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The present work proposes a novel nonintrusive, i.e., sampling-based, framework for approximating stochastic solutions
of interest admitting sparse multiresolution expansions. The coefficients of such expansions are computed via greedy
approximation techniques that require a number of solution realizations smaller than the cardinality of the multireso-
lution basis. The effect of various random sampling strategies is investigated. The proposed methodology is verified on a
number of benchmark problems involving nonsmooth stochastic responses, and is applied to quantifying the efficiency
of a passive vibration control system operating under uncertainty.
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1. INTRODUCTION

The possibilities offered by computational tools have dramatically affected the way modern design of engineering
systems is approached and have significantly improved our understanding of how physical systems behave in re-
sponse to changes in their underlying parameters. With the constant increase of available computer resources, the
effect of the uncertainties associated with these parameters (aleatory uncertainties) as well as in the definition of
the physical/mathematical models (epistemic uncertainty) can also be quantified to improve therobustnessof our
predictions.

In this context, a typicalforwardUncertainty Quantification (UQ) process consists of various steps, e.g., formula-
tion of the model/problem, representation of uncertainty sources, propagation of uncertainties to response Quantities
of Interest (QoI), and possibly ranking of uncertainty sources. Depending on the application of interest, these tasks
may be challenging and require careful investigation and efficient numerical treatment. In the present study, we focus
exclusively on the uncertainty propagation step, for which we adopt a probabilistic framework. We, therefore, assume
that the formulation of the physical model is completely defined in space and time, and the probability distribution
functions of all input random variables or processes are specified. We are then interested in proposing an efficient
methodology to compute the stochastic description of a response QoI.

Monte Carlo (MC) sampling has long been used for uncertainty propagation due to its straightforward implementa-
tion and robustness in computing statistics of general functionals. While various sampling strategies, e.g., stratified or
importance sampling, have been proposed over the years to improve its convergence rate, MC sampling still maintains
its appeal for general problems with high-dimensional random inputs.
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For problems withsmoothresponses and with moderate number of random inputs, approaches based on expan-
sions in series of basis functions may lead to improved convergence. A description in terms of polynomial basis
orthogonal with respect to the probability measure of random inputs—referred to as Polynomial Chaos (PC)—has
been proposed in [1] as a generalization of the classical Wiener-Hermite chaos polynomials [2–4]. For sufficiently
smooth stochastic responses, these expansion techniques may achieve as high as exponential convergence rate for
increasing polynomial order [5–7]. Several numerical strategies, including stochastic Galerkin [1, 4, 5] and stochastic
collocation—based either on tensorial product of one-dimensional quadrature rules or sparse grids [8–10]—have been
developed to generate PC expansions of solutions to partial differential equations (PDEs) with random inputs.

Of particular interest in the present study is the situation where the QoI exhibits discontinuities or sharp gradients
with respect to random inputs, i.e., nonsmooth QoI. Such cases are commonly observed in problems where the QoIs
experience sharp variations in the physical space or time due to, for instance, the presence of shocks, bifurcations, or
instabilities [11–13]. In these cases, approaches based on standard PC expansions are known to suffer from slow or
no convergence [11].

To tackle this shortcoming, various methodologies have been proposed. An expansion in terms of a Wiener-Haar
basis is proposed in [11], resulting in faster convergence rates (error in expectation vs. number of solution realizations)
for problems with discontinuities. In [12], a multiresolution approximation is formulated based on the Alpert multi-
wavelet basis [14–17] generated from a family of Legendre scaling functions (also referred to asfather wavelets);
adaptive strategies based on multiwavelet coefficients are also discussed in order to refine the approximation. Multi-
element PC techniques, developed in [18, 19], are shown to be effective in approximating stochastic solutions with
discontinuities and sharp gradients by adaptively partitioning the stochastic space into nonoverlapping elements. Ra-
tional polynomial expansions are investigated in [20]. In [21] an adaptive sparse grid collocation strategy is developed
using piecewise multilinear hierarchical basis functions. Methods employing simplicial meshes have also been ex-
tended from deterministic to stochastic problems. In [22], a simplex stochastic collocation method is proposed, which
is suitable for stochastic spaces of arbitrary shapes—not necessarily obtained as a product of one-dimensional inter-
vals. Methods based on a finite volume discretization in the stochastic space have also been proposed in [23, 24].

The present study proposes a framework for sampling-based approximation of stochastic solutions exhibiting dis-
continuities or sharp gradients. We take advantage of thesparsityobserved in multiwavelet expansions of piecewise-
smooth responses in order to reduce the number of solution realizations needed for an accurate reconstruction via
regression. By sparsity, we refer to the cases in which only a small fraction of multiwavelet basis functions are needed
to represent the solution within the required accuracy. Motivated by the work in [25–30], the expansion coefficients
are computed using tools extended from the compressive sampling framework [31–33], wherein assumptions on the
sparsity of the expansion and random sampling of solution are translated into algorithms and convergence guaran-
tees. To enhance the approximation accuracy, an adaptive importance sampling strategy is also introduced that relies
on approximate multiwavelet coefficients computed at each iteration. The combination of these three elements, i.e.,
multiresolution approximations, sparse regression, and importance sampling, applied in the context of uncertainty
propagation, makes the present approach innovative and effective for a broad range of problems.

We highlight some similarities to existing approaches. In particular, a similar expansion was employed in [12] in
the context of intrusive uncertainty propagation. The construction of the multiwavelet basis proposed therein differs
slightly from that originally discussed by Alpert [14–17], as fewer conditions are required in terms of vanishing
statistical moments for the basis functions. Concepts like sparse recovery and importance sampling, closely related to
the nonintrusive construction of this work, have not been discussed in [12]. Furthermore, it is worth highlighting the
similarity between the concept of hierarchical surplus proposed in [21] and that of the multiwavelet basis used in the
present work. In both approaches the information related todetails is used to drive the adaptivity either in terms of
samples and/or approximation basis.

