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The present work proposes a novel nonintrusive, i.e., sampling-based, framework for approximating stochastic solutions
of interest admitting sparse multiresolution expansions. The coefficients of such expansions are computed via greedy
approximation techniques that require a number of solution realizations smaller than the cardinality of the multireso-
lution basis. The effect of various random sampling strategies is investigated. The proposed methodology is verified on a
number of benchmark problems involving nonsmooth stochastic responses, and is applied to quantifying the efficiency
of a passive vibration control system operating under uncertainty.
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1. INTRODUCTION

The possibilities offered by computational tools have dramatically affected the way modern design of engineering
systems is approached and have significantly improved our understanding of how physical systems behave in re-
sponse to changes in their underlying parameters. With the constant increase of available computer resources, the
effect of the uncertainties associated with these parameters (aleatory uncertainties) as well as in the definition of
the physical/mathematical models (epistemic uncertainty) can also be quantified to improvbustaesof our
predictions.

In this context, a typicalorward Uncertainty Quantification (UQ) process consists of various steps, e.g., formula-
tion of the model/problem, representation of uncertainty sources, propagation of uncertainties to response Quantities
of Interest (Qol), and possibly ranking of uncertainty sources. Depending on the application of interest, these tasks
may be challenging and require careful investigation and efficient numerical treatment. In the present study, we focus
exclusively on the uncertainty propagation step, for which we adopt a probabilistic framework. We, therefore, assume
that the formulation of the physical model is completely defined in space and time, and the probability distribution
functions of all input random variables or processes are specified. We are then interested in proposing an efficient
methodology to compute the stochastic description of a response Qol.

Monte Carlo (MC) sampling has long been used for uncertainty propagation due to its straightforward implementa-
tion and robustness in computing statistics of general functionals. While various sampling strategies, e.g., stratified or
importance sampling, have been proposed over the years to improve its convergence rate, MC sampling still maintains
its appeal for general problems with high-dimensional random inputs.
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For problems witremoothresponses and with moderate number of random inputs, approaches based on expan-
sions in series of basis functions may lead to improved convergence. A description in terms of polynomial basis
orthogonal with respect to the probability measure of random inputs—referred to as Polynomial Chaos (PC)—has
been proposed in [1] as a generalization of the classical Wiener-Hermite chaos polynomials [2—4]. For sufficiently
smooth stochastic responses, these expansion techniques may achieve as high as exponential convergence rate for
increasing polynomial order [5—7]. Several numerical strategies, including stochastic Galerkin [1, 4, 5] and stochastic
collocation—based either on tensorial product of one-dimensional quadrature rules or sparse grids [8—10]—have been
developed to generate PC expansions of solutions to partial differential equations (PDEs) with random inputs.

Of particular interest in the present study is the situation where the Qol exhibits discontinuities or sharp gradients
with respect to random inputs, i.e., nonsmooth Qol. Such cases are commonly observed in problems where the Qols
experience sharp variations in the physical space or time due to, for instance, the presence of shocks, bifurcations, or
instabilities [11-13]. In these cases, approaches based on standard PC expansions are known to suffer from slow or
no convergence [11].

To tackle this shortcoming, various methodologies have been proposed. An expansion in terms of a Wiener-Haar
basis is proposed in [11], resulting in faster convergence rates (error in expectation vs. number of solution realizations)
for problems with discontinuities. In [12], a multiresolution approximation is formulated based on the Alpert multi-
wavelet basis [14—17] generated from a family of Legendre scaling functions (also referrethtbeasvavelets);
adaptive strategies based on multiwavelet coefficients are also discussed in order to refine the approximation. Multi-
element PC techniques, developed in [18, 19], are shown to be effective in approximating stochastic solutions with
discontinuities and sharp gradients by adaptively partitioning the stochastic space into nonoverlapping elements. Ra-
tional polynomial expansions are investigated in [20]. In [21] an adaptive sparse grid collocation strategy is developed
using piecewise multilinear hierarchical basis functions. Methods employing simplicial meshes have also been ex-
tended from deterministic to stochastic problems. In [22], a simplex stochastic collocation method is proposed, which
is suitable for stochastic spaces of arbitrary shapes—not necessarily obtained as a product of one-dimensional inter-
vals. Methods based on a finite volume discretization in the stochastic space have also been proposed in [23, 24].

The present study proposes a framework for sampling-based approximation of stochastic solutions exhibiting dis-
continuities or sharp gradients. We take advantage ofplaesityobserved in multiwavelet expansions of piecewise-
smooth responses in order to reduce the number of solution realizations needed for an accurate reconstruction via
regression. By sparsity, we refer to the cases in which only a small fraction of multiwavelet basis functions are needed
to represent the solution within the required accuracy. Motivated by the work in [25—-30], the expansion coefficients
are computed using tools extended from the compressive sampling framework [31-33], wherein assumptions on the
sparsity of the expansion and random sampling of solution are translated into algorithms and convergence guaran-
tees. To enhance the approximation accuracy, an adaptive importance sampling strategy is also introduced that relies
on approximate multiwavelet coefficients computed at each iteration. The combination of these three elements, i.e.,
multiresolution approximations, sparse regression, and importance sampling, applied in the context of uncertainty
propagation, makes the present approach innovative and effective for a broad range of problems.

We highlight some similarities to existing approaches. In particular, a similar expansion was employed in [12] in
the context of intrusive uncertainty propagation. The construction of the multiwavelet basis proposed therein differs
slightly from that originally discussed by Alpert [14-17], as fewer conditions are required in terms of vanishing
statistical moments for the basis functions. Concepts like sparse recovery and importance sampling, closely related to
the nonintrusive construction of this work, have not been discussed in [12]. Furthermore, it is worth highlighting the
similarity between the concept of hierarchical surplus proposed in [21] and that of the multiwavelet basis used in the
present work. In both approaches the information relatedktailsis used to drive the adaptivity either in terms of
samples and/or approximation basis.

The remaining of this paper is organized as follows. We introduce the problem of interest in Section 2. In Section 3,
we briefly review the concepts of multiresolution analysis and multiwavelet approximation. The fundamentals of
sparse approximation via compressive sampling are discussed in Section 4 with a special attention to multiwvavelet
expansions. The proposed adaptive importance sampling strategy for nonintrusive multiwavelet regression is discussed
in Section 5. Numerical examples are provided in Section 6 showing the performance of the proposed framework on
problems exhibiting discontinuities or sharp gradients with respect to random inputs.
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2. PROBLEM SETUP

Consider a complete probability spage, 7, P) in which Q is the set of elementary events,is the o algebra of
possible events, arf@ denotes a probability measure &h We assume that the input uncertainty is characterized by
the independent random vectpr= (y1,...,yq4), d € N, where each random variabje : @ — [0, 1] is uniformly
distributed over0, 1]. LetI' C R”, D € N, be the spatial domain with bounda®y" andt¢ € [0, T represent the
temporal variable. We consider approximating the solutio, ¢, y) : T' x [0, 7] x Q — R", h € N, to the problem

L(x,t,y;u) =f(x,t,y) on T,
u(x,t,y) =u(x,t,y) on JT, 1)
u(X, t, Y) = uO(Xv y) at t=0,

which holdsP-a.s. inQ2. Here, we assume the well-posednessHia.s. sense) of (1) with respect to the choices of
the forcing, boundary, and initial functiofs u,, anduy, respectively. We seek to approximatéx, ¢,y) at a fixed
locationx* € T in space and time instane¢é < [0, T] by using realizationgu(x*, t*,y) : i = 1,..., M} of
u(x*,t*,y) corresponding td/ random samplegy®) : i = 1,..., M} of y. To simplify the notation and presen-
tation, we henceforth drop the space and time variaktes*, and describe our approach for a scalar, multivariate
solutionu(y), i.e., withh = 1.

It is worth highlighting that the framework introduced here is applicable to cases in which the solution of interest
is defined over multiple spatial locations or time instances, or is vector-valued, i€l, In these cases, a direct—but
not necessarily the most efficient—approach is to independently repeat the proposed constructions for each and every
spatial location, time instance, or component of the solution of interest.

