive projection method, which does not require a sBxebrthonormal polynomials to be
explicitly known in advance, is obtained by approximating the integral with respeBitanvolved in the defi-
nition of the objective function in (10) using the quadrature rule for integration with respdeéx torhis second
nonintrusive projection method provides the surrogate model as a solution of the following weighted least-squares
problem:

eR+

P
g~ gt = Z chx*, where ¢ = solution of min %(y — [M)d)T[W](y — [M]d), (22)
|x|=0

wherey is the A-dimensional vector withy, = g(z)), [M] the (A x p)-dimensional matrix with\/,o = (x})%,
and[W] theA-dimensional diagonal matrix with’;, = w;'. We recall thats is the number of monomials i*, 0 <
|| < p} andA the number of nodes in the quadrature for integration with respextaThe tilde serves in (22) to
distinguish between surrogate models provided by the first and second nonintrusive projection methods.

Many methods can be used to solve the optimization problem in (22). Some initially form the normal equations
and then solve them using a Cholesky factorization. Others avoid forming the normal equations and instead rely on a
QR factorization, a singular value decomposition, or other linear algebra method. There are also methods that cast the
optimization problem in (22) as a generalized least-squares problem, which is then solved using either linear algebra
or quadratic programming. These methods differ in their ability to handle problems that may have multiple solutions
and in their numerical stability: ifA/] or W] is rank-deficient or ill-conditioned, the use of an inadequate method
may cause a disastrous loss of numerical accuracy. Thus far, it appears that only little theoretical and computational
work in the area of uncertainty quantification has examined this issue. Nevertheless, theoretical and computational
studies are available in the field of linear algebra, and we refer the reader to [63—65] for guidance.

We note that if the weighted least-squares problem in (22) is ill-conditioned, it can be helpful to normalize
the uncertain input variables prior to the construction of the surrogate model. One way of doing this involves sub-
tracting the mean vectam x and multiplying by the inverséR x|~ of the Cholesky factor of the covariance

matrix [Cx| = [R%Rx]; in fact, the random variablgR x|~ (X — mx) is normalized in the sense that its
mean vector vanishes and its covariance matrix is equal to the identity matrix. The surrogate model then takes the
form g»* = 370 _o ch([Rx]~ " (z — mx))*, wherein the coefficients, although still denoteddly are obtained,

this time, by solving the weighted least-squares prohténs solution ofmingeg (1/2)(y—[M]d) T [W](y—[M]d),
wherey and[IW] are as in (22) buM] is the(A x w)-dimensional matrix withV/,« = ([Rx]~*(z) — mx))*.

Many methods can be used to obtain the required quadrature rule for integration with respectTtbere are
probabilistic and number-theoretic integration methods as well as nonprobabilistic integration methods, such as Gaus-
sian, polynomial-based, and other integration methods, sparse-grid and other tensorization methods, and adaptive
integration methods (refer, for details, to [24, 45, 49, 66—Mipbabilistic integration methodgroduce quadrature
rules whose nodes are distributed randomly in the domain of integration. By contagtobabilistic integration
methodgroduce quadrature rules whose nodes are organized in a systematic way in the domain of integration. When
the dimension of the domain of integration is small or moderate and when the integrand is sufficiently smooth, this
systematic organization of the nodes allows nonprobabilistic methods to produce very efficient quadrature rules that
achieve a high level of accuracy with only a small number of nodes. However, as the dimension of the domain of
integration increases, nonprobabilistic methods lose their ability to form accurate quadrature rules with only a small
number of nodes and ultimately become less efficient than probabilistic methods.

Both of the nonintrusive projection methods mentioned previouslynaréntrusivebecause they require only
the repeated solution—sequentially or in parallel—of the computational model for different values assigned to its
uncertain input variables; the computational model itself need not be modified. The manner in which the coefficients
are computed in (21) and the residual is computed in (22) indicates that the computational model must be solved for
each node in the quadrature rule for integration with respeBtoThus, the computational cost of constructing the
surrogate model essentially scales with the number of nodes within this quadrature rule.
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From a theoretical point of view, results from approximation theory (refer, for example, to [24, 45, 49, 66, 68—70])
can be used to analyze the convergence of quadrature-based approximations of integrals with respect to the number
of nodes. From a computational point of view, numerical convergence studies can be conducted.

Regarding desideratum (iv) in Section 4.4, we note that owing to these considerations, the availability of an
efficient quadrature rule can play a role in constructing the characterization of the uncertain input variables.

5.3.5 Curse of Dimensionality

Especially when the computational model is expensive to solve, it is essentially the quadrature rule that determines
the computational cost of a nonintrusive-projection-based implementation. Indeed, as we have already mentioned, a
nonintrusive-projection-based implementation requires that the computational model be solved for each node in the
guadrature; thus, the smaller the number of nodes, the lower this computational cost.

It follows that from among the aforementioned methods available for obtaining the quadrature rule, nonprob-
abilistic integration methods are a natural choice because as we have already mentioned, they can be expected to
be able to form an accurate quadrature rule with only a small number of nodes, especially when the number of
uncertain input variables is small or moderate and when the computational model is sufficiently smooth. However,
nonintrusive-projection-based implementations that use nonprobabilistic integration methods suffer from a so-called
“curse of dimensionalitybecause as the number of uncertain input variables increases, nonprobabilistic integration
methods lose their ability to form accurate quadrature rules with only a small number of nodes [24, 45, 49, 66-70].

5.3.6 Approximation of Statistical Descriptors

Once a surrogate model is available, it can be used as a substitute for the computational model in the approxima-
tion of statistical descriptors of the quantity of interest. First, an ensemble of i.i.d. safaplesl < ¢ < v} is
generated fromPx . The surrogate model is then used to map each sampieto the corresponding sample of the
guantity of interest, that is, eith@lf”‘ = gPMxy) or yf’)‘ = g”»Mx,), depending on whether the first or second
nonintrusive projection method is used. Finally, mathematical statistics methods are applied to the ensemble of i.i.d.
samples{yz”" 1 < ¢ <~}. For example, the meany and the variance?. (if they exist) can be approximated as

1 1 o
A, A 2 AV 2 A AV 2
my ~mb; Vfg E yy, oy ~ (oh™) =3 E (y)™ —mip™Y)2. (23)
=1 =1

Under certain conditions, statistical descriptors of the quantity of interest can be directly approximated starting
from either the coefficientg’, in the representation of the surrogate model in (21) or the coefficiépia the
representation of the surrogate model in (22). For example, if th¢dsgt 0 < || < p} of Px-orthonormal
polynomials is such thapo = 1, it follows from (17) that the meam,- and the variance? can be approximated as

P
If Po=1, then my ~m) =gd and o? =~ (crﬁ’,"}\)2 = Z (g))2. (24)

|x|]=1

As in the Monte Carlo sampling method, the law of large numbers and the central limit theorem can be used to
analyze the convergence of approximations such as those in (23) with respect to the number of samples. If convergence
is guaranteed, it suffices to employ a sufficiently large number of samples to ensure that the error from using only a
finite number of samples is much smaller than the error introduced by the use of the surrogate model.