The remaining of this paper is organized as follows. We introduce the problem of interest in Section 2. In Section 3,
we briefly review the concepts of multiresolution analysis and multiwavelet approximation. The fundamentals of
sparse approximation via compressive sampling are discussed in Section 4 with a special attention to multiwavelet
expansions. The proposed adaptive importance sampling strategy for nonintrusive multiwavelet regression is discussed
in Section 5. Numerical examples are provided in Section 6 showing the performance of the proposed framework on
problems exhibiting discontinuities or sharp gradients with respect to random inputs.
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2. PROBLEM SETUP

Consider a complete probability space(Ω,F ,P) in which Ω is the set of elementary events,F is theσ algebra of
possible events, andP denotes a probability measure onF . We assume that the input uncertainty is characterized by
the independent random vectory = (y1, ..., yd), d ∈ N, where each random variableyi : Ω → [0, 1] is uniformly
distributed over[0, 1]. Let Γ ⊂ RD, D ∈ N, be the spatial domain with boundary∂Γ andt ∈ [0, T ] represent the
temporal variable. We consider approximating the solutionu(x, t,y) : Γ× [0, T ]× Ω → Rh, h ∈ N, to the problem

L(x, t,y;u) = f(x, t,y) on Γ,

u(x, t,y) = ub(x, t,y) on ∂Γ,

u(x, t,y) = u0(x,y) at t = 0,

(1)

which holdsP-a.s. inΩ. Here, we assume the well-posedness (inP-a.s. sense) of (1) with respect to the choices of
the forcing, boundary, and initial functionsf , ub, andu0, respectively. We seek to approximateu(x, t,y) at a fixed
locationx∗ ∈ Γ in space and time instancet∗ ∈ [0, T ] by using realizations{u(x∗, t∗,y(i)) : i = 1, . . . , M} of
u(x∗, t∗,y) corresponding toM random samples{y(i) : i = 1, . . . , M} of y. To simplify the notation and presen-
tation, we henceforth drop the space and time variablesx∗, t∗, and describe our approach for a scalar, multivariate
solutionu(y), i.e., withh = 1.

It is worth highlighting that the framework introduced here is applicable to cases in which the solution of interest
is defined over multiple spatial locations or time instances, or is vector-valued, i.e.,h > 1. In these cases, a direct—but
not necessarily the most efficient—approach is to independently repeat the proposed constructions for each and every
spatial location, time instance, or component of the solution of interest.

3. MULTIRESOLUTION AND MULTIWAVELETS

3.1 Multiresolution Analysis

A multiresolutionapproximation ofL2([0, 1]) is expressed by means of a nested sequence of closed subspacesV0 ⊂
V1 ⊂ · · · ⊂ Vj ⊂ · · · ⊂ L2([0, 1]), where each subspaceVj corresponding toresolutionj is given byVj =
span{φj,k(y) : k = 0, . . . , 2j − 1}. Here, the functions

φj,k(y) = 2j/2φ(2jy − k)

are dilations and translations of ascalingfunctionφ(y) : [0, 1] → R, andφ(y) is such that the closure of the union
of Vj ,

⋃∞
k=0 Vk, is dense inL2([0, 1]). Let thewaveletsubspaceWj denote the orthogonal complement ofVj in

Vj+1, that isVj+1 = Vj⊕Wj andVj⊥Wj . It can be shown thatWj = span{ϕj,k(y) : k = 0, . . . , 2j−1} where
ϕj,k(y) is generated from dilation and translation of amotherwavelet functionϕ(y) : [0, 1] → R,

ϕj,k(y) = 2j/2ϕ(2jy − k).

By the construction of wavelet subspacesWj , it is straightforward to see thatVj = V0 ⊕
(⊕j−1

k=0 Wk

)
, and

consequentlyV0 ⊕ (
⊕∞

k=0 Wk) = L2([0, 1]). Therefore, any functionu(y) ∈ L2([0, 1]) admits an orthogonal
decomposition of the form

u(y) = α̃0,0φ0,0(y) +
∞∑

j=0

2j−1∑

k=0

αj,kϕj,k(y), (2)

whereα̃0,0 = 〈u, φ0,0〉L2([0,1]), αj,k = 〈u, ϕj,k〉L2([0,1]), and the inner product〈u, v〉L2([0,1]) =
∫ 1

0
u(y) v(y) dy. For

the interest of notation, we rewrite (2) in the form

u(y) =
∞∑

i=1

αiψi(y), (3)
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in which we establish a one-to-one correspondence between elements of the basis sets{φ0,0,ϕj,k : k = 0, . . . , 2j −
1, j = 0, . . . ,∞} in (2) and{ψi : i = 1, . . . ,∞} in (3).

3.2 Multiwavelet Basis in One Dimension

In the present study, we adopt the multiresolution basis of Alpert [14–17], where multiple scaling functions{φi(y) :
i = 0, . . . , m − 1} are used to construct the polynomial spaceVm

0 . Specifically, we chooseφi(y) as the Legendre
polynomial of degreei defined on[0, 1]. An orthonormal piecewise polynomial basis{ϕi(y) ∈ L2([0, 1]) : i =
0, . . . ,m− 1} of Wm

0 is also established such that

∫ 1

0

ϕi(y)yldy = 0, i, l = 0, · · · ,m− 1.

Stated differently,ϕi(y) hasm vanishing moments. Themultiwaveletbasis functionsϕj,i,k(y), hence the multi-
wavelet subspacesWm

j , are generated by dilations and translations of{ϕi(y) : i = 0, . . . , m− 1}, that is

ϕj,i,k(y) = 2j/2ϕi(2jy − k), i = 0, · · · ,m− 1, k = 0, · · · , 2j − 1. (4)

With certain additional constraints onϕi(y) described in [15], the resulting basis is unique (up to the sign) and
provides a generalization of the Legendre and Haar basis. In particular, the Legendre polynomials may be obtained
by limiting (4) to the resolutionj = 0, while Haar wavelets are obtained by settingm = 1. Example of functions in
ϕi(y) for m = 3 andm = 4 are illustrated in Fig. 1. We refer the interested reader to [15, Section 1.1] for an in-depth
derivation of the Alpert multiwavelet basis.