3. MULTIRESOLUTION AND MULTIWAVELETS
3.1 Multiresolution Analysis

A multiresolutionapproximation of.2([0, 1]) is expressed by means of a nested sequence of closed subsjpaces
Vi, C --- C V; C --- C L?([0,1]), where each subspadé; corresponding taesolution; is given byV; =
span{d; x(y) : k =0,...,27 — 1}. Here, the functions

djk(y) =222y — k)

are dilations and translations okaalingfunction$(y) : [0, 1] — R, andd(y) is such that the closure of the union

of V;, Ureo Vi, is dense ir?([0, 1]). Let thewaveletsubspacé¥V ; denote the orthogonal complementéf in
Vi1, thatisV;, = V; & W; andV; LW;. It can be shown tha® ; = span{¢; x(y) : k =0,...,27 — 1} where
¢;x(y) is generated from dilation and translation ahatherwavelet functione(y) : [0,1] — R,

©;k(y) =222y — k).

By the construction of wavelet subspadds;, it is straightforward to see thaf; = V @ (G}?;é Wk), and

consequentlyVo & (Pr, Wi) = L?([0,1]). Therefore, any functiomn(y) € L?([0,1]) admits an orthogonal
decomposition of the form

0o 291

u(y) = &o0Po0(¥) + D D k@i k(y), )

j=0 k=0

wherecg o = (u, $o,0)L2(j0,1])s %5,k = (U, ©j,k)L2(j0,1]), @nd the inner produgts, v) 20,17y = fol u(y) v(y) dy. For
the interest of notation, we rewrite (2) in the form

u@:waw 3)
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in which we establish a one-to-one correspondence between elements of the bess seis; , : k = 0,...,27 —
1, =0,...,00}in(2)and{P; : i =1,...,00} in (3).
3.2 Multiwavelet Basis in One Dimension

In the present study, we adopt the multiresolution basis of Alpert [14-17], where multiple scaling fufdtidns :

i =0,...,m — 1} are used to construct the polynomial spAg. Specifically, we choosé;(y) as the Legendre
polynomial of degree defined on|0, 1]. An orthonormal piecewise polynomial badie;(y) € L2([0,1]) : i =
0,...,m — 1} of W{" is also established such that

1
/ (Pz(y)yldy:O, ’1,7[:0’7m_1
0

Stated differentlyp;(y) hasm vanishing moments. Theultiwaveletbasis functionsp; ; »(y), hence the multi-
wavelet subspacéd’’", are generated by dilations and translation$@f(y) : i = 0,...,m — 1}, thatis

With certain additional constraints ap;(y) described in [15], the resulting basis is unique (up to the sign) and
provides a generalization of the Legendre and Haar basis. In particular, the Legendre polynomials may be obtained
by limiting (4) to the resolutiory = 0, while Haar wavelets are obtained by setting= 1. Example of functions in

©;(y) form = 3 andm = 4 are illustrated in Fig. 1. We refer the interested reader to [15, Section 1.1] for an in-depth
derivation of the Alpert multiwavelet basis.

3.3 Multiwavelet Basis in Multiple Dimensions

Ford > 1, we consider the vectan = (my,...,mg) € N and introduceVy® = V" ® --- @ V{'* as the
product space spanned by the tensorizations of univariate Legendre polynomials defitield. dfve also introduce
amulti-indexi € 7 = {(i1,...,iq) : 0 <14 <my, I =1,...,d}, and define a singlé-dimensional scaling function

$i(y) = biy (1) - - - iy (va)-

30 40 ¢
30 -
2.0
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& 00/
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f
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FIG. 1. Examples of Alpert multiwavelets withh = 3, (a), andm = 4, (b).
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The complete seff™ of scaling functions is given by
St ={dily) :i €1}
Before writing the expression for the wavelet function, we introduce the following notation

V) =di, Wi=0, VHy) =)0 (Ya),

whereq is an element of the multi-index s&@ = {(¢1,...,q4) : @« € {0,1}, [ = 1,...,d}. In other words,
q defines the products of univariate multiscaling and multiwavelet funcggnand; in ¥ (y). The setWi of
functions spannindV{*—the orthogonal complement &f§* in Vi*—is defined as

Wot = {bi(y):i€Z, q€ Q},
while
VIR = S UWE = (Wi(y) i€ Z, g€ QU{(0,---,0)}}.
Similar to the one-dimensional case, scaled and shifted analogues of the mother multivavéfgtsaia used to gen-
erate multiwavelet spaces of increasing resolution. At resolijtiord, the shift multi-indexk € K = {(k1,...,kq) :
0<k <2 —1,1=1,...,d} is used to identify the partitions in&dimensional grid witt2’ subdivisions in each
dimension. It follows that
L (Y) = 22T 2y — k) D (2 — k)
and
Wi = {0} (v):ieZ, ke K, qe Q}.

Given a vectoorm = (my,...,mg) defining the maximum order of the univariate scaling functiar(s;) €
L2([0, 1]¢) can be written as

u(y) = Z 00,5,0 W0 5,0(y) + Z Z Z Z ok Wi (¥) ©)

i€z 7j=0 keK q€Q ieT

Finally, we simplify the notation by rewriting (5) in the form
u(y) = aibi(y), (6)
i=1

in which we establish a one-to-one correspondence between elements of the basig sgtsh};, : i € Z, k €
K,qe Q,j=0,...,00}in(B)and{y; :i=1,...,00}in (6).
As an example, in Fig. 2, we illustrate the multiwavelet approximation of the 2D function

—16(y1 —1/2)2 =16 (yo — 1/2)2 4+ 1, if /(y1 —1/2)2 + (y2 — 1/2)2 < 1/4
0 otherwise

u(y1,y2) = { (7)

usingm = (0,0), i.e., Haar basisn = (1,1), andm = (2,2), and with the maximum resolution levgh.. = 3,
i.e.,8 x 8 partitioning of the unit square.

Remark 1 (Implementation) The expressiofb) or (6) may be used for efficient reconstruction and compact repre-
sentation of a sparse stochastic function once the maximum degieés- 1, ..., d, the maximum resolutiof, .,

and the number of input parameteisare provided. Four quantities are sufficient to identify a single member of the
multidimensional multiwavelet basis set, namely the resolytj@and the multi-indice$, k, andq. In practice,i is
determined by selecting one of all the possible permutations efithdicesi;, 0 < ¢; < m;. Similarly,k is identified

by mapping a given member of the $6t. .., 279 — 1} into its coordinates in al-dimensional uniform grid defined
over [0, 1]¢ with 27 uniform subdivisions in every dimension.
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' o A
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FIG. 2: Examples of 2D multiwavelet approximation foXy;,y2) given in Eq. (7). Original function, (a); Mul-
tiwavelet approximation withm = (0,0), (b); Multiwavelet approximation witm = (1,1), (c); Multiwavelet
approximation withm = (2, 2), (d).

Remark 2 (Nonuniform measures)in all the developments of this work, we assume that random inpuis=
1,...,d, are independent and uniformly distributed oy@r1]. For cases wherg;’s are independent but not uniformly
distributed, following [12], we may utilize a change of variable in order to apply the proposed framework. Specifically,
let (y;)—assumed to be a continuous, monotonically increasing functigp-eflenote the cumulative distribution
function ofy;. The comutative Distribution function (CDF) of random variable= ®~(z;), wherez; is uniformly
distributed over0, 1], is . This, therefore, suggests the change of variaple> ®~1(z;) and the construction of the
expansion in (6) in terms af instead ofy;.

3.4 Approximation Error for Differentiable Functions

Theoretical error bounds and convergence rates for multiwavelet approximation are provided in [15]. For the one-
dimensional case, consider antimes differentiable functiom(y) € C™ ([0, 1]). Using (3), we definé" u(y) =

> i (u, i)z o,1)Wi(y) as the orthogonal projection afonto’ V. The following error estimate holds [15, Lemma

1.1]:

d™u

dy™

IP5 w — wllgao,y) < 277 sup : ®)

4m m)! y€[0,1]

The order of convergence is heneefor the one-dimensional case and generalizes:f@ in d dimensions [15].
Notice that the error bound in (8) and its multidimensional extension are only references in our case, as the solutions
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of interest in this study are not necessarilytimes differentiable. Additionally, as we shall describe later, we do not
compute the multiwavelet coefficients in (3) via the projectionx; = (u,;)r2([o,1]) @s required in (8).