Thus, the implementation of a stochastic expansion method most often consists of approximating the computa-
tional model by a sufficiently accurate surrogate model, followed by the use of this surrogate model as a substitute for
the computational model in the approximation of statistical descriptors of the quantity of interest. This approximation
entails virtually no overhead because the computational cost of evaluating polynomials is very low.
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5.3.7 Reduced-Dimensional Surrogate Model

We have seen that the uncertain input variables can be characterized as a transfaXmatif(E) of a given random
variableZ with values inR¢ and probability distributiorPz under a mapping from R? into R™. This presents the
possibility that the composition of the mappifigvith the computational modeglcan be approximated by a surrogate
model, thus facilitating, if/ is smaller thann, the construction of a reduced-dimensional surrogate model [6, 41].

5.4 Advanced Stochastic Expansion Methods and Related Methods

Much recent research has investigated how the computational cost of stochastic expansion methods (Section 5.3) can
be reduced, as well as how their range of applicability can be extended to problems of higher and higher dimension
and to computational models that lack smoothness. In particular, alternative (not necessarily polynomial) basis func-
tions and alternative formulations of the construction of the surrogate model are being investigated; please refer, for
example, to [71-77] for details about the use of alternative basis functions including Haar bases, multiwavelet bases,
Pack approximants, multielement polynomial chaos, enrichment functions, preconditioned bases, and separated rep-
resentations; and please refer, for example, to [78—83] for details about alternative formulations including Bayesian
formulations and Gaussian processes, sensing and other machine-learning formulations, adaptive formulations, as
well as formulations that seek to exploit dimension reduction or sparsity, and various combinations of these.

5.5 Effectiveness of Monte Carlo Sampling and Stochastic Expansion Methods

In summary, when the Monte Carlo sampling method is used, accuracy usually improves with the square root of the
number of solutions of the computational model; although this convergence rate is rather slow, it is independent of the
number of uncertain input variables. When a stochastic expansion method is used, an accurate surrogate model can
usually be obtained in a computationally efficient manner if the computational model has only a small or moderate
number of uncertain input variables and is sufficiently smooth; once available, the propagation of uncertainties through
this surrogate model usually entails virtually no overhead beyond the computational cost of its construction.

Thus, within the current state of the art, the Monte Carlo sampling method is most computationally efficient for
problems of “very high dimension,” that is, for computational models with a very large number of uncertain input
variables. Stochastic expansion methods are indicated most for problems “of low or moderate dimension,” that is, for
computational models with a small or moderate number of uncertain input variables, as well as for problems that admit
reduction relative to dimensionality. We emphasize that the relative merits and limitations of these methods depend
on the problem and implementation specificities; further, we emphasize that much ongoing research is involved with
extending the computational efficiency of stochastic expansion methods to problems of higher and higher dimension.

5.6 Reduced-Order Models

As an alternative to the use of a surrogate model, the computational cost of the uncertainty propagation can also be
reduced through the use of a reduced-order model as a substitute for the computational model. In addition to multiscale
and coarse-graining approaches, there exist various projection-based methods for obtaining reduced-order models,
such as those based on eigendecomposition, proper orthogonal decomposition, Krylov subspaces, and reduced bases.
Two significant challenges are in dealing with nonlinearities and in constructing a (family of) reduced-order model(s)
that maintain accuracy over a range of values of the uncertain input variables of the computational model [84, 85].

6. SENSITIVITY ANALYSIS OF UNCERTAINTIES

Once the characterization and propagation steps are complete, the objective of the sensitivity analysis of uncertainties
is to gain some insight into the manner in which uncertainties introduced in the input variables induce uncertainties
in the quantity of interest. Such insight can be very useful for identifying where to direct efforts aimed at reducing
uncertainties, and it can constitute a crucial prerequisite to the optimization of designs in the presence of uncertainties
and the validation of models, among other purposes.
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Several types of sensitivity analysis of uncertainties can be used and have been proposed in the literature, such
as methods involving scatter plots and regression, correlation, and elementary effects [86—88], methods involving
variance analysis [87, 89-91], and methods involving differentiation [92—95]. Variance- and differentiation-based
methods are described below; please refer to the references given above for details on the other methods.

6.1 Variance-Based Methods

Variance-based methods begin by partitioning the uncertain input variables into subsets. These subsets of uncertain
input variables are then arranged in an order that reflects their significance in inducing uncertainties in the quantity of
interest, thus permitting dominant subsets of uncertain input variables to be distinguished from insignificant ones.

In their traditional realm [87, 89, 90], variance-based methods require the uncertain input variables to be par-
titioned into subsets that are statistically independ8tdtistically independersubsets of uncertain input variables
are those between which no physical, causal relationship exists (if uncertainties are held to refer to variability) or
no logical relationship is indicated by the available information (if uncertainties are held to refer to a state of possi-
bly incomplete knowledge). More recent studies [90, 91] have extended the range of applicability of variance-based
methods to statistically dependent subsets of uncertain input variables. However, for brevity, this section is confined
to variance-based methods appropriate for statistically independent subsets; nevertheless, we will apply one of the
available extensions to statistically dependent subsets in the illustrative problem of Sections 8 and 9.

For example, if the computational model were a finite element model for the mechanical deformation of a structure,
one subset of uncertain input variables could be involved in the characterization of uncertain material properties
and another could be involved in the characterization of an uncertain applied external loading. The variance-based
sensitivity analysis may then involve determining whether either the uncertainties in the material properties or those
in the applied loading are most significant in inducing uncertainties in the deformed shape of the structure.

Without loss of generality, let the uncertain input variables be partitionedrirgobsets in such a way that the
first subset contains the first; uncertain input variables, the second subset contains thenngexincertain input
variables, and so forth, until the final subset contains thenlgstincertain input variables. Correspondingly, let the

random variableX = (X1, ..., X,,) be partitioned inta random variables in such away th¥t = (X1,..., X,,,),
X2 = (Xpmy11y- -+ Xonytms ), @and so forth, untiX™ = (X, + . 4mo 141y -+ s Xomy b om,, ) that is,
X = (Xla teey Xmlem1+11 s 7Xm1+7TI27 v 7X7n1+...+mn,1+17 s va1+...+mn)~ (25)
X1 X2 XxXn

Let the random variableX ', X2, ..., X" be statistically independent; then, by the rules of probability theory, the
probability distribution ofX = (X!, X2 ..., X")is the product of the probability distributions &', X2, ..., X™:

Px = Px1 X Px2 X ... X Pxn. (26)

As the main tool for gauging the significance of a subset of uncertain input variables in inducing uncertainties in the
guantity of interest, say, of thgh subset, variance-based methods provide the followigigificance descriptor

. . .\ 2 ) . .
Sxi :/ (/ (g(:cj’ x™) — my(ww)) dPXj)dPX”% wheremy (z™7) :/ g(@’, @™ )dPx;, (27)
wriei \ Jgms o

where X~7 denotes the random variable that collects all those components of the random viFidité are not
components of the random variab¥’, for example, X~! = (X2,..., X™). Althoughs x, can also be insightfully
interpreted in the context of regression analysis [87, 89, 90], an intuitive interpretation is obtained by recognizing
Jam; (g(x?, 2~7) — my (x™~7))?dPx, as the variance of(X7,z~7), that is, as the variance that the quantity of
interest would exhibit owing to the uncertainties in the uncertain input variables contained jththebset if the

value taken by the uncertain input variables contained in all the other subsets was equal to the specifitivalue
Thus, variance-based methods provide Be-;-weighted average of the variance gfX?, z~7) as a significance
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descriptor that reflects the significance of ittle subset of uncertain input variables in inducing uncertainties in the
guantity of interest. Once thesignificance descriptors are available,

SX1, 8§X2, «v. , SXn, (28)

the corresponding subsets of uncertain input variables can be arranged in order of significance—thgdhigher
more significant thgth subset of uncertain input variables in inducing uncertainties in the quantity of interest—thus
permitting dominant subsets of uncertain input variables to be identified.