3.3 Multiwavelet Basis in Multiple Dimensions

For d > 1, we consider the vectorm = (m1, . . . , md) ∈ Nd and introduceVm
0 = Vm1

0 ⊗ · · · ⊗ Vmd
0 as the

product space spanned by the tensorizations of univariate Legendre polynomials defined on[0, 1]. We also introduce
a multi-indexi ∈ I = {(i1, . . . , id) : 0 ≤ il < ml, l = 1, . . . , d}, and define a singled-dimensional scaling function

φi(y) = φi1(y1) . . . φid
(yd).
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FIG. 1: Examples of Alpert multiwavelets withm = 3, (a), andm = 4, (b).
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The complete setSm
0 of scaling functions is given by

Sm
0 = {φi(y) : i ∈ I}.

Before writing the expression for the wavelet function, we introduce the following notation

ψ0
i = φi, ψ1

i = ϕi, ψ
q
i (y) = ψ

q1
i1

(y1) . . . ψqd

id
(yd),

whereq is an element of the multi-index setQ = {(q1, . . . , qd) : ql ∈ {0, 1}, l = 1, . . . , d}. In other words,
q defines the products of univariate multiscaling and multiwavelet functionsφi andψi in ψ

q
i (y). The setWm

0 of
functions spanningWm

0 —the orthogonal complement ofVm
0 in Vm

1 —is defined as

Wm
0 = {ψq

i (y) : i ∈ I, q ∈ Q},
while

Vm
1 = Sm

0 ∪Wm
0 = {ψq

i (y) : i ∈ I, q ∈ Q ∪ {(0, · · · , 0)}}.
Similar to the one-dimensional case, scaled and shifted analogues of the mother multiwavelets inWm

0 are used to gen-
erate multiwavelet spaces of increasing resolution. At resolutionj > 0, the shift multi-indexk ∈ K = {(k1, . . . , kd) :
0 ≤ kl ≤ 2j − 1, l = 1, . . . , d} is used to identify the partitions in ad-dimensional grid with2j subdivisions in each
dimension. It follows that

ψ
q
j,i,k(y) = 2jd/2 ψ

q1
i1

(2jy1 − k1) . . . ψqd

id
(2jyd − kd)

and
Wm

j = {ψq
j,i,k(y) : i ∈ I, k ∈ K, q ∈ Q}.

Given a vectorm = (m1, . . . ,md) defining the maximum order of the univariate scaling functions,u(y) ∈
L2([0, 1]d) can be written as

u(y) =
∑

i∈I
α0,i,0 ψ0

0,i,0(y) +
∞∑

j=0

∑

k∈K

∑

q∈Q

∑

i∈I
αj,i,k ψ

q
j,i,k(y) (5)

Finally, we simplify the notation by rewriting (5) in the form

u(y) =
∞∑

i=1

αiψi(y), (6)

in which we establish a one-to-one correspondence between elements of the basis sets{ψ0
0,i,0, ψq

j,i,k : i ∈ I, k ∈
K, q ∈ Q, j = 0, . . . ,∞} in (5) and{ψi : i = 1, . . . ,∞} in (6).

As an example, in Fig. 2, we illustrate the multiwavelet approximation of the 2D function

u(y1, y2) =

{
−16 (y1 − 1/2)2 − 16 (y2 − 1/2)2 + 1, if

√
(y1 − 1/2)2 + (y2 − 1/2)2 ≤ 1/4

0 otherwise
(7)

usingm = (0, 0), i.e., Haar basis,m = (1, 1), andm = (2, 2), and with the maximum resolution leveljmax = 3,
i.e.,8× 8 partitioning of the unit square.

Remark 1 (Implementation). The expression(5) or (6) may be used for efficient reconstruction and compact repre-
sentation of a sparse stochastic function once the maximum degreesml, l = 1, . . . , d, the maximum resolutionjmax,
and the number of input parametersd are provided. Four quantities are sufficient to identify a single member of the
multidimensional multiwavelet basis set, namely the resolutionj, and the multi-indicesi, k, andq. In practice,i is
determined by selecting one of all the possible permutations of thed indicesil, 0 ≤ il < ml. Similarly,k is identified
by mapping a given member of the set{0, . . . , 2jd − 1} into its coordinates in ad-dimensional uniform grid defined
over[0, 1]d with 2j uniform subdivisions in every dimension.
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FIG. 2: Examples of 2D multiwavelet approximation foru(y1, y2) given in Eq. (7). Original function, (a); Mul-
tiwavelet approximation withm = (0, 0), (b); Multiwavelet approximation withm = (1, 1), (c); Multiwavelet
approximation withm = (2, 2), (d).

Remark 2 (Nonuniform measures). In all the developments of this work, we assume that random inputsyi, i =
1, . . . , d, are independent and uniformly distributed over[0, 1]. For cases whereyi’s are independent but not uniformly
distributed, following [12], we may utilize a change of variable in order to apply the proposed framework. Specifically,
let Φ(yi)—assumed to be a continuous, monotonically increasing function ofyi—denote the cumulative distribution
function ofyi. The comutative Distribution function (CDF) of random variableyi = Φ−1(zi), wherezi is uniformly
distributed over[0, 1], isΦ. This, therefore, suggests the change of variableyi → Φ−1(zi) and the construction of the
expansion in (6) in terms ofzi instead ofyi.

3.4 Approximation Error for Differentiable Functions

Theoretical error bounds and convergence rates for multiwavelet approximation are provided in [15]. For the one-
dimensional case, consider anm-times differentiable functionu(y) ∈ Cm([0, 1]). Using (3), we definePm

j u(y) =∑
i〈u, ψi〉L2([0,1])ψi(y) as the orthogonal projection ofu ontoVm

j . The following error estimate holds [15, Lemma
1.1]:

‖Pm
j u− u‖L2([0,1]) ≤ 2−jm 2

4m m!
sup

y∈[0,1]

∣∣∣∣
dmu

dym

∣∣∣∣ . (8)

The order of convergence is hencem for the one-dimensional case and generalizes tom/d in d dimensions [15].
Notice that the error bound in (8) and its multidimensional extension are only references in our case, as the solutions
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of interest in this study are not necessarilym-times differentiable. Additionally, as we shall describe later, we do not
compute the multiwavelet coefficientsαi in (3) via the projectionαi = 〈u, ψi〉L2([0,1]) as required in (8).

We next introduce the notion of sparsity in multiwavelet expansions and subsequently extend ideas from the field
of compressive sampling [31–33], to compute the coefficientsαi in (3) or (6).