We next introduce the notion of sparsity in multiwavelet expansions and subsequently extend ideas from the field
of compressive sampling [31-33], to compute the coefficianis (3) or (6).

4. SPARSE MULTIWAVELET EXPANSION VIA COMPRESSIVE SAMPLING

In the present study, we are interested in approximating solutidghat admit sparse multiwavelet representations.
More precisely, consider the multiwavelet expansion (6) corresponding to amgiaerd truncated at some resolution
j. We denote byP the cardinality of the resulting basis and calsparsein {{;, i = 1,..., P} if S = #{«; #
0:¢=1,...,P} < P.In practice, many of the multiwavelet coefficients, while negligible, may not be precisely
zero; these cases are consideredmsoximatelysparse. We hereafter refer to both cases as sparse. Piecewise smooth
functions exhibiting sharp gradients, bifurcations, or discontinuities, for example the solution of hyperbolic PDEs,
may lend themselves to sparse multiwavelet representations.

Our interest in sparse multiwavelet representations stems from the recent developments in the field of compressive
sampling which may enable exact construction of such representations using a ddrabsolution realizations that
is considerably smaller than the cardinali®yof the basis, i.eM < P. This is in contrast to, for instance, standard
least-squares regression methods which generally refiiie P for a stable approximation.

4.1 Rudiments of Compressive Sampling

Compressive sampling is a recent development in signal processing that breaks the traditional limits of the Shannon-
Nyquist sampling rate for the reconstruction of sparse functions/signals. Consider the weetofu(y™),...,
u(yM))T ¢ RM containing realizations ofi(y) € L2([0,1]¢) corresponding ta\/ independent samples gf
Assuming that: can be exactly expanded into a multiwavelet basis of the form (6), with some order ueetod
resolutionj, u is given byu = ¥a. Here, the so-calledheasuremenmatrix ¥ € RM*F is such that®[i, j] =

P (y) andx € R” is the vector of unknown expansion coefficientsu)fhencee, is sufficientlysparse, then

u = Y may admit a unique solution. Compressive sampling aims at findiogrom an optimization problem

(Ps) : min ||«||s subjectto u=¥q«, 9)
xERP

in which s = 0 and the semi-normje|lp = #{«; : &; # 0} is the number of honzero componentscofA more
general formulation results from allowingto be approximately represented by a multiwavelet basis of the form (6),

(Pse): min |[a|s subjectto |u— P«|s < e, (10)
’ xERP

with s = 0. In other words, in (10), we account fottruncationerror of size|ju — ¥ «|2 < e for somee > 0. The
sparsest solutior to (Fp), corresponding to minimizing thix||o, is generally NP-hard to compute [33]. To break
this complexity, several heuristic techniques based on greedy pursuit, e.g., Orthogonal Matching Pursuit (OMP), and
convex relaxation vid;-minimization, i.e.,s = 1, have been proposed [34—42]. Moreover, several indicators such as
the mutual coherenc33] or therestricted isometry constaii82] have been introduced to establish guarantees on
the uniqueness of the solution tBy) as well as the ability of the heuristic alternatives in recovering this solution. In
particular, the mutual coherence%f(e.g., see [33]) is defined as
Wi |
HOE) = X o T, T an

whereyp, € RM is theith column of &. Note thatu(¥) € [0,1] in general and is strictly positive fai/ < P.
Depending on sparsit§ = ||«||o, u(¥) provides a sufficient condition on the number of measurements for a
successful recovery af from (P;) or (Ps.e), s = {0, 1}, as shown in [33]. Ideally, with the sani¢ andS, one may
anticipate more accurate solutiongor smaller values ofi(¥).
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We next discuss the methodologies we employ to compute the coefficient wettmyether with a brief introduc-
tion on a number of closely related approaches for solyiAg and(P; ) whens = 0.

4.2 Greedy Approaches

Greedy pursuit algorithms form a major class of techniques for solibgand (P ¢ ) with tractable computational
cost. Instead of performing an exhaustive search for the support of the sparse solution, these methods successively
find one or more columns of, hence basis functions, that result in largest reduction in the residual, thus the name
greedy More specifically, the solution is sought for by repeating a two-stage procedure. In the first step, referred to as
sensingone or more indices in the support®@f {i : «; # 0}, are identified such that the current residual is reduced
the most irrespective of already selected column® ofin a second stage, callpdojection the coefficients associated
with the updated column set are computed. A brief overview of several greedy approaches is presented next.

Matching Pursuit.The Matching Pursuit (MP) algorithm [43] is the basis of many sparse approximation tech-
nigues, including those employed in the present studyZket be the set of indices associated with the selected
columns of® atiterationk — 1 < M. In MP the sensing and projection steps are closely related. Specifically, assum-
ing the columns of have unit/, norm, an index = argmax;¢z, , rf_;,| is first identified and the coefficient
o is settoo; = r}_ ,. The quantitye; 1, is then subtracted fromy,_;, providing an updated residual for the next
iteration. The set of indices is also updated’to= Z;_; U {i}. A discussion on the infinite and finite dimensional
properties of this algorithm is provided in [43]. In general, the residual vector produced by MP is only orthogonal to
the last selected basis function, which may lead to slow convergence [44].

Orthogonal Matching PursuitOrthogonal Matching Pursuit (OMP) is a widely used algorithm for the solution
of (Py) and(Py ) [37, 44]. Itimproves on MP by solving a least-squares problem in the projection stage. Similar to
MP, an indexi = arg max;¢7z, , |r{_11])j| is identified and added t0y,_1, i.e.,Zy, = Z;—1 U {i}. Let ¥z, be the
submatrix of¥ consisting of columns o¥ with indices inZ. The entries of solution associated with, denoted by
oz, , are computed by solving an overdetermined least-squares problem

(¥7 W1,) oz, = ¥ u. (12

Notice that, unlike in MP, the residua} = u — ¥z, &z, is made orthogonal to all the columnsWfwith indices in
7). More details on the implementation of OMP may be found in Algorithm 1. Following [45], if a soluti¢®{p
exists that satisfielse||o < (1 + 1/u(®))/2, then OMP will identify it exactly.

CoSaMP [41] and StOMP [35] are greedy heuristics proposed as more efficient alternatives to OMP. Both ap-
proaches sense more than one basis function in each iteration, resulting in speed-up and, in some cases, accuracy
enhancement over the standard OMP. They also accommodate fast matrix-vector products, both for sensing and for
iteratively solving the least-squares problems.

Given the local nature of the employed multiresolution basis and as a result of operating in the undersampled
case, it may occur thap,. = 0 for somei* € {1,..., P}. In this case* will not be included in the support set
Ty irrespective of the magnitude of;-. This observation motivates the use of a more careful sampling technique
as introduced in Section 5.

Algorithm 1. [Orthogonal Matching Pursuit (OMP)]
Inputs:
Measurement matriwy.
Vector of realizationsi.
Maximum allowable number of iteratiors, .
Convergence tolerange

Outputs:
Solution vectorx.

Initialize:
k0,0« 0,19« u,Zy «— {0}.
N — diag([[¥y[l2,- -, [[Wpll2)
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Set to unit norm column® « ¥ N1,
Iterate:
while |[rg]l2 > € andk < kpyax
(Sensingy
Findi = arg max;gz, [r} ;.
(Update support st
k—k+1.
Iy — T 1 U {Z}
(Least-squares projection
Set¥7, «— [II)“|‘II)”}, 1j € Iy,
Solveaz, — (\Il%k'llzk)_l v7 u.
(Expand to full coefficient vectpr
ock(Ik) — X7, .
(Update residuadl
ey <— u— ‘I’Ik X7, -
end while
Return:
Nay

Tree-based Orthogonal Matching Pursuit (TOMPhe observation that piecewise-smooth functions are charac-
terized by a connected subtree representation in the wavelet space has lead to tree-based implementations of OMP,
referred to as TOMP, as described in [36, 46, 47]. Basis functions are progressively added to the active set together
with their ancestors, in an effort to perpetuate their connected subtree structure. The introduction of such an additional
dependencynodelis a way to reduce the number of effective degrees of freedom in the expansion coefficients with
the objective of enhancing the reconstruction accuracy. In the context of compressive sampling, other approaches for
promotinga priori knowledge on the expansion coefficients have been developed, see, e.g., [48-50].