We note that variance-based methods provide several other significance descriptors that allow a fuller understand-
ing to be gained of how subsets of uncertain input variables influence the quantity of interest. Nevertheless, it appears
that the significance descripter; is the backbone of variance-based methods because many of these other sig-
nificance descriptors can be deduced therefrom; for example, the total-effect index given in [87, 89, 90] is obtained
assx; /0y, the main-effectindex a3 —s x~; )/ 03, and the interaction-effect index can be deduced fspgn x ).

The computation ok x; is a problem of numerical integration. As in the previous section, either probabilis-
tic and number-theoretic integration methods or nonprobabilistic integration methods can be used. Especially when
a probabilistic integration method is used, the computational cost of a straightforward approximation can be pro-
hibitive because of the nested structure of the integrals in (27). Variance-based methods circumvent this issue by
using the law of total variance [43] to expresg, equivalently assx; = [pm; [om; 9(®7, ~7)2dPx;dPx~;

— Jame; (Jam; 9@, ®~)dPx;)( [gm; g(@?,®~7)dPx;)dPx~;, thus allowingsx; to be approximated by using
two independent ensemblds:), 1 < ¢ < v} and{&), 1 < ¢ < v} of i.i.d. samples fromPx; and one en-
semble{z,”, 1 < ¢ <~} of i.i.d. samples fronPx ~; as follows:

1 « o R
Sxi %s}’ﬁZEZ(g(m;,xﬂ)—g(m%,mﬂ)) . (29)

Alternatively, if efficient quadrature rule§(z}*, w™), 1 < k < «} and {(z}7*, w)??), 1 < £ < A} for
integration with respect t&x; and Px~;, respectively, are availablex, can be straightforwardly approximated as

K

A K
2
g A oK ~IHA JiK L ~IA K [ - JiK JiK o~
Sxi N8y, = E g wy“w, (g(mk T, )—my)@) , Where my, = g wy g, ;7). (30)
k=1¢=1 k=1

We note that the computational cost of computing the significance descsigtocan be lowered by using a
surrogate model (if available) as a substitute for the computational model in either (29) or (30). Finally, we note
that under certain conditions, certain surrogate models allpwto be directly approximated from the coefficients
involved in the representation of the surrogate model; please refer to [96, 97] for details.

6.2 Differentiation-Based Methods

Insight into how uncertainties induced in the quantity of interest depend on those introduced in the input variables
can often also be gained by exploring the sensitivity of statistical descriptors of the quantity of interest with respect
to changes in parameters involved in the characterization of the uncertain input variables. Differentiation-based meth-
ods [92, 93, 95] lead to such insight by differentiating statistical descriptors of the quantity of interest with respect to
parameters involved in the characterization of the uncertain input variables.

For example, if the computational model were a finite element model for the mechanical deformation of a structure,
an uncertain material property could be characterized as a random field parameterized by a nominal value, a dispersion
level, and a spatial correlation length. The differentiation-based sensitivity analysis could then involve determining
the sensitivity of the variance of a displacement component at a prescribed location with respect to changes in this
nominal value, this dispersion level, and this spatial correlation length.

Let the characterization of the uncertain input variables have been obtained by selecting a charactBsization
that depends on a finite number of parameters collected in a vectofp,, . . ., p,) and then assigning an adequate
valuep = (p1,. .., pq) to these parameters (refer to Sections 4.2 and 4.5), that is,
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Px = Px(p), where p=(p1,...,Dq) (31)

Let us consider a statistical descriptor of the quantity of interest that admits a representggggm@(w))dPX (p),

whereh is a function fromR into R. This representation is quite general and encompasses cases wherein interest
might be in the meanmny (p) and varianceo’ (p) of the quantity of interest by settin(y) = y andh(y) =

(y —my (p))?, respectively. Differentiation-based methods determine the sensitivity of this statistical descriptor with
respect to changes in a parameter involved in the characterization of the uncertain input variables; sajthin the
parameter, using the partial derivative of, 1 (g(x))dPx (p) with respect tg; evaluated ap:

_ 9 Jan hg(x))dPx (p)

; (32)
Ip; p=p

Sp;

the higher the magnitude of theensitivity descriptok,,,, the more sensitive the statistical descriptor with respect to
changes in thgth parameter. The simplest computationspf involves finite-difference approximation.

The problem of numerically approximating the sensitivity descripforcan also be reformulated as a problem
of numerical integration. In fact, if the probability distributid?x (p) admits a PDFpx (p), if the differentiation
and integration in (32) are interchangeable, andxf(p) is sufficiently differentiable, ther,,, can be expressed
equivalently ass,, = [y, h(g(2))[0px (,p)/0p;]|,_ dx = [o. h(g(@))[0n px (2;p)/Op;]| _, px(x:p)de,
thus allowings,, to be approximated using an ensemfile, 1 < ¢ < v} of i.i.d. samples fronPx (p) as

N S h(g(an) 22ex(ep) (33)
’ v /=1 pJ p=p
and using a nonprobabilistic quadrature f(e},w)),1 < ¢ < A} for integration with respect t&x (p) as
A L Ay O In px (27 p)
Sp; NS, = Zwe h(g(we))—a — (34)
=1 Pj pP=pP

If the characterization of the uncertain input variables as a random vatdhiéth probability distributionPx (p)
corresponds to a characterization as a transforma¥on- f(=Z;p) (refer to Section 4.2), then, assuming again
that the differentiation and integration in (32) are interchangeable andfthat), g, andh are sufficiently differ-

entiable, the sensitivity descriptep, can be expressed as, = |[,. [8h(y)/8y]\y:g(ﬂ&ﬁ))(Vmg(m)|m:f(£,ﬁ))T
[0f (&, p)/0p;] \p:ﬁdPE, thus allowings,,, to be approximated using an ensemfilg, 1 < ¢ < v} of i.i.d. samples
from Pz as

B 1 < Oh Tof(&,,
Sp; A 8y, = = Z # (Vmg(a:) ) M (35)
Va9 ly=a(£(em) @=F(£0.P) Pj  lp=p
and using a nonprobabilistic quadrature r@ﬂé}, w}), 1 < ¢ < A} for integration with respect t&= as
A T A
- oh of(&y,
Sp; N S;\j _ Z wz\ a(y) <Vmg(w) ) .f(a E‘ P) (36)
=1 Y ly=g(r&).m)) z=F(£}P) Pi lp=p

We note that fulfillment of the interchangeability assumption mentioned previously can be verified by invoking,
for example, the monotone or dominated convergence theorems; for details, please refer to [43, 44, 92]. Further, we
note that the computational cost of computig can be lowered through the use of a surrogate model (if available).