4. SPARSE MULTIWAVELET EXPANSION VIA COMPRESSIVE SAMPLING

In the present study, we are interested in approximating solutionsu that admit sparse multiwavelet representations.
More precisely, consider the multiwavelet expansion (6) corresponding to a givenm and truncated at some resolution
j. We denote byP the cardinality of the resulting basis and callu sparsein {ψi, i = 1, . . . , P} if S = #{αi 6=
0 : i = 1, . . . , P} ¿ P . In practice, many of the multiwavelet coefficients, while negligible, may not be precisely
zero; these cases are considered asapproximatelysparse. We hereafter refer to both cases as sparse. Piecewise smooth
functions exhibiting sharp gradients, bifurcations, or discontinuities, for example the solution of hyperbolic PDEs,
may lend themselves to sparse multiwavelet representations.

Our interest in sparse multiwavelet representations stems from the recent developments in the field of compressive
sampling which may enable exact construction of such representations using a numberM of solution realizations that
is considerably smaller than the cardinalityP of the basis, i.e.,M ¿ P . This is in contrast to, for instance, standard
least-squares regression methods which generally requireM À P for a stable approximation.

4.1 Rudiments of Compressive Sampling

Compressive sampling is a recent development in signal processing that breaks the traditional limits of the Shannon-
Nyquist sampling rate for the reconstruction of sparse functions/signals. Consider the vectoru = (u(y(1)), . . . ,
u(y(M)))T ∈ RM containing realizations ofu(y) ∈ L2([0, 1]d) corresponding toM independent samples ofy.
Assuming thatu can be exactly expanded into a multiwavelet basis of the form (6), with some order vectorm and
resolutionj, u is given byu = Ψα. Here, the so-calledmeasurementmatrix Ψ ∈ RM×P is such thatΨ[i, j] =
ψj(y(i)) andα ∈ RP is the vector of unknown expansion coefficients. Ifu, henceα, is sufficientlysparse, then
u = Ψα may admit a unique solutionα. Compressive sampling aims at findingα from an optimization problem

(Ps) : min
α∈RP

‖α‖s subject to u = Ψα, (9)

in which s = 0 and the semi-norm‖α‖0 = #{αi : αi 6= 0} is the number of nonzero components ofα. A more
general formulation results from allowingu to be approximately represented by a multiwavelet basis of the form (6),

(Ps,ε) : min
α∈RP

‖α‖s subject to ‖u−Ψα‖2 ≤ ε, (10)

with s = 0. In other words, in (10), we account for atruncationerror of size‖u −Ψα‖2 ≤ ε for someε ≥ 0. The
sparsest solutionα to (P0), corresponding to minimizing the‖α‖0, is generally NP-hard to compute [33]. To break
this complexity, several heuristic techniques based on greedy pursuit, e.g., Orthogonal Matching Pursuit (OMP), and
convex relaxation vià1-minimization, i.e.,s = 1, have been proposed [34–42]. Moreover, several indicators such as
the mutual coherence[33] or therestricted isometry constant[32] have been introduced to establish guarantees on
the uniqueness of the solution to (P0) as well as the ability of the heuristic alternatives in recovering this solution. In
particular, the mutual coherence ofΨ (e.g., see [33]) is defined as

µ(Ψ) = max
i 6=j

|ψT
i ψj |

‖ψi‖2 ‖ψj‖2
, (11)

whereψi ∈ RM is the ith column ofΨ. Note thatµ(Ψ) ∈ [0, 1] in general and is strictly positive forM < P .
Depending on sparsityS = ‖α‖0, µ(Ψ) provides a sufficient condition on the numberM of measurements for a
successful recovery ofα from (Ps) or (Ps,ε), s = {0, 1}, as shown in [33]. Ideally, with the sameM andS, one may
anticipate more accurate solutionsα for smaller values ofµ(Ψ).
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We next discuss the methodologies we employ to compute the coefficient vectorα, together with a brief introduc-
tion on a number of closely related approaches for solving(Ps) and(Ps,ε) whens = 0.

4.2 Greedy Approaches

Greedy pursuit algorithms form a major class of techniques for solving(P0) and(P0,ε) with tractable computational
cost. Instead of performing an exhaustive search for the support of the sparse solution, these methods successively
find one or more columns ofΨ, hence basis functions, that result in largest reduction in the residual, thus the name
greedy. More specifically, the solution is sought for by repeating a two-stage procedure. In the first step, referred to as
sensing, one or more indices in the support ofα, {i : αi 6= 0}, are identified such that the current residual is reduced
the most irrespective of already selected columns ofΨ. In a second stage, calledprojection, the coefficients associated
with the updated column set are computed. A brief overview of several greedy approaches is presented next.

Matching Pursuit.The Matching Pursuit (MP) algorithm [43] is the basis of many sparse approximation tech-
niques, including those employed in the present study. LetIk−1 be the set of indices associated with the selected
columns ofΨ at iterationk− 1 < M . In MP the sensing and projection steps are closely related. Specifically, assum-
ing the columns ofΨ have unit̀ 2 norm, an indexi = arg maxj /∈Ik−1 |rT

k−1ψj | is first identified and the coefficient
αi is set toαi = rT

k−1ψi. The quantityαi ψi is then subtracted fromrk−1, providing an updated residual for the next
iteration. The set of indices is also updated toIk = Ik−1 ∪ {i}. A discussion on the infinite and finite dimensional
properties of this algorithm is provided in [43]. In general, the residual vector produced by MP is only orthogonal to
the last selected basis function, which may lead to slow convergence [44].

Orthogonal Matching Pursuit. Orthogonal Matching Pursuit (OMP) is a widely used algorithm for the solution
of (P0) and(P0,ε) [37, 44]. It improves on MP by solving a least-squares problem in the projection stage. Similar to
MP, an indexi = arg maxj /∈Ik−1 |rT

k−1ψj | is identified and added toIk−1, i.e.,Ik = Ik−1 ∪ {i}. Let ΨIk
be the

submatrix ofΨ consisting of columns ofΨ with indices inIk. The entries of solution associated withIk, denoted by
αIk

, are computed by solving an overdetermined least-squares problem
(
ΨT
Ik

ΨIk

)
αIk

= ΨT
Ik

u. (12)

Notice that, unlike in MP, the residualrk = u−ΨIk
αIk

is made orthogonal to all the columns ofΨ with indices in
Ik. More details on the implementation of OMP may be found in Algorithm 1. Following [45], if a solution to(P0)
exists that satisfies‖α‖0 ≤ (1 + 1/µ(Ψ))/2, then OMP will identify it exactly.