As discussed in Section 3, multiwavelet basis functions are characterized by a resolutior mnaga shift
multi-indexk € K. The number of basis functions at successive resolutions increases by a fa2tomudking
the representation akin to a tr@erepresentation where every father Rdschildren and every node in the graph is
associated with multiple basis functions sharing the same support. If we assume, for simplicity, a one-dimensional
case with scalar wavelets, then a basis functigrwith scale and shift indice§j, k) is thefather of basis functions
with scale and shiftindice§ + 1, 2k) and(j + 1, 2k + 1). The set of indices adincestorf 1, is denoted by4; and
is obtained by recursively including fathers up to the root. Similarly, the set of indiaessobndantsf 1);, indicated
by D;, is formed by including all the children af; up to the maximum scale indgx,... A tree isconnectedf i € 7
implies A; € 7. Anodei of T is aleafif A; € 7 whileD; ¢ T.

In the TOMP approach of [46], the sensing step at iteratiternds to a candidate set

Cr={i: |r£—11l)i| = m]aXIrZ_ﬂbjl, 3¢ Tk-1},

in which 0 < vy < 1 controls the number of indices added@p. For each index € C; at a time, the tentative
support seIZ,(j) = Tr—1 U {i, A;} is formed. Subsequently, for eafﬁ) a least-squares problem of the form (12) is
solved and the s€i, .4; } resulting in the smallest residual is permanently added to the suppdit setFor a given
number of sampled/, the iterations are stopped whﬁ‘f;gz)| > (M. Empirical results of [36] suggest an optimal
value ofy = 0.975, which we also use in the numerical experiments of the present study. Similar TOMP approaches,
as described above, have been proposed in [36, 47]. There, to reduce the computation complexity of searching through
all basis functions, only basis functions up to a fixed resolution below a selected basis function are included in the
candidate set of [47].

Our implementation of TOMP parallels the approach of [46] with the main difference that, in our construction,
multiple basis functions (multiwavelets) are present at the tree nodes. This suggestsréree node extension of
the scalar tree nodes of [46], where, except for the selection of the ancestor sets that may be implemented in different
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ways, all the other steps remain practically unchanged. To be more specific, multiple ancestors at rgseludtion
correspond to a selected basis function at resolufion 1. In our implementation, we choose to include all the
ancestors. Algorithm 2 summarizes the details of the TOMP approach implemented in the present study.

Algorithm 2. [Tree-based Orthogonal Matching Pursuit (TOMP)]
Inputs:
Measurement matriyy.
Vector of realizationsu.
Maximum allowable number of iteratiors, ..
Tolerancee.
Coefficientsy, .
Outputs:
Solution vectorx.
Initialize:
k«— 0,rg < u,Zy — {0}.
N — diag([ 1 ]l2. . [Wpll2)-
Set to unit norm column® «— ¥ N1,
Iterate:
while ||rg|l2 > €, k < Emax, and|Zy| < (M.
(Sensiny
Cio={i: ey, >y max; [, j ¢ T}
(Update support sgt
k+—k+1.
forall i € Cy.
T — Ty Ui, A
(Least-squares projection
aI;(j) — (\I/;(;) ‘I’I%: )—1\112(;) u.
(Tentative residudl
I‘II(;,) —u—w (XI)(;:).
end for
i +— argmin;ce, ||
Tp — I,
(Update solutioin
ock(Ik) — (XI)(C'L,C).
(Update residugl
rp < I‘II(Cik).
end while

Return:
N(Xk.

I

2

(i)
Ik

Finally, we remark that the accuracy of our sparse approximation depends on the truncatieniri(td). An
excessively small value of may result in overfitting the solution samples, while larger values ofay lead to
underfitting, hence, less accurate reconstructions. In [26, 51] a procedure based on cross validation is proposed to find
an optimal value foe. This technique is effective in reducing the over- or underfitting but requires multiple solutions
of smaller-size problems, which affects the overall reconstruction time.

5. SAMPLING STRATEGY

The standard approach to obtain the measuremeist$o generate realizations® of the input independently from
their joint probability measurg(y ), and evaluate the corresponding solutigg (*)). However, for situations where
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exhibits, for instance, sharp gradients or discontinuities, such a sampling strategy may not necessarily lead to accurate
multiwavelet approximations, especially if the number of realizations is limited. This is because the higher resolution
basis functions, needed to capture the local structukg ofay not be sampled enough to be selected in the sensing
stage of OMP or TOMP.

In [52], the optimality of the Chebyshev sampling is discussed for compressive sampling of a large class of global,
bounded orthogonal polynomials. Except at resolugioa 0, multiwavelet functions are defined locally over the
support of random inputs. As a result, depending on the problem at hand, sampling from the Chebyshev measure
may depart from being optimal. To illustrate this empirically, we compare distributions of mutual coherence for
measurement matrices generated from Legendre and multiwavelet expansions, by sampling uniformly or according
to the Chebyshev distribution. Following that, an importance sampling approach is introduced that allows for local
accumulations of samples and consequently enhancement of solution accuracy.

Remark 3 (Departure from standard compressive samplidpte that any adaptive sampling of solution is a depar-

ture from standard compressive sampling techniques, where the sampling is meant to be nonadaptive. Therefore, the
approach presented in this work only overlaps with compressive sampling methods by sharing algorithms for sparse
approximation.

5.1 Sampling from Chebyshev Measure

The Chebyshev probability measure @ 1) is defined apc(y) = 2.0/(m+/1 — (2y — 1)2). A uniform random
variablez ~ U(0,1) can be mapped to a random variablsvith the Chebyshev measure using= (sin[r(z —

0.5)] +1)/2. Let{L;(y) : ¢ = 0,..., P — 1} denote the set of univariate Legendre polynomials of degree at most
P — 1 defined ovex0, 1). In [53, Corollary 7.4], it is shown that under certain conditions the mutual coherence of the
measurement matrix associated Wity (y) } is bounded by (¥) < /CM-1K?21og(23/4P2 /), with probability at
leastl — ¢. Here,C' ~ 26.24 and K is a constant independent Bfbut dependent on the choice of samplirig (y)}.

In particular, K attains its minimumK = /2, when{L;(y)} is sampled according to the Chebyshev measure
and weighted appropriately [52, 53]. For other choices of samphag; /2, thus implying theoptimality of the
Chebyshev measure. This is a consequence of the observation that the smallest (uniform) upper bduag pn
follows the Chebyshev measure [52]. For multidimensional cases, the results in [52] may be extended to show that
Chebyshev measure remains optimal as faf asP — 1.

In an effort to extend the above sampling approach to the case of multiresolution basis functions, we note that,
at the coarsest resolution and in a one-dimensional sethif{g) = L;(y) and therefore the Chebyshev measure is
optimal if we only include the scaling family in the expansion (2). However, the orthonormal mother multiwavelets
¢, (y) are discontinuous functions growing unboundedly at {0, 1/2, 1} for increasing. Due to their construction,
the multiwavelet functions at higher resolutions and with any shift multi-iridewll also inherit this property from
the mother multiwavelets. As a result, the Chebyshev measure does not necessarily provide the tightest envelope that
uniformly bounds the multiwavelet functions, which in turn implies that no improvement may be expected using the
Chebyshev sampling compared to the uniform counterpart.

To numerically investigate the performance of the Chebyshev sampling, we plot the CDF of the mutual coherence
u(P) for matrices with Legendre and multiwavelet basis functions sampled uniformly and according to the Chebyshev
measure. Legendre matrices are constructed usiagh, m = 5, andP = 252, whiled = 3, j.x = 0, m = 2, and
P = 216 is used for multiwavelets. The resulting curves are shown in Fig. 3(a) and 3(b). It can be seen that smaller
values ofu(¥) are achieved for the Legendre basis by the Chebyshev sampling and for multiwavelet basis by the
uniform sampling.

5.2 Importance Sampling

Importance sampling is a widely used variance reduction technique in Monte Carlo estimation [54]. Sampling is
performed according to a probability measure different from that of the random inputs, with the purpose of promoting
importantregions of the input space.
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Legendre Matrix - d=5, m=5, P=252 MW Matrix - d=3, m=2, P=216
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FIG. 3: CDFs of mutual coherence associated with random realizations of Legendre (a) and multiwavelet bases (b).