Finally, regarding desideratum (v) in Section 4.4, we note that the variety of differentiation-based sensitivity
analyses that are enabled by the parameterization of the characterization of the uncertain input variables and their
relevance to the scientific or engineering questions being asked can play a role in obtaining this characterization.
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7. IMPLEMENTATION DETAILS

The methods described previously lend themselves well to implementations in computational linear algebra packages.
In addition, implementations of some of the methods described previously are available in open-source software
packages, such as Dakota [98], GPMSA [3], Queso [99], Trilinos::Stokhos [100], and UQTk [101]:

e Dakota provides nonintrusive algorithms for uncertainty propagation (Monte Carlo sampling, stochastic expan-
sion), sensitivity analysis, design optimization, model calibration, verification, and parameter studies.

e GPMSA provides nonintrusive algorithms for uncertainty propagation (Gaussian processes), sensitivity analy-
sis, model calibration, and parameter estimation.

e Queso provides nonintrusive algorithms for uncertainty characterization (Bayesian), decision making under
uncertainty, model calibration, and validation.

e Trilinos::Stokhos provides intrusive algorithms for uncertainty propagation (stochastic expansion), including
algorithms for forming and efficiently solving spectral problems arising in embedded projection methods.

e UQTk provides intrusive and nonintrusive algorithms for uncertainty propagation (stochastic expansion), in-
cluding algorithms suitable for rapid application prototyping, algorithm research, and community outreach.

8. REALIZATION FOR AN ENGINEERING PROBLEM
8.1 Context

Much of the steel that is produced by steel plants is shaped by forming processes in preparation for its use in as-
sembling cars, ships, appliances, and various other produdtenfing procesaypically forms pieces of steel, for
example, steel sheets, also called steel blanks, by deforming them using classical forming processes such as bending,
deep drawing, cold roll forming, or combinations thereof. After leaving the tooling, which corresponds to being re-
leased of the forming forces, the material has a tendency to partially return to its original shape because of its elastic
recovery. This phenomenon, referred to asgpengbackis quite complex (refer, for details, to [102] and the refer-

ences therein) and depends not only on material properties such as Young's modulus and yield stress but also on many
process parameters such as sheet thickness and bending angles. The springback is difficult to predict and is a major
quality concern in forming processes because when the springback is smaller or larger than expected, it can cause
serious problems to subsequent assembly processes because of geometry mismatches.

Often, the same forming process must be applied repeatedly, each time to a nominally identical piece of steel and
under nominally identical process conditions. However, even though they are nominally identical, the pieces of steel
and the process conditions may exhibit (possibly small) variability; hence, the forming process may persist in yielding
a different springback and therefore a permanently deformed piece of steel of a different shape each time that it is
repeated. Thus, especially when it must be applied repeatedly, the desigobosforming process can require an
assessment of the impact that variability in the pieces of steel and the process conditions has on the springback.

8.2 Problem setting

We consider a forming process wherein a steel sheet is bent along a straight line: a portion of the steel sheet is
clamped [Fig. 1(a)] and the complementary portion is bent downwards by a punch that descends until a rectangular
angle is imposed [Fig. 1(b)], after which the punch ascends until it is ultimately removed [Fig. 1(c)]. In such a forming
process, the steel sheet does not keep its deformed shape after bending; instead, it springs back slightly upwards when
the punch is removed. We refer to the angle with which the steel sheet bends upwards agaspasghack angle

We consider a finite element model implemented in our in-house software METAFOR [102]. This finite element
model is based on the geometry depicted in Fig. 1(a); further, it is based on a model of the mechanical behavior
of the steel according to an elastoplastic constitutive model with linear isotropic hardening and on the modeling of
the contact surfaces between the die, the sheet, and the punch as frictionless contact surfaces. Once the geometrical
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FIG. 1. Schematic representation of the problem. The left portion of the steel sheet is clamped.

characteristics in Fig. 1(a) are fixed and values assigned to the parameters involved in the elastoplastic constitutive
model with linear isotropic hardening, this finite element model allows the springback angle to be predicted.

To examine the impact that variability in the mechanical behavior of the steel has on the springback angle, we con-
sider two of the parameters involved in the elastoplastic constitutive model with linear isotropic hardening, namely,
the hardening moduluand theyield stressto be uncertain. We assume that the available information—from which
we must infer the characterization of the hardening modulus and yield stress—consists of data collected from exper-
iments, in addition to mechanical and physical constraints. Specifically, we assume that a small or moderate nhumber
of samples, say, of the hardening modulus and yield stress are available, written as

{(h9"S s8P%), 1 < ¢ < m}. 37)

These samples may have been obtained by simple tensile testingt@él sheets and characterizing the mechanical
behavior of each one in terms of a hardening moduf#§and yield stress?". We assume that the mechanical and
physical constraints require that the hardening modulus and yield stress be positive, for example, as a reflection of the
fact that it may be known that the steel hardens—and does not soften—as it deforms.

Next, we will demonstrate some of the methods described previously by applying them to the characterization
of the uncertainties in the hardening modulus and yield stress (the uncertain input variables), the propagation of
these uncertainties through the finite element model (the computational model), and the sensitivity analysis of these
uncertainties to allow some insight into their impact on the springback angle (the quantity of interest).

8.3 Characterization of Uncertainties

Because only a small or moderate amount of data is assumed to be available, we proceed by selecting a “labeled”
probability distribution that depends on only a small or moderate number of parameters and then inferring adequate
values for these parameters from the data using the method of maximum likelihood; refer to Section 4.5.

For reasons that we will discuss throughout and summarize at the end of this section, we select the bivariate gamma
probability distribution, which was introduced in [103], as the “labeled” probability distribution. This distribution
admits a probability density function that, when characterizing the hardening modulus and yield stress as random
variablesH andS, reads as follows:

p(H,S) (h7 S;MH, O-%Jvaa G2S7 p) = pF(h7mH7 0-?{) pF(sa mgs, 0-%) O-(CF(h;mHa O-%—[)7CF(S; mgs, 0-%’)7 p) (38)

Here,pr(-; mr, 02) is the univariate gamma probability density function with mean> 0 and variancesz > 0:
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pm;mp,c?):cv<m?/“?>*1exp(—%v) if y>0 and pr(y;mr,0%)=0 otherwise  (39)

wherec is the normalization constard{-, -; p) with —1 < p < 1 is the function such that

(pez'(w)” — 2pez" (u)ez' (v) + (pc;<v>)2)

o(u,v;p) = ;exp (—
T V1-p? 2(1 - p?)

andcr(-;mr, 02) andcz are the cumulative distribution functions associated with the univariate gamma probability
distribution function with meam:r and variancesZ and the Gaussian probability distribution with zero mean and
unit variancecr (¢; mr, 02) = fOC cy™t /9t =L exp(—(mp/o2)y)dy andcs () = J7 exp(—£%/2)/V2rdE.