CoSaMP [41] and StOMP [35] are greedy heuristics proposed as more efficient alternatives to OMP. Both ap-
proaches sense more than one basis function in each iteration, resulting in speed-up and, in some cases, accuracy
enhancement over the standard OMP. They also accommodate fast matrix-vector products, both for sensing and for
iteratively solving the least-squares problems.

Given the local nature of the employed multiresolution basis and as a result of operating in the undersampled
case, it may occur thatψi∗ = 0 for somei∗ ∈ {1, . . . , P}. In this casei∗ will not be included in the support set
Ik−1 irrespective of the magnitude ofαi∗ . This observation motivates the use of a more careful sampling technique
as introduced in Section 5.

Algorithm 1. [Orthogonal Matching Pursuit (OMP)]
Inputs:

Measurement matrixΨ.
Vector of realizationsu.
Maximum allowable number of iterationskmax

Convergence toleranceε.
Outputs:

Solution vectorα.
Initialize:

k ← 0, α0 ← 0, r0 ← u, I0 ← {∅}.
N ← diag(‖ψ1‖2, · · · , ‖ψP ‖2)
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Set to unit norm columnsΨ ← ΨN−1.
Iterate:
while ‖rk‖2 > ε andk < kmax

(Sensing)
Find i = arg maxj /∈Ik

|rT
k ψj |.

(Update support set)
k ← k + 1.
Ik ← Ik−1 ∪ {i}.
(Least-squares projection)
SetΨIk

← [
ψi1 | . . . |ψik

]
, ij ∈ Ik.

SolveαIk
← (

ΨT
Ik

ΨIk

)−1
ΨT
Ik

u.
(Expand to full coefficient vector)
αk(Ik) ← αIk

.
(Update residual)
rk ← u−ΨIk

αIk
.

end while
Return:
Nαk

Tree-based Orthogonal Matching Pursuit (TOMP).The observation that piecewise-smooth functions are charac-
terized by a connected subtree representation in the wavelet space has lead to tree-based implementations of OMP,
referred to as TOMP, as described in [36, 46, 47]. Basis functions are progressively added to the active set together
with their ancestors, in an effort to perpetuate their connected subtree structure. The introduction of such an additional
dependencymodelis a way to reduce the number of effective degrees of freedom in the expansion coefficients with
the objective of enhancing the reconstruction accuracy. In the context of compressive sampling, other approaches for
promotinga priori knowledge on the expansion coefficients have been developed, see, e.g., [48–50].

As discussed in Section 3, multiwavelet basis functions are characterized by a resolution indexj and a shift
multi-index k ∈ K. The number of basis functions at successive resolutions increases by a factor of2d, making
the representation akin to a treeT representation where every father has2d children and every node in the graph is
associated with multiple basis functions sharing the same support. If we assume, for simplicity, a one-dimensional
case with scalar wavelets, then a basis functionψi with scale and shift indices(j, k) is thefather of basis functions
with scale and shift indices(j +1, 2k) and(j +1, 2k +1). The set of indices ofancestorsof ψi is denoted byAi and
is obtained by recursively including fathers up to the root. Similarly, the set of indices ofdescendantsof ψi, indicated
byDi, is formed by including all the children ofψi up to the maximum scale indexjmax. A tree isconnectedif i ∈ T
impliesAi ∈ T . A nodei of T is a leaf if Ai ∈ T whileDi /∈ T .

In the TOMP approach of [46], the sensing step at iterationk leads to a candidate set

Ck = {i : |rT
k−1ψi| ≥ γ max

j
|rT

k−1ψj |, j /∈ Ik−1},

in which 0 < γ ≤ 1 controls the number of indices added toCk. For each indexi ∈ Ck at a time, the tentative
support setI(i)

k = Ik−1 ∪ {i,Ai} is formed. Subsequently, for eachI(i)
k a least-squares problem of the form (12) is

solved and the set{i,Ai} resulting in the smallest residual is permanently added to the support setIk−1. For a given
number of samplesM , the iterations are stopped when|I(i)

k | > ζM . Empirical results of [36] suggest an optimal
value ofγ = 0.975, which we also use in the numerical experiments of the present study. Similar TOMP approaches,
as described above, have been proposed in [36, 47]. There, to reduce the computation complexity of searching through
all basis functions, only basis functions up to a fixed resolution below a selected basis function are included in the
candidate set of [47].

Our implementation of TOMP parallels the approach of [46] with the main difference that, in our construction,
multiple basis functions (multiwavelets) are present at the tree nodes. This suggests avectortree node extension of
the scalar tree nodes of [46], where, except for the selection of the ancestor sets that may be implemented in different
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ways, all the other steps remain practically unchanged. To be more specific, multiple ancestors at resolutionj − 1
correspond to a selected basis function at resolutionj ≥ 1. In our implementation, we choose to include all the
ancestors. Algorithm 2 summarizes the details of the TOMP approach implemented in the present study.

Algorithm 2. [Tree-based Orthogonal Matching Pursuit (TOMP)]
Inputs:

Measurement matrixΨ.
Vector of realizationsu.
Maximum allowable number of iterationskmax.
Toleranceε.
Coefficientsγ, ζ.

Outputs:
Solution vectorα.

Initialize:
k ← 0, r0 ← u, I0 ← {∅}.
N ← diag(‖ψ1‖2, · · · , ‖ψP ‖2).
Set to unit norm columnsΨ ← ΨN−1.

Iterate:
while ‖rk‖2 > ε, k < kmax, and|Ik| < ζ M .

(Sensing)
Ck = {i : |rT

k−1ψi| ≥ γ maxj |rT
k−1ψj |, j /∈ Ik−1}.

(Update support set)
k ← k + 1.
for all i ∈ Ck.

I(i)
k ← Ik−1 ∪ {i,Ai}.

(Least-squares projection)
αI(i)

k
← (ΨT

I(i)
k

ΨI(i)
Ik

)−1ΨT

I(i)
k

u.