As stated at the beginning of Section 5, our motivation for developing an importance sampling strategy stems from
the observation that, with the uniform sampling, higher resolution multiwavelets may be undersampled and, hence,
incorrectly excluded from the active sets of OMP or TOMP. The idea is to concentrate samples at locations where
large multiwavelet coefficients are observed, and precondition the basis functions to retain their orthogonality. We
will illustrate numerically in Section 6.4 that this importance sampling strategy leads to accuracy enhancement when
compared to the uniform sampling.

It must be emphasized that the proposed sampling and sparse regression approach is adaptive. Specifically, we be-
gin by selecting an initial number of realizatiohs uniformly distributed over the sampling space in order to generate
the realizations1. The greedy solvers OMP and TOMP are then used to proviatst@stimate for the multiwavelet
coefficients. Based on these coefficients, a number of additional input samples and solution realizations are obtained,
and the importance sampling measure is formed. This process is repeated until the maximum possible number of
solution realizations is reached or a sufficiently small change in the coefficients is observed. For the interest of pre-
sentation, in what follows we assume that the approximate coefficients are available and we describe our approach for
drawing additional samples of inputs as well as the construction of the importance sampling measure.

5.2.1 Importance-Driven Partitioning of Stochastic Space

We begin by discussing how a patrtition of the sampling space can be associated with a truncated multiwavelet repre-
sentation. We then describe how samples are generated over such partition and, finally, how we build an importance
sampling measure.

A partition of the stochastic spad@ 1] is obtained from a multiwavelet tree representation by fivatkingthe
nodes in order to form a connected subtree—associated with large coefficients—and by identifying its leaves. Note
that, in a multiwavelet representation, multiple basis functions share the same resolutigraledeshift multi-index
k. This representation may be organized in a vector tree whose nodes are vectors of coefficients associated with these
basis functions. In order to construct our importance-driven partitionirig, @f¢, we convert this representation to
a scalar tree before we proceed. Stated differently, we desire to assign only one representative coefficient for every
node, i.e., pairf, k), in the tree. To this end, we select the coefficient with the largest absolute value. Note that this
is not the only possible choice; tlie norm of those coefficients, for instance, may be a valid alternative. Our choice
is, however, consistent with the assumption of sparsity of the multiwavelet coefficients. In what follows, envelope
coefficients will be denoted witk to avoid confusion with the coefficients in the multiwavelet expansion (6).

In the first step, all tree nodes with multiwavelet coefficieftsobeying|&;| > &:., for someé., > 0, are
identified and marked. In the second step, a scalar connected sUptreel is identified where every node with
a marked descendant is also marked. Finally, the lealvés {otal) of 7.—not necessarily at resolutioi,..—are
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identified as unmarked vertices with marked parents or marked vertices at the respletion, .., and added to
7.
The support of these leaves form a set of disjoint subdom@iys: i = 1,..., L} and their union ig0, 1]¢,
thus resulting in the desired partition of the stochastic space. These proper{i8s ofi = 1,..., L} may be
verified using arguments based on tree traversal through parent-child edges. In particular, as leaves are selected from
a connected tree, the path between an arbitrary leaf and the tree root does not contain other leaves, resulting in disjoint
subdomains. Moreover, from the root of the tree, it is not possible to reachtaitenode: ¢ 7. without visiting a
leaf first. The leaves, therefore, cover the enftird]?. Figure 4 displays the identification of an instance of a subtree
7. corresponding td = 1, jiax = 3, andL = 4.

5.2.2 Construction of Importance Sampling Measure

The partition{5; : i = 1, ..., L} drives the construction of the proposed importance sampling measure. In particular,
let &; be the multiwavelet coefficient with largest magnitude corresponding to leafinadd.4; the set of ancestors
of ¥;. For each leaf node=1,..., L, let

|&; ] ,
i = max ———— i=1,...,L, 13
P je{i UA;} [supp(y)| =

denote the maximum ratio of the coefficient magnitudes to the support size of the corresponding basis functions on a
branch with leafi. We drawM; additional samples uniformly over each subdom@jrsuch thatM; is proportional
to the Weightqsi/Zf:l ;. Let M, denote the total number of samples on each subdofeémd A/ = Zle M;

the total number of samples. We then define the empirical, importance sampling mg@suré0, 1] — R,

_ X Mills, (y)

: (14)
S Mi|Bi|

Y(y)

which, as we shall describe later, is needed to preconditioifthe) problem in (10). Here, the indicator function
Ig,(y) = 1if y € B; and zero otherwise. Notice that this importance sampling strategy gives higher priority to
sampling within the subdomains corresponding to multiwavelets at higher resolutions.

5.2.3 Preconditioning

The importance sampling strategy discussed in Section 5.2.2 may lead to a large mutual coh@Eendeis is
because the multiwavelet basis is orthogonal with respect to the uniform measure, while samples follow the generally

Marked

Marked to restore a
connected subtree

Unmarked

i Leaves

=3

(b)

FIG. 4: Identification of leaves on a one-dimensional multiwavelet tree. Vertices associated with significant expansion
coefficients are first marked. A connected subtree representation is identified by marking additional vertices. Leaves
are finally selected as described in Section 5.2.1, (a). The same scalar tree is also illustrated in plot (b), with every
node corresponding to an interval denoting the support of a multiwavelet basis function with largest coefficient.
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nonuniform empirical measurg(y). To retain the asymptotic orthogonality of columns in the measurement matrix
W, we introduce the weighted basis functiopgy) = ¥, (y)/+/v(y) for which

R Vi(y) ¥;(y)

37 Ly ) 2 [ B B ) ay —5, as M-,

M ; ’ ot VYY) VYY) !
as a result of the strong law of large numbers. From a practical point of view, the weighting of the multiwavelet basis
translates into forming the importance measufg) and using the preconditioned measurement makrix W
and realization vectalt = Wuin (P, ¢ ). Here, thepreconditionematrix W is given byW = diag(1/+/y(y™), ...,
1/4/v(y())). An overview of the operations performed in the proposed importance sampling framework is outlined
in Algorithm 3.

Algorithm 3. [Importance sampling]
Part 1—Identify a partition of [0, 1]¢ consistent with the MW representation [Section (5.2.1)]
Form a scalar treg using the coefficienk; with maximum absolute value among those associated with the same
pair (4, k).
Given ., > 0, mark nodes witha;| > &;o;.
Identify a connected subtrég of 7.
Identify the leaves and associated subdom@ffisi =1, ..., L}.
Part 2—Sampling and importance measure computation [Section (5.2.2)]
Determine the coefficients;,i = 1,..., L, from (13).
Uniformly draw samples in eadB; with a number proportional to weighgs / Zle Bj.
Set the empirical measutdy) from (14).
Part 3—Preconditioning [Section (5.2.3)]
Form the preconditioner matr = diag(1/1/y(y®),...,1/y/y(y?D)).
Apply W to the matrix# = W¥ and realization vectoit = Wu.

6. NUMERICAL TESTS

In the first benchmark problem, we consider two multiwavelet basis functions with overlapping support and show
the effect of importance sampling and preconditioning on their empirical correlation. This exercise provides insight
on the effect of sampling strategy on the mutual coherance) of the measurement matri. Following this,

a test case is presented in Section 6.2, where two piecewise-smooth functions with different tree representations are
approximated by solving, ) via OMP, TOMP, and using uniform and adaptive importance sampling. Moreover, the
performance of the proposed multiresolution scheme for uncertainty propagation is assessed through its application
to benchmark problems featuring solutions with discontinuities or sharp gradients with respect to random inputs.
Specifically, a nonsmooth function, the Kraichnan-Orszag (KO) problem with one and two random initial conditions,
and a dynamical system with passive vibration control operating under uncertainty are considered.

6.1 Empirical Correlation of Two Multiwavelet Basis Functions

To achieve a smaller mutual coherendd )—hence better reconstruction accuracy—we desire faster convergence of
the empirical correlation of the multiwavelet basis. To investigate the impact of the sampling strategy on the empirical
correlation, we consider two one-dimensional, multiwavelet basis functigng ;. , ¥}, ;. ., at resolutiongjy, ja,
translated byk,, ko and with degrees, , is, respectively. Here, we chooge = 0, k&1 = 0,41 = 2 andj, = 3,
ko = 17,19 = 2, resulting in intervald3; = [0,7/8) andBy = [7/8, 1]. An equal expansion coefficient is assumed for
the two basis functions. Therefore, the coefficightsand 3, are inversely proportional to the sizg$ | = 7/8 and
|By| = 1/8, respectively, and consequently; = 1/7M,.