As we mentioned in Section 4.2, for many random variables with “labeled” probability distributions, the litera-
ture provides an equivalent characterization as a transformation of a random variable with a uniform, Gaussian, or
other “labeled” probability distribution. Here, reference [103] provides an equivalent characterization for the ran-
dom variabled? andS with probability density functiom z s)(:, s ma, 0%, ms, 0%, p) as a transformation of two
statistically independent Gaussian random variaBleand=, with zero mean and unit variance,

(40)

2
p(El,EQ)(ala &) = p=(&1) x p=(&2), where pz(&) = \/% exp ( 52>7 (41)

through a mapping (-, s mu, 0%, ms, 0%, p) fromR x R intoR™ x RT such that

(H,S) = f(E1,E2;mu, 0%, ms, 0%, p) = (051(05(51)3771% 0%)scrt (cz(pZ1+/1 — p2Es); ms, G2s)>; (42)

in fact, using the rule that probability theory provides for determining the image of a probability density function under
a differentiable, bijective mapping [43], it can be shown that the imagg=0f=,) underf(-, -;my, 0%, Mg, 0%, p)
is indeedp(H,S)(', My, O'?_I, mg, O'%«, p)

The parametersiy andmg (07, ando%) involved in the expression of 4 s)(+; mu, 0%, ms, 0%, p) are the
mean values (respectively, the variances)ofnd S; further, the parametes controls the statistical dependence
of H andS. We infer adequate values, %, ms, 6%, andp using the method of maximum likelihood, that is, by
maximizing the product of the values taken at the sample values in (37) by the probability density function in (38):

n
o A2 ~2 A H obs _obs, 2 2
(mH7 Og,Mms,0g, p) = solution of QmaX 20 H P(H,S) (h‘f yS¢ sMH,0p,Ms,0g, p) . (43)
MmH,0,Ms,05>07,""
e ®T =

The optimization problem in (43) is a general nonlinear programming problem. It need not have a solution and if a so-
lution exists, it need not be unique. We use a gradient-based nonlinear programming method to solve the optimization
problem in (43); for details about this method, refer to [103].

We emphasize that because the support of the univariate gamma probability density function in (39) is the positive
real line, the support of 7 5)(-, ;7 m, 6%,1ms, 6%, p) is the first quadrant and thus consistent with the mechanical
and physical constraints that require that the hardening modulus and yield stress be positive.

Hereafter, we will denote the probability density functign; s) (-, -; v, 0%, Mg, 6%, p) and the mapping (-, -;
M, 6%, ms, 6%, p) by P(m,s) and f unless their dependence on the parameters requires emphasis.

We note that uncertainties that may result from the availability of only a small or moderate number of samples can
be analyzed using sampling distributions and Bayesian approaches [19, 20, 104], but we do not carry out this analysis.

8.4 Propagation of Uncertainties

Because the hardening modulus and yield stress are the only uncertain input variables of the finite element model and
the problem is thus “of low dimension,” we use a stochastic expansion method. We proceed by approximating the
finite element model by a surrogate model and then using this surrogate model as a substitute for the finite element
model in the approximation of statistical descriptors of the springback angle; please refer to Section 5.3.
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8.4.1 Surrogate Model

We think of the finite element model as a mappingf any value of the hardening modulus and yield stress into a value
of the springback angle. Assuming thats p g s)-square-integrable, that ig,, [o. 9(h, s)*0(m,s)(h, s)dhds <

+00, we then obtain the polynomial surrogate model of oggemvhich we will call, hereafter, the surrogate model—
as a bivariate polynomigl’ that approximateg as precisely as possible in thgy; s)-weighted least-squares sense,

(h, 5) Z dio,pyh™s? p(HS)(h s)dhds,

a+p=0

g gP = Z C(o,p)h ™ sP, where ¢ = solution ofmm 7/ /
x+p=0 ®r

(44)
wherec = {c(q,p), 0 < a«+ < p} andu is the number of monomials sk, 1 <o+ B <pl.
It can be shown that the characterization of the hardening modulus and yield stress is such that the precision of the
surrogate model can be improved systematically and made arbitrarily high by incrpasing

i [ [ lahs) = (h5) o0 (b, 5)dhds =0, (45)
Rt JRT

p——+oo

Proof. As we mentioned in Section 5.3, to show the fulfillment of this convergence property, it suffices to show
that there exists a constafit > 0 such that |, [.. exp(B||(h,s)])pm,s)(h, s)dhds < +oo, which we show
as follows. We carry out the change of variabléss) = (cp'(cz(w); i, 6%), cp ' (c=(2);1hs, 6%)) to obtain
Ju Ja exp(ell(cr (cz(w); mu, 6%), e (c=(2); 1is, 6%)) ) exp(— 2/2)/\/%61&1?( 2/2)/\/5 exp(—((p w)? —
20wz + (p2)%)/2/(1 — p?))dwdz < +oo. Becauseexp(—((pw)? — 2pwz + (p2)?)/2/(1 — p?)) exp(—(1 —
8)w?/2) exp(—(1 — 8)22/2) < 1with & = 1 — (|p| — p?)/(1 — $?), we obtain [, exp(ccp ' (cz(w); 1w, 6%))
exp(—dw?/2)/v2mdw < 400 and [, exp(cep Yea(2);ms, 6%)) exp(—622/2)/v/2mdz < +oo. We then cast the
first of the previous inequalities equivalently Aisexp(ccr ' (cz(w); iy, 6%) — dw?/4) exp(—dw? /4)/v/2mdw <
+00 and subsequently applydttier's inequality to obtait [, exp((2¢/8)cr " (cz(w); g, 6%) —w?/2) /v/2mdw)®/?
(fg exp(—dw?/4)%/(3=8) /\/27dw)2~)/2 < +o0. Finally, we use the change of variables to obtfirexp((2c/5)
o (cz(w); g, 6%3) —w?/2)/V2mdw = [, exp((2¢/8)h)pr(h; iy, 6% )dh, thus indicating that the previous in-
equality holds ifd < c < 5/(26%). Treating the remaining integral similarly, we conclude tﬂ@,lfR+exp cllh, )|
p(r,s)(h, s)dhds < +o0 if 0 < ¢ < §/(2max(6%, 6%)) and thus that the convergence property in (45) is fulfilled.

8.4.2 Implementation by Using a Nonintrusive Projection Method

We use a nonintrusive projection method. Because recurrence relations for producing orthonormal polynomials are
not explicitly known or tabulated in the literature, we cannot use the first nonintrusive projection method mentioned
in Section 5.3. Instead, we use the one based on the approximation of the integral with reppggttmvolved in
the objective function in (44) using a quadrature rule for integration with respegt;to, .

Because the probability density functippy sy is the image of the probability density functipa x p= under the
mappingf (refer to (41) and (42)) we can use the “change of variables” theorem [43, 44] to obtain

Jo oo

(h, ) Z (e, pyh*sP| (a5 (h, 5)dhds

oa+p3=0

2

g(fl(al,az),f2(£17£2)) - Z d(a,fs)(fl(ah52))“(f2(51752))6 p=(&1)p=(&2)dE 1 dEy, (46)

o+p=0

thus allowing us to approximate the integral with respect to the probability density fungtiog, involved in the
objective function in (44) using a quadrature rf(&), w}), 1 < ¢ < A} for integration with respect tp= as
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d(.pyh*sP P(m,s)(h, s)dhds

IR Hzf”( 0 5
AA 2
~ Y Y wpwp|g(f1(Er E), fa(ER, Z Aoy (F1(ER ED)) (f2(E),E)"] . (47)
k=0 (=0 a+B=0

We use thésauss-Hermite quadrature rulgith A nodes for integration with respect to the zero-mean, unit-variance
Gaussian probability density functiqrz, that is, the quadrature rule withnodes that has only positive weights and
is exact for all polynomials up to ordéA — 1. The nodes and weights of the Gauss-Hermite quadrature rule can be
read from tables in the literature for a range of values of computed using standard methods [66, 69, 70].