(Tentative residual)
rI(i)

k
← u−ΨI(i)

k
αI(i)

k
.

end for
ik ← arg mini∈Ck

‖rI(i)
k
‖2.

Ik ← I(ik)
k .

(Update solution)
αk(Ik) ← αI(ik)

k

.

(Update residual)
rk ← rI(ik)

k

.

end while
Return:
Nαk.

Finally, we remark that the accuracy of our sparse approximation depends on the truncation errorε in (10). An
excessively small value ofε may result in overfitting the solution samples, while larger values ofε may lead to
underfitting, hence, less accurate reconstructions. In [26, 51] a procedure based on cross validation is proposed to find
an optimal value forε. This technique is effective in reducing the over- or underfitting but requires multiple solutions
of smaller-size problems, which affects the overall reconstruction time.

5. SAMPLING STRATEGY

The standard approach to obtain the measurementsu is to generate realizationsy(i) of the input independently from
their joint probability measureρ(y), and evaluate the corresponding solutionu(y(i)). However, for situations whereu
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exhibits, for instance, sharp gradients or discontinuities, such a sampling strategy may not necessarily lead to accurate
multiwavelet approximations, especially if the number of realizations is limited. This is because the higher resolution
basis functions, needed to capture the local structure ofu, may not be sampled enough to be selected in the sensing
stage of OMP or TOMP.

In [52], the optimality of the Chebyshev sampling is discussed for compressive sampling of a large class of global,
bounded orthogonal polynomials. Except at resolutionj = 0, multiwavelet functions are defined locally over the
support of random inputs. As a result, depending on the problem at hand, sampling from the Chebyshev measure
may depart from being optimal. To illustrate this empirically, we compare distributions of mutual coherence for
measurement matrices generated from Legendre and multiwavelet expansions, by sampling uniformly or according
to the Chebyshev distribution. Following that, an importance sampling approach is introduced that allows for local
accumulations of samples and consequently enhancement of solution accuracy.

Remark 3 (Departure from standard compressive sampling). Note that any adaptive sampling of solution is a depar-
ture from standard compressive sampling techniques, where the sampling is meant to be nonadaptive. Therefore, the
approach presented in this work only overlaps with compressive sampling methods by sharing algorithms for sparse
approximation.

5.1 Sampling from Chebyshev Measure

The Chebyshev probability measure on(0, 1) is defined asρC(y) = 2.0/(π
√

1− (2y − 1)2). A uniform random
variablez ∼ U(0, 1) can be mapped to a random variabley with the Chebyshev measure usingy = (sin[π(z −
0.5)] + 1)/2. Let {Li(y) : i = 0, . . . , P − 1} denote the set of univariate Legendre polynomials of degree at most
P − 1 defined over(0, 1). In [53, Corollary 7.4], it is shown that under certain conditions the mutual coherence of the
measurement matrix associated with{Li(y)} is bounded byµ(Ψ) ≤

√
CM−1K2 log(23/4P 2/ε), with probability at

least1− ε. Here,C ≈ 26.24 andK is a constant independent ofP but dependent on the choice of sampling{Li(y)}.
In particular,K attains its minimum,K =

√
2, when{Li(y)} is sampled according to the Chebyshev measure

and weighted appropriately [52, 53]. For other choices of sampling,K >
√

2, thus implying theoptimality of the
Chebyshev measure. This is a consequence of the observation that the smallest (uniform) upper bound on{Li(y)}
follows the Chebyshev measure [52]. For multidimensional cases, the results in [52] may be extended to show that
Chebyshev measure remains optimal as far asd < P − 1.

In an effort to extend the above sampling approach to the case of multiresolution basis functions, we note that,
at the coarsest resolution and in a one-dimensional setting,φi(y) = Li(y) and therefore the Chebyshev measure is
optimal if we only include the scaling family in the expansion (2). However, the orthonormal mother multiwavelets
ϕi(y) are discontinuous functions growing unboundedly aty ∈ {0, 1/2, 1} for increasingi. Due to their construction,
the multiwavelet functions at higher resolutions and with any shift multi-indexk will also inherit this property from
the mother multiwavelets. As a result, the Chebyshev measure does not necessarily provide the tightest envelope that
uniformly bounds the multiwavelet functions, which in turn implies that no improvement may be expected using the
Chebyshev sampling compared to the uniform counterpart.

To numerically investigate the performance of the Chebyshev sampling, we plot the CDF of the mutual coherence
µ(Ψ) for matrices with Legendre and multiwavelet basis functions sampled uniformly and according to the Chebyshev
measure. Legendre matrices are constructed usingd = 5, m = 5, andP = 252, while d = 3, jmax = 0, m = 2, and
P = 216 is used for multiwavelets. The resulting curves are shown in Fig. 3(a) and 3(b). It can be seen that smaller
values ofµ(Ψ) are achieved for the Legendre basis by the Chebyshev sampling and for multiwavelet basis by the
uniform sampling.

5.2 Importance Sampling

Importance sampling is a widely used variance reduction technique in Monte Carlo estimation [54]. Sampling is
performed according to a probability measure different from that of the random inputs, with the purpose of promoting
importantregions of the input space.
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FIG. 3: CDFs of mutual coherence associated with random realizations of Legendre (a) and multiwavelet bases (b).

As stated at the beginning of Section 5, our motivation for developing an importance sampling strategy stems from
the observation that, with the uniform sampling, higher resolution multiwavelets may be undersampled and, hence,
incorrectly excluded from the active sets of OMP or TOMP. The idea is to concentrate samples at locations where
large multiwavelet coefficients are observed, and precondition the basis functions to retain their orthogonality. We
will illustrate numerically in Section 6.4 that this importance sampling strategy leads to accuracy enhancement when
compared to the uniform sampling.

It must be emphasized that the proposed sampling and sparse regression approach is adaptive. Specifically, we be-
gin by selecting an initial number of realizationsM uniformly distributed over the sampling space in order to generate
the realizationsu. The greedy solvers OMP and TOMP are then used to provide afirst estimate for the multiwavelet
coefficients. Based on these coefficients, a number of additional input samples and solution realizations are obtained,
and the importance sampling measure is formed. This process is repeated until the maximum possible number of
solution realizations is reached or a sufficiently small change in the coefficients is observed. For the interest of pre-
sentation, in what follows we assume that the approximate coefficients are available and we describe our approach for
drawing additional samples of inputs as well as the construction of the importance sampling measure.