Figure 5 shows the empirical correlation of the unweighted, , and;, ; . with uniform as well as

weightedmb}hihk1 andxp}mzjkz with importance sampling. Notice that the empirical correlation converges to zero
fastest for the case of weightdd , , andy; , . with importance sampling.
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FIG. 5: Empirical correlation of basis functions of Section 6.1 vs. number of samples for uniform and importance
sampling as described in Section 6.1. The gray areas indicate values up to one standard deviation away from the
average empirical correlation. Products obtained using uniform sampling, (a), and importance sampling with basis
preconditioning, (b).

6.2 Sparse Functions with Known Tree Representation

As a second numerical experiment, we study the accuracy of OMP and TOMP in reconstructing two piecewise-smooth
functions with uniform and importance sampling.

The two functionsu;, us : [0,1] — R are selected as follows:

sin(40y)  if 0<y<0.25 1 if 0<y<0.75
up = and wug =
10sin(1by) if 025<y<1 10sin(15y) if 0.75 <y <1,

wherey ~ U]0, 1]. Figure 6 shows:; andus along with their scalar tree representations, where all supports having
a coefficient with absolute value larger thigt,;, = 1.0 x 10~ are colored. Darker colors along the vertical direc-
tion denote coarser resolutions and different colors along the horizontal direction correspond to different shift values.
Coefficients below this threshold were not included. As may be observed from kigh@s arunbalancedree rep-
resentation, that is, the fine scale coefficients are large only on a small portion of the $upgo@n the contraryy,
admits abalancedree representation, where the large, fine scale coefficients are distrnimitesmly over the entire
support. In the former case, we anticipate considerable difference in the performance of the uniform and importance
sampling strategies.

A one-dimensional multiwavelet basis wifh.x = 6 andm = 2 is employed, resulting in a basis with cardinality
P = 768. The samples are progressively generated fidm= 10 to M = 730 with increments of siz€0. Both
uniform and importance sampling of Section 5.2 are considered. Reconstructions are performed using OMP and
TOMP by solving @) with 500 independent replications for each sample 8ize

In general, the best performance for TOMP and OMP is obtained for different values of the truncation error
in (10). In order to find aroptimal €, we use cross validation over 11 valueseoin the range[10~—*,10~5], with
the number of testing to training samples set td. For more details on the implementation of this cross validation
approach, we refer the interested reader to the work in [26].
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FIG. 6: Piecewise smooth functiom, (a), andus, (b), introduced in Section 6.2. A graphical representation of the
associated scalar tree is also shown at the top left corner of the two graphs. Darker colors along the vertical direction
denote coarser resolutions and different colors along the horizontal direction correspond to different shift values.

To compare the accuracy of OMP and TOMP in approximatingndus, we compute an average of the error

_ ||0‘JWW - Oéresz

: (15)
[[otre sl

over 500 independent replications, wheve,w is the multiwavelet coefficients computed by OMP or TOMP and
o.f iS Obtained by quadrature integration. Specifically, for each multiwavelet coeffigigsufficient number of
Gauss-Legendre abscissas are used in the supprttofcomputex; = (u, bi)r2(jo,1))-

Figure 7 shows a consistently better performance achieved by TOMP as compared with OMP. The uniform and
importance sampling give similar results for the case of balanced tree representation, i.e., correspandifbeo

Uy uz
10" ¢ 10" ¢
F £ OMP - Uniform Sampling ———
TOMP - Uniform Sampling -------
L OMP - Importance Sampling --------
100 Ess TOMP - Importance Sampling
| 10°
107 |
w 102 | w 107 L
103
| 102 I
10 OMP - Uniform Sampling ———
TOMP - Uniform Sampling -------
OMP - Importance Sampling --------
TOMP - Importance Sampling
10-5 . L | . L 10-3 . R | . R |
10 100 1000 10 100 1000
Number Of Samples M Number Of Samples M
(@) (b)

FIG. 7: Average reconstruction relative errerin (15) for functionsu; andu, defined in Section 6.2 over 500
independent replications. Average errors obtained with OMP, TOMP, uniform and adaptive sampling are displayed in
(a) foru, and in (b) forus.
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combination of TOMP and importance sampling leads to smalile15) when the tree representation is unbalanced,

i.e., foru;. In this case the TOMP algorithm is more efficient in finding the correct location of the large coefficients
with small sample sizes as all nodes in the tree representation belong to the ancestor set of few leaves located at the
maximum resolution. Finally, it can be noticed in Fig. 7 that error curves for OMP and TOMP eventually intersect,
with TOMP achieving smaller errarthan OMP for cases of small sample siZds

6.3 A Discontinuous Function

In this example, we consider the discontinuous function
sin(myy) sin(mwys) if  y1 <0.5,y2 < 0.5,
ulys, ga) = { ) e Gryz) . (16)
0 otherwise

previously examined in [55]. Here, the random variablgs), ~ U/[0, 1] are independent. A graphical representation
of u(y1,y2) is shown in Fig. 8(a).

Methods based on global polynomials, e.g., Legendre polynomials, result in poor approximation due to the pres-
ence of discontinuities acrogs = 1/2 andy, = 1/2. Instead, this problem is well suited for the present multires-
olution framework as it gives rise to a sparse expansion in the multiwavelet basis. This sparsity is observed from the
scalar tree representation illustrated in Fig. 8(b), where only coefficients at the first two resolutions have significant
magnitudes. A 2D representation of the multiwavelet tree leaves contoured by associated coefficient magnitudes is
also illustrated in Fig. 8(c). All the weights; / Zle (3, are equal in this case.

To assess the accuracy of the multiwavelet expansioa(9f, y2) in (16), we compute the discretg, p €
{1,2, 00}, semi-norms

1/p

N
&p = (]1] Z ’UMW(y(i)) - U(y(i))‘ ) , pefl2} (17
=1

€0 = IAX ‘uMw(y(i)) - u(y(i))‘ ,
whereuw denotes the approximant afcomputed with the proposed multiwavelet expansion. Figure 9 shows the
convergence otq, €5, €5 as a function of the number of solution realizatial§ generated using the proposed
importance sampling strategy. It can be observed that TOMP outperforms OMP in terms of the number of samples
M needed to achieve a similar accuracy. Additionally, the accuracy of TOMP (or OMP) does not improve beyond
a certain level even when larger sample sizes are used. This residual error is due to the finite resahdionder
vectorm used in the construction of multiwavelet basis, and may be reduced by increasing these parameters.

High
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0 Y2 0.5
=
=Y
3
0
0 0.5 1
Y4
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FIG. 8: Visualization of the nonsmooth function in (16), (a). The scalar multiwavelet tree is shown to highlight the
resulting sparsity in the multiwavelet representation, (b). Partitidn,df? colored by the weight8;/ Zle B, (c).
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FIG. 9: Convergence 0of4, €2, £o, NOrms, described in (17), with = 1000 samples generated independently from
those used to generate the multiwavelet approximation iof (16). The adaptive importance sampling strategy of
Section 5.2 is used in both OMP and TOMP experiments.

10

The performance of the proposed framework in approximating the statistical moments of the function in (16) is
presented in Fig. 10, showing a plot of the number of samples against relative errors of the form

_ [Eluarw] = Elu]]

e — oL |ofurw] — ofu]| (18)

and €5 =
olu]

for the mean and standard deviation, respectively. In @B)sw | ando[u,w | are the mean and standard deviation
of u, respectively, resulting from the proposed multiwavelet expansion, \iiiileand o[u] are the corresponding
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FIG. 10: Relative errors in average value (a) and standard deviation (b) for the nonsmooth function (16). The rela-
tive errors produced by the proposed methodology are compared with those computed using dimensionally adaptive
sparse grids implemented in the SPINTERP MATLAB package [56] (ASG), and the spatially adaptive sparse grids
implemented in SG++ [57] (SASG).
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exact values computed analytically. Specifically, the results obtained from TOMPywith 2 and j,,,.. = 4 are
compared to those computed using hierarchical sparse grid collocation implemented in the SPINTERP MATLAB
package (ASG in Fig. 10) with dimensional adaptivity [56]. Moreover, the same quantities were also estimated using
spatially adaptive sparse grid collocation as implemented in SG++ package [57] (SASG in Fig. 10). It can be seen how
the proposed approach produces significantly better estimates of the statistical moments with similar sample sizes.