This approximation amounts to the use of the quadrature{l(lare%‘k 0500 W) 1< ESA 1< E<A}

with (A}, Z)’s?k n) = F(&), &) andwyy ) = wpwp as the quadrature rule for integration with respecptg,s).
Thus, we obtain the surrogate model as a solution of a weighted least-squares problem of the form (22).

To improve numerical accuracy in the solution of this weighted least-squares problem, we normalize the harden-
ing modulus and yield stress in preparation for the construction of the surrogate model. Specifically, we normalize
the hardening modulus and yield stress by subtracting the mean valyesndng and dividing by the standard
deviationso; andds. We then obtain the surrogate model as a solution of the weighted least-squares problem

p A~ A~
h—mg\*/s—1g\bP 1
~ gPN — A H S A_ ; s L T .
g~g “;ﬁ_s(a,ﬁ)( 5 ) ( - ). where ¢~ solution ofmin —(y— [M)d)"[W](y ~ [M]d), (48)

wherey is the A%-dimensional vector withy, ;) = g(hz‘k’z),s?k’z)), [M] is the (A% x p)-dimensional matrix with

M, 2)(“ p) = (A o—11m) /G 1) * (5], o—105)/65)P, and[W] theA*-dimensional diagonal matrix with . ¢) 1)

= w(k 0 To solve the weighted least-squares problem in (48), we select from among the methods in Section 5.3 the
one that involves forming the normal equations and solving by Cholesky factorization:

form the normal equationd/™ W M|c* = [MTWy;
compute the Cholesky factorizatioh/ " W M| = [RT R]; (49)
first solve[R]Tg* = [MTW]y and then solvéR]c* = g*.

We note that it suffices to assign a sufficiently high value to the number of Rottesnsure thatM ™ W M| is
positive definite and therefore that the Cholesky factorizatdd W M| = [R™ R] exists and is unique.
Further, we note that it is worthwhile inspecting this solution method more closely. By se{lﬁpg) =

P am) <o) Aapyiep) (A= ) /6m)*((s—1g)/s)®, where[A] = [R]~!, we obtain polynomlalsp (x,p) that

have the orthonormality property that,_, S20_ 0 Wty Wle.p) Alk.0) S0k.0)) ?{X ﬁ)(h(k 0> (k 0) = Sap)@p);
in fact, by defining the(A*> x p)-dimensional matri¥] such that¥ ; ¢« p) 11)(“ 8) () k. e)aS(Ak7e))' that is,
(V] = [MA], we obtain[UTWV] = [ATMTWMA] = [I], where[I] is the identity matrix. Then, as in (18)
and (19), we obtain the representatigh® = 30, 90, ) Wlu.p)» Wheregl, o) = =, W9 (Plk.0y 50k.0))
Vi) (hlk.0ys 0.0)) - Thus, the computation ¢/ "W M] = [RTR] the solution of R]Tg* = [MTW]y, and the
solution of[R]c* = g* can be interpreted as the computational construction of orthonormal polynomials, the com-
putation of the coefficients in the representation of the surrogate model in terms of these orthonormal polynomials,
and the rearrangement of this representation to olgtath = 30, _ ¢, 5)((h — 7n)/61)*((s — 1h5)/G5)P,
respectively; for details about the computational construction of orthonormal polynomials using computational linear
algebra in the area of uncertainty quantification, please refer to [105-109].

Finally, we note that this construction of the surrogate model is nonintrusive in that it requires only the repeated
solution of the finite element model for different values assigned to the hardening modulus and yield stress. The finite
element model must be solved for each node within the quadrature for integration with respgct o
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8.4.3 Approximation of Statistical Descriptors

Let {&, 1 < ¢ < v} and{&, 1 < ¢ < v} be two independent ensembles of i.i.d. samples from the zero-
mean, unit-variance Gaussian probability density funcpignthese ensembles can be easily generated using standard
methods [24]. Then, because the probability density fungtigns, is the image op= x p= under the mapping,

we can uséhy, s¢) = f(&s, ?,4) to obtain an ensemblg iy, s¢), 1 < £ < v} ofi.i.d. samples fronp g ).

Once the ensemblf(hs, s¢), 1 < £ < v} is available, we use the surrogate model as a substitute for the finite
element model in the approximation of statistical descriptors of the springback angle. Specifically, we first use the
surrogate model to map each sample into the corresponding sgﬁh’bl@ g (hy, s¢) and then apply mathematical
statistics methods to the ensembﬁ”‘, 1 < ¢ <~} ofi.i.d. samples obtained for the springback angle; for example,
we can approximate the mean and the variance as follows:

v

1o 1 2
A, A A, A A,
my ~mEM = =3y and oy~ (M) = I (- e) L 60)
=0 =0
. . A ,
We note that ifpfy, o = 1, we also obtainny ~ mj = gf}, o andoi, ~ (017)% = 30 51 (0% p))*

8.5 Sensitivity Analysis of Uncertainties
8.5.1 Variance-Based Method

We consider a variance-based sensitivity analysis that aims to gauge the significance of the uncertainties in the hard-
ening modulus and those in the yield stress in inducing uncertainties in the springback angle. For this purpose, we
cannot immediately use the variance-based method given in Section 6.1 because whereas we characterized the hard-
ening modulus and the yield stress as two statistically dependent random variables, the variance-based method given
in Section 6.1 can only be used to gauge the significance of (subsets of) uncertain input variables that are characterized
as statistically independent (subsets of) random variables. Instead, we use an extension of the variance-based method
given in Section 6.1, an extension which was described in [90, 91] and which relies on conditional probabilities to
allow the significance of (subsets of) uncertain input variables to be gauged, even when they are characterized as
statistically dependent (subsets of) random variables. Based on this extension, we define the following significance
descriptors:

SH = /JR+ </R+ (Q(h,S) _mY(S))2pHs(h|8)dh> ps(s)ds, my(s) = /]R+ g(h, 8)pH|s(h|8)dh, o

55 = /]R+ (/R+ (g(h,s) —my(h))2OS|H(S|h)d8> pw(h)dh, my(h) = /]R+ 9(h, 5)psu (s|h)ds,

wherepy andpg are the marginal probability density functions such thath) = fR+ P(m,s)(h, s)ds andps(s) =
Je+ o,s)(h, s)dh, andp g s(-|s) andpg i (- 1) are the conditional probability density functions such thafs (h|s)
= pm,s)(h,s)/ps(s) andpg i (slh) = pem,s)(h,s)/pr(h). As in Section 6.1, we can interprej; as theps-
weighted average of the varianfe (g(h, s) —my (s))*p s (h|s)dh that the springback angle would exhibit owing
to the uncertainties in the hardening modulus if the yield stress were set equal to the specific ealdeve can
interpretss similarly. Thus, the highesy andsg, the more significant the uncertainties in the hardening modulus
and the yield stress, respectively, are in inducing uncertainties in the springback angle.