5.2.1 Importance-Driven Partitioning of Stochastic Space

We begin by discussing how a partition of the sampling space can be associated with a truncated multiwavelet repre-
sentation. We then describe how samples are generated over such partition and, finally, how we build an importance
sampling measure.

A partition of the stochastic space[0, 1]d is obtained from a multiwavelet tree representation by firstmarkingthe
nodes in order to form a connected subtree—associated with large coefficients—and by identifying its leaves. Note
that, in a multiwavelet representation, multiple basis functions share the same resolution levelj and shift multi-index
k. This representation may be organized in a vector tree whose nodes are vectors of coefficients associated with these
basis functions. In order to construct our importance-driven partitioning of[0, 1]d, we convert this representation to
a scalar tree before we proceed. Stated differently, we desire to assign only one representative coefficient for every
node, i.e., pair (j, k), in the tree. To this end, we select the coefficient with the largest absolute value. Note that this
is not the only possible choice; the`2 norm of those coefficients, for instance, may be a valid alternative. Our choice
is, however, consistent with the assumption of sparsity of the multiwavelet coefficients. In what follows, envelope
coefficients will be denoted witĥα to avoid confusion with the coefficients in the multiwavelet expansion (6).

In the first step, all tree nodes with multiwavelet coefficientsα̂i obeying|α̂i| > α̂tol, for someα̂tol > 0, are
identified and marked. In the second step, a scalar connected subtreeTc ⊂ T is identified where every node with
a marked descendant is also marked. Finally, the leaves (L in total) of Tc—not necessarily at resolutionjmax—are
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identified as unmarked vertices with marked parents or marked vertices at the resolutionj = jmax, and added to
Tc.

The support of these leaves form a set of disjoint subdomains{Bi : i = 1, . . . , L} and their union is[0, 1]d,
thus resulting in the desired partition of the stochastic space. These properties of{Bi : i = 1, . . . , L} may be
verified using arguments based on tree traversal through parent-child edges. In particular, as leaves are selected from
a connected tree, the path between an arbitrary leaf and the tree root does not contain other leaves, resulting in disjoint
subdomains. Moreover, from the root of the tree, it is not possible to reach anoutsidenodei /∈ Tc without visiting a
leaf first. The leaves, therefore, cover the entire[0, 1]d. Figure 4 displays the identification of an instance of a subtree
Tc corresponding tod = 1, jmax = 3, andL = 4.

5.2.2 Construction of Importance Sampling Measure

The partition{Bi : i = 1, . . . , L} drives the construction of the proposed importance sampling measure. In particular,
let α̂i be the multiwavelet coefficient with largest magnitude corresponding to leaf nodei, andAi the set of ancestors
of ψi. For each leaf nodei = 1, . . . , L, let

βi = max
j∈{i ∪Ai}

|α̂j |
|supp(ψj)| , i = 1, . . . , L, (13)

denote the maximum ratio of the coefficient magnitudes to the support size of the corresponding basis functions on a
branch with leafi. We drawM̃i additional samples uniformly over each subdomainBi such thatM̃i is proportional
to the weightsβi/

∑L
j=1 βj . Let Mi denote the total number of samples on each subdomainBi andM =

∑L
i=1 Mi

the total number of samples. We then define the empirical, importance sampling measureγ(y) : [0, 1]d → R>0,

γ(y) =
∑L

i=1 MiIBi(y)∑L
i=1 Mi|Bi|

, (14)

which, as we shall describe later, is needed to precondition the(P0,ε) problem in (10). Here, the indicator function
IBi(y) = 1 if y ∈ Bi and zero otherwise. Notice that this importance sampling strategy gives higher priority to
sampling within the subdomains corresponding to multiwavelets at higher resolutions.

5.2.3 Preconditioning

The importance sampling strategy discussed in Section 5.2.2 may lead to a large mutual coherenceµ(Ψ). This is
because the multiwavelet basis is orthogonal with respect to the uniform measure, while samples follow the generally

Marked

Marked to restore a
connected subtree

Unmarked

Leaves

j=0

j=1

j=2

j=3

(a) (b)

FIG. 4: Identification of leaves on a one-dimensional multiwavelet tree. Vertices associated with significant expansion
coefficients are first marked. A connected subtree representation is identified by marking additional vertices. Leaves
are finally selected as described in Section 5.2.1, (a). The same scalar tree is also illustrated in plot (b), with every
node corresponding to an interval denoting the support of a multiwavelet basis function with largest coefficient.
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nonuniform empirical measureγ(y). To retain the asymptotic orthogonality of columns in the measurement matrix
Ψ, we introduce the weighted basis functionsψ̂i(y) = ψi(y)/

√
γ(y) for which

1
M

M∑

k=1

ψ̂i(y(k)) ψ̂j(y(k)) a.s.−−→
∫

[0,1]d

ψi(y)√
γ(y)

ψj(y)√
γ(y)

γ(y) dy = δij as M →∞,

as a result of the strong law of large numbers. From a practical point of view, the weighting of the multiwavelet basis
translates into forming the importance measureγ(y) and using the preconditioned measurement matrixΨ̂ = WΨ
and realization vector̂u = Wu in (P0,ε). Here, thepreconditionermatrixW is given byW = diag(1/

√
γ(y(1)), ...,

1/
√

γ(y(M))) . An overview of the operations performed in the proposed importance sampling framework is outlined
in Algorithm 3.

Algorithm 3. [Importance sampling]
Part 1—Identify a partition of [0, 1]d consistent with the MW representation [Section (5.2.1)].

Form a scalar treeT using the coefficient̂αi with maximum absolute value among those associated with the same
pair (j,k).

Givenα̂tol > 0, mark nodes with|α̂i| > α̂tol.
Identify a connected subtreeTc of T .
Identify the leaves and associated subdomains{Bi, i = 1, . . . , L}.

Part 2—Sampling and importance measure computation [Section (5.2.2)]
Determine the coefficientsβi, i = 1, . . . , L, from (13).
Uniformly draw samples in eachBi with a number proportional to weightsβi/

∑L
j=1 βj .