6.4 Kraichnan-Orszag (KO) Problem

The Kraichnan-Orszag (KO) problem is derived from the simplified inviscid Navier-Stokes equations [58] and is
expressed as a coupled system of nonlinear ODEs. We here adopt a rotated version of the original KO problem [18]

d d d
%:Ulus, %:ﬂmu\g, ﬂ:fuf+u§, (29)

dt
with initial conditions specified below.

In [18], the KO problem is used as a benchmark problem and analytical solutions are provided in terms of Jacobi’s
elliptic functions. The same example is used in [59] to test a treed Gaussian process model in the context of Bayesian
uncertainty quantification. If the set of initial conditions is chosen such that the planes 0 andu, = 0 are
consistently crossed, it is shown in [18] that the accuracy of the global polynomial approximations (at the stochastic
level) deteriorates rapidly in time.

6.4.1 Results for the d = 1 KO Problem att =30 s
We assume initial conditions for (19) to be random and specified as
ui(t =0) =1, uz(t=0)=0.2y — 0.1, uz(t =0) =0, (20)

wherey is uniformly distributed or0, 1]. The stochastic response is reconstructed using a multiwavelet dictionary
with m = 3 and a resolution up t@,.. = 7. Figure 11(a) illustrates the time history of the standard deviatian of

Time history for standard deviation of uy Convergence to standard deviation of u; at t=30s
1 _
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107 1A MW TOMP ----eeo-

3 02f &
©
MC
MW - 500 Samples ¢} s
0.0 Il L L L L I} 10 1 1 L I}
0.0 5.0 10.0 15.0 20.0 25.0 30.0 0 400 800 1200 1600
Time (s) Number Of Samples M
(@) (b)

FIG. 11: Results for the 1D KO problem. Estimates for the standard deviatian aft various times are obtained
using M = 500 realizations ofu;, (a); Convergence of the standard deviation.p{t = 30 s) (as a function of\/)
computed using OMP and TOMP, (b).
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computed using.0 x 10 Monte Carlo simulations; the estimates provided by the proposed approach are also shown
for time intervals of5 s and obtained usindy/ = 500 realizations ofu;.
For the stochastic responsetat 30 s, the relative standard deviation error

£o = |0-MW_0—ref‘ (21)
Oref
is plotted against the number of samplesin Fig. 11(b). The quantityr,w is an estimate for the standard devi-
ation of u; calculated from the proposed multiwavelet expansion and importance sampling approaghy as
(Zf’;2 o?)'/2, while o, is a reference value obtained from the Monte Carlo simulation. To illustrate the effect of
the importance sampling, we also present results using OMP with uniform sampling.

Figure 12 provides more details on the proposed multiresolution approximatignusing the importance sam-
pling strategy. In particular, the approximationw«f(y,) at¢ = 30 s is shown in Fig. 12(a), where the multiwavelet
approximation withA/ = 500 coincides with the reference solution. The evolution of the adaptive importance sam-
pling measure (y; ) is shown in Fig. 12(b). From an initially uniform measure, a large peakin) close toy; = 0.5,

i.e., the region with the highest response gradients, is observed. Finally, Figs. 12(c) and 12(d) show the partition of
[0, 1] for M = 500, with colors reflecting the weights;, and the associated scalar multiwavelet tree representation,
respectively.

Approximation at t = 30s Adaptive Importance measure y(y;)
1.4 s 10
MC - 2x10° Samples
L MW - 500 Samples ------
1.2
10 £
e 1 | I
. L I
o4l A fh
oz A
0.0 et NN ~ ‘
00 02 04 06 0.8 1.0
Y1
() b)
PR High
Ll ow
0 0.5 1
Y1
(©) @

FIG. 12: Approximation of the stochastic responsewgfatt = 30s for the 1D KO problem, (a); Evolution of the
adaptive importance sampling measure for increasing number of samples, (b); Parfitidn célored by the weights
B/ Zle B;, (c); Scalar multiwavelet tree representation, (d).
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6.4.2 Results for d = 2 KO Problematt =10 s

323

The initial conditions of the Kraichnan-Orszag problem are again assumed to be uncertain but this time functions of

two random variables
Ul(t = 0) = ].,

UQ(t = 0) =0.2 Y1 — 01,

uz(t =0) =2ys — 1,

(22)

wherey; andy, are independent and uniformly distributed[on1]. A two-dimensional multiwavelet approximation
of u; att = 10 s is generated witlhn = 2 and a maximum resolutiof},... = 4, resulting in a basis of cardinality
P = 9216. Figure 13(a) shows the convergence of the standard deviationwith uniform and adaptive importance
sampling. The uniform sampling result are obtained using the OMP algorithm.

2D KO - Convergence Profiles att=10 s

10°

103 .
MC —— i
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102 10° 10*
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MW Expansion Coefficients

10° ‘ | |
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Y1
(d)

1.0

FIG. 13: Results for the 2D KO problem. Standard deviation error (21) for the standard Monte Carlo sampling as well
as OMP and TOMP, (a); Multiwavelet expansion coefficients udihg- 5.9 x 10® samples are compared to those of
least-squares regression basedfn= 9.0 x 10* samples, (b); Partition d6, 1]2 colored by the weight8; / Zle B,

(c); Samples generated based on the adaptive importance sampling approach of Seclibe=%2(x 10?), (d).
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In Fig. 13(b), the expansion coefficients computed by the proposed strategyivith 5.9 x 10® samples are
compared to those obtained using a standard least-squares regression. In the latter approach the multiwavelet coeffi-
cients are given by s = (7 W)~ W7y in which we used = 9.0 x 10* samples ofi;. As may be observed
from this plot, the proposed sparse approximation technique recovers the large multiwavelet coefficients accurately
usingM < P solution realizations. Finally, Figs. 13(c) and 13(d) show the partitidio,df> with the color scheme
based on thev;, together with\/ = 5.9 x 10% adaptively chosen samples.

6.5 Application: Passive Vibration Control Using Tuned Mass Damper Devices

Vibrations produced by harmonic or stochastic excitations may result in excessive acceleration levels for structures
with impacts on serviceability. If resonance occurs, effects of applied forces may be significantly amplified. In this
case, the available system damping plays a crucial role. Horizontal acceleration levels higheb%harf ¢ (the
gravitational acceleration) may be perceived by the occupants of a given structural systeri%iifile can be con-
sidered an upper bound for serviceability related to human perception. Passive vibration control may provide a cost
effective remedy against excessive structural vibrations levels compared to expensive active control systems. Tuned
Mass Damper (TMD) devices are among the typical choices for vibration reduction. Their introduction follows from
a relatively simple observation on a two Degrees Of Freedom (DOF) spring-mass system: the steady-state undamped
response of the principal mass subject to a harmonic excitation can be minimized by applying a TMD device tuned
both to the forcing and system frequencies. The efficiency of a TMD can be defined, in this case, based on the reduc-
tion obtained in the peak acceleration response of the principal mass. Perfect efficiency, i.e., zero peak acceleration
response, is possible under idealized conditions; however, practical efficiency of TMDs is limited by the variations of
the actual system/loading conditions from those used in the TMD design. Real forcing, for example, may be charac-
terized by a broad frequency spectrum and generally has variable magnitude. This may make a TMD device, designed
for a particular frequency, less effective to prevent excessive vibration for other frequencies.

In the present study, we examine the effect of such uncertainties—relative to nominal conditions—on the efficiency
of an example TMD device. To do this, we employ the present multiwavelet regression approach in order to generate
stochastic representation of the efficiency metric.