We note that if the hardening modulus and yield stress were characterized as statistically independent random
variables, thatis, ib(,5) = pr x ps and thupgs(-[s) = pr andpgx (-|h) = ps, the significance descriptosg;
andsg would coincide with those of the variance-based method given in Section 6.1.

The computation of the significance descriptegsandsg is a problem of numerical integration. We carry out
this numerical integration using quadrature rules that are similar to those that we used in the previous section for the
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propagation of uncertainties. We provide details about the computatieg; éie significance descriptary can be
computed analogously. We use the “change of variables” theorem to obtain

ss= [ [ (60, &2) faer, £0)) — mr (£1)) p=(E0)p=(Eadtadea, (52)
RJR
where
my(al):/Rg<f1(5.h5.2),f2(5.1,52))05(£2)d52 (53)
and f is still defined as in (42), thus allowing us to approximageas follows:
2
ZZw o (a8 8D, Fa(Eh ED) — mbAED)) (54)
k=0 £=0
where .
miMEN) = D wigP M (F1(ER D), F2(ER. ED)), (55)

£=0
in which we substituted the surrogate model for the finite element model to lower the computational cost.

8.5.2 Differentiation-Based Method

We consider a differentiation-based sensitivity analysis that aims to determine the sensitivity of the variance of the
springback angle with respect to changes in parameters involved in the characterization of the hardening modulus and
yield stress. Collecting the parameters of the characterization of the hardening modulus and yield stress in a vector

pP= (mH,O-?{,mS,O-%,p) (56)

and denoting the mean and variance of the springback angle by

my @) = [ [ aths)ons(hsip)inas.

) (57)
v(p) = /}R+ /R+ (g(h,S) - my(p)) p(m,s)(h, s;p)dhds,

we give special interest to the partial derivatives of the variasiceof the springback angle with respect to the
variances%;, ando? of the hardening modulus and yield stress evaluated at the values obtained in (43), that is,

. _ 99%(p) 9% (p)
T 0%, 0%

and sgz =

(58)

pP=pP pP=p
Our special interest in sensitivity descriptors such as those in (58) follows from the fact that in a probabilistic investi-
gation of manufacturing variability, changes in variance can sometimes be usefully interpreted in terms of changes in
manufacturing tolerances; then, determining sensitivity descriptors such as those in (58) can provide valuable insight
towards designing, controlling, and optimizing tolerances associated with the manufacturing process.

To facilitate the computation of,2 ands,z, we interchange the derivatives and the integrals involved in their
expressions in (58). In this way, their computatlon becomes a problem of numerical integration, which we carry out
using quadrature rules similar to those that we used previously. We provide details about the compui@ﬂonmf
sensitivity descriptosgg can be computed analogously. We use the “change of variables” theorem to obtain

B Ny (g(f(ih £2;p)) — mY(P))295(51)95(52)d51d52

2
0o,

_ 09%(p)

2 5 59
SO'H 8p_] ) ( )

P=p

P=p
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thus, after interchanging the differentiation and integration operations, we obtain the following approximation:

Se1, 7 5 2_.§:§:UJ 2 (207 (182, 22:9)) — 23 (5) )

k=0 £=0
T

, Of (83, &0;
. <V(hys)gp’)‘(h7s) I b P)

5 ; (60)
(hs)=F(ED,ED ;ﬁ)) dory

P=p

where we again substituted the surrogate model for the finite element model to lower the computational cost. We obtain
the needed partial derivatives $f&?, &@‘; mp, 0%, mg, 0%, p) using the chain rule and the algorithm in [110].

It can be shown that the characterization of the hardening modulus and yield stress is such that the interchange of
the differentiation and integration operations is permitted.

Proof. We will show thatd [, (¢r" (c=(&); a,b))*p=(&)dE/0b],_; =[5 O( (&);a,b))*/0bl,_;p=(&)dE,
wherec; (g a,b) = fo or(v; a, b)dy, in whichpr(y; a,b) = cy® ! exp( y/b) |f Y 2 0 andpr(y;a,b) = 0 other-
wise. First, we use the chain rule to obtéitey ' (c=(&); @, b)) /db|,_; = (o/b)(r " (c=(&); @, b))™. Then, because
the function that maps onto ~*1( =(&);a,b) is continuous and monotonically increasing, we use the mean-value
theorem to obtain(é; ' (cz =(&);a,b + 8b))*™ — (¢rt(c=(8); a, )| < (af (b — |8b]))(er Y(c=(£); a,b + |8b]))*|5b|
if |db| is sufficiently small. Because the univariate gamma probablllty distribution has finite moments of any order, the
function that mapsg onto(ec/ (b —|5b\))(”‘1(cE(£); i, b+|8b|))* is p=-integrable. Thus, because the magnitude of the
finite difference can be bounded from above Ipzaintegrable function, the dominated convergence theorem implies
thatlimgy o fo (75" (c2(£); @, b+ 8b)™ — (75 (c=(£); 6, D)%) /6b)p=(£)dE = [y, limsy—o(((Gr " (c=(8);:a,b +
8b))* — (ép*(c=(& ) ,b))%)/8b)p=(£)dE, WhICh concludes the proof. In a similar manner, it can be shown that
8 [ (@ (c2(8); a,0))*p=(8)dE /ale—a = [ (Er (c=(E);a,b))*/ala—ap=(E)dE, that the validity of these in-
terchanges extends to the bivariate gamma probab|I|ty distribution, that the chain rule applies, and therefore, at least
after substituting the surrogate model for the finite element model, that the differentiation and integration operations
may be interchanged in (59) to obtain (60), but we omit the details for the sake of brevity.

8.6 Key Role Played by the Characterization of Uncertainties

To further emphasize the key role played by a judicious characterization of uncertainties, we reiterate that our

characterization of the hardening modulus and yield stress is consistent with the applicable mechanical and phys-
ical constraints (Section 8.3), facilitates the propagation of uncertainties by allowing convergence properties to be
demonstrated and various algorithmic ingredients, such as quadrature rules, to be efficiently obtained (Section 8.4),
and permits the sensitivity to uncertainties to be explored by allowing insightful analyses to be carried out (Sec-

tion 8.5).

9. NUMERICAL RESULTS

We obtained numerical results by assigning the values 20mm, » = 3mm,s = 1mm,u = 6mm,v =

1mm, andw = 5mm to the geometrical characteristics depicted in Fig. 1(a) and valugs0dsPa and).3 to

the Young’s modulus and Poisson coefficient involved in the elastoplastic constitutive equation with isotropic harden-
ing.

We assumed that the data—from which we had to infer adequate values for the parameters involved in the charac-
terization of the hardening modulus and yield stress—consist of the25 samples listed in Table 1.

We emphasize that the samples in Table 1 have been numerically generated and are not representative of the
variability that may be present in actual mechanical behavior of real steel sheets. Thus, the results to follow can-
not be used to draw conclusions on forming processes but serve only to illustrate some of the methods that we
described.
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TABLE 1: Characterization of uncertainties: data.