6.5.1 Two DOF System with Passive Vibration Control

The motion of the two DOF system displayed in Fig. 14 is characterized by the triglgts, <1 (¢),z1(¢)) and

(Zo(t), z2(t), z2(t)) providing the evolution in time of the principal and TMD mass in terms of acceleration, velocity,
and displacement, respectively. Assuming a linear elastic material and small oscillations, the equations of motion of
the main system with installed TMD device can be written as

m;
i -0
Dk C2 !
- Bl
k - e
1 e ____TMD
77

FIG. 14: Schematic representation of a two DOF dynamical system characterized by a principal system (subscript
“1") and an attached TMD device (subscript “27).
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M 4 Cx + Kx = £(t), (23)
where
&7 = [iy,d0), X7 =[i1,d0), X' =[z1,22), £(1)" = [f1(D), f2(D)], (24)
and
| 0 _|1a +co —Co _ kl + kg 7]'{}2
M_|:0 m2:|’c_|:—62 Cz:|7K_|:—]€2 k2:| (25)

We consider characterization of the damping coefficien@sndc, in terms ofdamping ratiost,; andé,,

c1=2& vmiky, co=2& /mako.

An instance of displacement, velocity, and acceleration time history of the principalrma@gith TMD device
installed) subject to a unit step load applied at 0.5 s, is illustrated in Fig. 15. In particular, reductions in acceleration
amplitudes are observed in the presence of TMD.

A better understanding of the attenuation mechanism of TMD devices may be reached through frequency analysis.
Consider the same dynamical system as in (23) where the integration in time has been ext@hged t0.0 s. A
family of harmonic excitations of the form

f(t) = [F*sin(27f),0]" (26)

is considered here, with amplitud®& and frequency rangg¢ € [4, 6] Hz. A graph of the maximum acceleration in
the principal system versus the external excitation frequency is depicted in Fig. 16 for the following configurations:

e undamped principal system with no TMD device installed,

e undamped principal system with undamped TMD device installed,

e &; = 0.01 damped principal system with undamped TMD device installed, and
e &1 = 0.01 damped principal system aid = 0.10 damped TMD device installed.

After installing the TMD device, a single-peak infinite acceleration response, typical of a resonance state of the
single DOF system, is replaced by two nearby peaks of lower magnitude. Note that maximum values of acceleration
shown in Fig. 16 are obtained from transient responses integrated over a limited time duratidinsofThe effect of
&1 = 0.01 damping in the principal system also results in a significant reduction in the acceleration response relative
to the new peaks, as expected for resonance conditions. An increased dampirg rati0.10 ratio of the TMD
device further reduces the peak acceleration response.

0.025 - 0.5 -
0.020 | 04 7
0.3 r
_ 0015
S oot0 7 =
5 E 017 s
E  0.005 2 00 ©
Q o [
S 0.000 3 01 8
K] : > Q
a 0.2+ <
-0.005 , 3
u lStruclurewith TMD 03 1 i ructure with TMD 15 - ij Structure with TMD
-0.010 ' TMD - 04 - i TMD ------e : TMD ------e-
Structure No TMD  ---------- ‘J Structure No TMD  ----------- Structure No TMD  --+-------
_001 5 1 1 1 | _05 Ll 1 1 | 2.0 1 1 1 |
0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0
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FIG. 15: Transient dynamic simulation of the two DOF system of Fig. 14, showing reduction in the principal system
(i.e., massn;) response after installation of the TMD device.tAt 0.5 s a unit step load is applied to the mass.
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Acceleration Response vs. Frequency

60.0

50.0
=
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>
£ 200
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10.0
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4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

f [Hz]
FIG. 16: Acceleration response of a two DOF dynamical system with and without the TMD device installed for a
range of forcing frequenciep. The effect of variations in the damping ratigs, £, of the principal system and the
TMD device is also explored.

6.5.2 Uncertainty Quantification of TMD Efficiency

In our numerical experiments, we consider the forcing frequehay (26) and the damping ratio of the principal
systemé,; to be random variables. Randomness in the forcing frequency may be the result of environmental, e.g.,
due to wind, or anthropic, e.g., induced by walking or running, variations. In particular, we=set.5 + 2.0 y; and

&1 = 0.005 + 0.005 y, whereyy, yo ~ U]0, 1] are statistically independent. Due to the low level of damping in the
system, steep gradients are likely to occur in the stochastic response, thus justifying the application of multiresolu-
tion approaches over, for instance, standard Polynomial Chaos (PC) techniques. For each realigatign)ofve
evaluate the efficiency of the TMD defined by

o= DX Ol @)
max |21 ()]

wheremax, |Z1(¢)] is the maximum acceleration of the principal system over the time intéyvab s] without any
vibration control device. Additionallynax ; |1 (t)| is the corresponding value with the TMD device installed. Note
that whene < 0, TMD results in amplification or no reduction in the maximum acceleration of the principal mass;
therefore, positive large values ofre desirable. We compute the cumulative distribution function (CDF) of the TMD
efficiencye using three approaches: the Monte Carlo sampling method, a Legendre PC expansion whose coefficients
are computed by numerical integration using tensor-product Clenshaw-Curtis quadrature nodes, and the proposed
multiwavelet approach with,,.. = 2, m = 2, e = 5.0 x 10~%, and adaptive importance sampling.

To assess the accuracy of our approximations, we first generate a reference QRigf = 1.0 x 10* Monte
Carlo samples. We usk/ = 100 samples for the construction of multiwavelet representation 3b compute the
coefficients of the Legendre PC expansion, weldse- 10 x 10 andM = 14 x 14 nodes obtained by the tensorization
of one-dimensional Clenshaw-Curtis abscissas.

The surface plot of the TMD efficienayas a function ofyy, - is illustrated in Fig. 17(a), and the resulting CDFs
of e are shown in Fig. 17(c). As expected, areas of steep gradients close to the resonance can be observed. It can be
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FIG. 17: Representation of the TMD efficieney defined in (27), for the two DOF system, (a). Partition@f1]?
colored by the weightg;/ Zle B, (b). Comparison of the CDFs efcomputed with the Monte Carlo, polynomial
chaos and proposed approaches, (c).
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seen from the plots in Fig. 17(c) that our multiresolution method outperforms both the polynomial chaos and Monte
Carlo approaches in estimating the CDF of efficieacy

7. CONCLUSIONS AND FUTURE WORK

A novel framework for nonintrusive, i.e., sampling-based, uncertainty propagation has been proposed that consolidates
the flexibility of multiresolution representations, in capturing piecewise-smooth stochastic responses of physical sys-
tems, with the efficiency of sparse approximation techniques. Within this framework, two existing greedy algorithms,
namely Orthogonal Matching Pursuit (OMP) and Tree-based OMP (TOMP), have been employed and extended to
reconstruct stochastic functions that lend themselves to sparse multiwavelet expansions. In order to enhance the re-
covery of dominant coefficients, the latter approach exploits the compact tree structure typically exhibited by the
multiwavelet coefficients. In addition to the standard sampling of inputs, i.e., according to their probability measure,
an adaptive importance sampling strategy has been proposed to further improve the reconstruction accuracy when the
solution of interest exhibits sharp gradients or discontinuities.

The accuracy of the proposed multiresolution framework has been demonstrated through its application to a num-
ber of benchmark problems as well as a passively controlled dynamical system under uncertainty. In particular, it
has been shown numerically that the TOMP algorithm outperforms the standard OMP solver which does not account
for any structure in the multiwavelet coefficients. Additionally, it has been illustrated that the proposed adaptive im-
portance sampling strategy achieves higher accuracy as compared to the standard sampling of inputs. The proposed
approach improves previous work on nonintrusive construction of multiresolution expansions by exploiting the spar-
sity of piecewise-smooth stochastic solutions in multiwavelet basis and, thereby, reducing the number of required
solution realizations.

In the present study, adaptivity has been investigated with the specific focus on informing the selection of input
samples, while fixing the multiwavelet basis. Future work will attempt to extend this approach by adaptively refining
the approximation basis. Additionally, theoretical results are needed to certify the advantage of the proposed impor-
tance sampling strategy over the standard counterpart. Another possible extension of the present approach consists
of associating sparsity-promoting prior probability distribution to the multiwavelet coefficients, providing an alterna-
tive way to monitor the local accuracy of the expansion, and estimating the coefficients via Bayesian update. Such a
sparse approximation has been previously introduced in [60, 61] and dubbed Bayesian Compressive Sensing. Recent
applications of this method to polynomial chaos expansions have also been considered in [62, 63].
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