([ | (hg[MPd, s2°°[MPd) ([ | (h§P[MPd, s2°°[MPd) C[] | (hg[MPd, s2°5[MP4d)

1 (1488, 375) 10 (1541, 340) 19 (1523, 402)
2 (1485, 403) 11 (1501, 366) 20 (1459, 402)
3 (1514, 407) 12 (1531, 403) 21 (1498, 388)
4 (1500, 377) 13 (1572, 393) 22 (1498, 435)
5 (1569, 348) 14 (1518, 388) 23 (1448, 418)
6 (1452, 384) 15 (1497, 416) 24 (1506, 394)
7 (1439, 393) 16 (1506, 421) 25 (1455, 393)
8 (1475, 399) 17 (1427, 381)

9 (1530, 452) 18 (1456, 444)

9.1 Characterization of Uncertainties

First, we solved the optimization problem in (43) to obtain adequate values for the parameters involved in the charac-
terization of the hardening modulus and yield stress:

g = 1495 MPa, 6% = 1390 MP&, g = 396 MPa, 6% = 660 MP&, p = —0.223.

The mean valuesi; andrg and the variances?, andé% correspond to the coefficients of variation

OB _949% and 25 — 6.49%,

mpyg mgs

thus indicating that the characterization of the hardening modulus and yield stress as random Vdratdéswith
probability density functiorp g s) (-, -; va, 6%,1s, 0%, p) introduces relatively less uncertainty in the hardening
modulus than in the yield stress. Further, becguse —0.223 is negative, the statistical dependence betwHen
andsS is such that ifH takes a higher value, the probability thtatakes a lower value increases. Figure 2 shows a few
contours of the probability density functieny, s (-, -; 7w, 6%, 1.5, 6%, p).

550

475} ]

Yield stress [MPg]
8
=

325 ' 1

25é’))OO 1200 1800 2100

1500
Hardening modulus [MPa]
p(m,s) (s, 6%, 1M, 6%, p) (solid line) and{(hS, s9%9), 1 < ¢ < n} (dots).

FIG. 2: Characterization of uncertainties: probability density function ) (-, -; mm, 6%, Mg, 6?9, 0).
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9.2 Propagation of Uncertainties
9.2.1 Surrogate Model and Implementation Using a Nonintrusive Projection Method

Next, we approximated the finite element model by a surrogate model. We obtained results using a range of values for
the orderp of the surrogate model and the parameatéhat controls the number of nodes in the quadrature for inte-
gration with respect to the probability density function; s) (-, ; i, 6%, ms, 6%, p). We discuss the convergence

with respect tg andA later; for now, we present detailed results that we obtained mwithd andA = 5.

We constructed the Gauss-Hermite quadrature rule, which provided the basis for the quadrature rule for integration
with respect to . s) (-, - 7w, 0%, Mg, 6%, p) [Fig. 3(a)], whereupon we solved the finite element model for each
node of this quadrature for integration with respecptg ) (-, -; 7, 6%, Mg, 6%, p) [Fig. 3(b)] and we solved the
optimization problem in (48) to obtain the surrogate model [Fig. 3(c)].

The computational cost of constructing the surrogate model was dominated by the repeated solution of the finite
element model for each node in the quadrature for integration with respegi t9 (-, ; .m, 6%, 1ms, 6%, p); forp =
4 andA = 5; the construction of the surrogate model requikéd= 25 finite element model solutions.

9.2.2 Approximation of Statistical Descriptors

Subsequently, we used the surrogate model as a substitute for the finite element model in approximating statistical
descriptors for the springback angle. We generated two independent ensembles of (a sufficiently largevnamber
1,000, 000 of) i.i.d. samples from the zero-mean, unit-variance Gaussian probability density function. On the basis of
these, we generated an ensemble of i.i.d. samples f{em) (-, -; q, &%,1ms, 6%, p) [Fig. 4(a)], and we used the
surrogate model to map each of these samples into the corresponding sample of the springback angle and then applied
mathematical statistics methods to the ensemble of i.i.d. samples of the springback angle thus obtained [Fig. 4(b)].
Figure 4(b) shows the approximate probability density function of the springback angle obtained=fot
andA = 5 by applying the kernel density estimation method [39] to the ensemble of i.i.d. samples of the springback
angle. Further, fop = 4 andA = 5, we obtained the following approximations of the mean and variance:

DA

A = 0.0528 rad (6?2 = 5.34 x 10" rac?, oY~ = 4.38%.
my

9.3 Sensitivity Analysis of Uncertainties

Finally, we carried out a sensitivity analysis of uncertainties to gain insight into the manner in which uncertainties in
the hardening modulus and yield stress induce uncertainties in the springback angle. Using the variance-based method,
we obtained the following approximations of the significance descriptogs forl andA = 5:

sbr =0.102 x 10 °rad  and s = 5.30 x 10~ rad’,

thatis,s%; /(o%1)? = 0.0192 ands%™ /(o%1)2 = 0.99; thus, the uncertainties in the yield stress are more significant
than those in the hardening modulus in inducing uncertainties in the springback angle. Using the differentiation-based
method, we obtained the following approximations of the sensitivity descriptogsot andA = 5:

shy = —0.0305 x 10 rad’/MP& and s = 8.31 x 10~" rad’/MP&,

that iS,((T%{/(GZ;,’A) )s ) = = —0.0103 and (6% /(0% M2 )s , = 1.02; thus, the variance of the springback angle is
S
more sensitive to changes in the variance of the yield stress than to changes in the variance of the hardening modulus.

9.4 Numerical Convergence Study

We conducted a numerical convergence study to examine the impact that the values assjgaad Xchave on
the results. Specifically, we repeated the construction of the surrogate model and the approximation of statistical,
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FIG. 3: Propagation of uncertainties: (1) quadrature rule for integration with respepghtg)(~,-;mH,6§I,
ms, 6%, ), (2) permanently deformed shapes obtained by solving the finite element model for each node that this
guadrature rule has, and (3) surrogate modebfer4 andA = 5.
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FIG. 4: Propagation of uncertainties: (1) ensemble of i.i.d. samples i) (-, -; 7, 6%, s, 6%, p) and (2)
corresponding ensemble of i.i.d. samples and probability density function of the springback apgte4@andA = 5.

significance, and sensitivity descriptors of the springback angle for several valpesetfingh = p + 1. Figure 5
illustrates the convergence of these approximations. We can observe that the results presented previodsly for
andA = 5 have converged reasonably with respect to the gpdefrthe surrogate model and the parametehat
controls the number of nodes in the quadrature for integration with respegi 9 (-, -; 7, 6%, Mg, 0%, D).

10. CONCLUSION

We offered a short overview of a number of methods reported in the computational-mechanics literature for quanti-
fying uncertainties in engineering applications. We covered the characterization, propagation, and sensitivity analysis
of uncertainties as they apply to parametric, nonparametric, output-prediction-error, and generalized approaches and
to problems of low, moderate, and high dimension. We included recent advances in the propagation and sensitivity
analysis of uncertainties characterized by arbitrary probability distributions that may exhibit statistical dependence.
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