Set the empirical measureγ(y) from (14).
Part 3—Preconditioning [Section (5.2.3)]

Form the preconditioner matrixW = diag(1/
√

γ(y(1)), . . . , 1/
√

γ(y(M))) .
Apply W to the matrixΨ̂ = WΨ and realization vector̂u = Wu.

6. NUMERICAL TESTS

In the first benchmark problem, we consider two multiwavelet basis functions with overlapping support and show
the effect of importance sampling and preconditioning on their empirical correlation. This exercise provides insight
on the effect of sampling strategy on the mutual coherenceµ(Ψ) of the measurement matrixΨ. Following this,
a test case is presented in Section 6.2, where two piecewise-smooth functions with different tree representations are
approximated by solving (P0,ε) via OMP, TOMP, and using uniform and adaptive importance sampling. Moreover, the
performance of the proposed multiresolution scheme for uncertainty propagation is assessed through its application
to benchmark problems featuring solutions with discontinuities or sharp gradients with respect to random inputs.
Specifically, a nonsmooth function, the Kraichnan-Orszag (KO) problem with one and two random initial conditions,
and a dynamical system with passive vibration control operating under uncertainty are considered.

6.1 Empirical Correlation of Two Multiwavelet Basis Functions

To achieve a smaller mutual coherenceµ(Ψ)—hence better reconstruction accuracy—we desire faster convergence of
the empirical correlation of the multiwavelet basis. To investigate the impact of the sampling strategy on the empirical
correlation, we consider two one-dimensional, multiwavelet basis functionsψ1

j1,i1,k1
, ψ1

j2,i2,k2
at resolutionsj1, j2,

translated byk1, k2 and with degreesi1, i2, respectively. Here, we choosej1 = 0, k1 = 0, i1 = 2 and j2 = 3,
k2 = 7, i2 = 2, resulting in intervalsB1 = [0, 7/8) andB2 = [7/8, 1]. An equal expansion coefficient is assumed for
the two basis functions. Therefore, the coefficientsβ1 andβ2 are inversely proportional to the sizes|B1| = 7/8 and
|B2| = 1/8, respectively, and consequentlỹM1 = 1/7M̃2.

Figure 5 shows the empirical correlation of the unweightedψ1
j1,i1,k1

and ψ1
j2,i2,k2

with uniform as well as
weightedψ1

j1,i1,k1
andψ1

j2,i2,k2
with importance sampling. Notice that the empirical correlation converges to zero

fastest for the case of weightedψ1
j1,i1,k1

andψ1
j2,i2,k2

with importance sampling.
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FIG. 5: Empirical correlation of basis functions of Section 6.1 vs. number of samples for uniform and importance
sampling as described in Section 6.1. The gray areas indicate values up to one standard deviation away from the
average empirical correlation. Products obtained using uniform sampling, (a), and importance sampling with basis
preconditioning, (b).

6.2 Sparse Functions with Known Tree Representation

As a second numerical experiment, we study the accuracy of OMP and TOMP in reconstructing two piecewise-smooth
functions with uniform and importance sampling.

The two functionsu1, u2 : [0, 1] → R are selected as follows:

u1 =

{
sin(40 y) if 0 ≤ y < 0.25

10 sin(15 y) if 0.25 ≤ y ≤ 1
and u2 =

{
1 if 0 ≤ y < 0.75

10 sin(15 y) if 0.75 ≤ y ≤ 1,

wherey ∼ U [0, 1]. Figure 6 showsu1 andu2 along with their scalar tree representations, where all supports having
a coefficient with absolute value larger thatα̂tol = 1.0 × 10−3 are colored. Darker colors along the vertical direc-
tion denote coarser resolutions and different colors along the horizontal direction correspond to different shift values.
Coefficients below this threshold were not included. As may be observed from Fig. 6,u1 has anunbalancedtree rep-
resentation, that is, the fine scale coefficients are large only on a small portion of the support[0, 1]. On the contrary,u2

admits abalancedtree representation, where the large, fine scale coefficients are distributeduniformlyover the entire
support. In the former case, we anticipate considerable difference in the performance of the uniform and importance
sampling strategies.

A one-dimensional multiwavelet basis withjmax = 6 andm = 2 is employed, resulting in a basis with cardinality
P = 768. The samples are progressively generated fromM = 10 to M = 730 with increments of size20. Both
uniform and importance sampling of Section 5.2 are considered. Reconstructions are performed using OMP and
TOMP by solving (P0,ε) with 500 independent replications for each sample sizeM .

In general, the best performance for TOMP and OMP is obtained for different values of the truncation errorε

in (10). In order to find anoptimal ε, we use cross validation over 11 values ofε in the range[10−1, 10−5], with
the number of testing to training samples set to1/4. For more details on the implementation of this cross validation
approach, we refer the interested reader to the work in [26].

Volume 4, Number 4, 2014



318 Schiavazzi, Doostan, & Iaccarino

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0

u1

y

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0

u2

y

(a) (b)

FIG. 6: Piecewise smooth functionu1, (a), andu2, (b), introduced in Section 6.2. A graphical representation of the
associated scalar tree is also shown at the top left corner of the two graphs. Darker colors along the vertical direction
denote coarser resolutions and different colors along the horizontal direction correspond to different shift values.

To compare the accuracy of OMP and TOMP in approximatingu1 andu2, we compute an average of the error

ε =
‖αMW − αref‖2

‖αref‖2 , (15)

over 500 independent replications, whereαMW is the multiwavelet coefficients computed by OMP or TOMP and
αref is obtained by quadrature integration. Specifically, for each multiwavelet coefficientαi, sufficient number of
Gauss-Legendre abscissas are used in the support ofψi to computeαi = 〈u,ψi〉L2([0,1]).

Figure 7 shows a consistently better performance achieved by TOMP as compared with OMP. The uniform and
importance sampling give similar results for the case of balanced tree representation, i.e., corresponding tou2. The
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FIG. 7: Average reconstruction relative errorε in (15) for functionsu1 and u2 defined in Section 6.2 over 500
independent replications. Average errors obtained with OMP, TOMP, uniform and adaptive sampling are displayed in
(a) foru1 and in (b) foru2.
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combination of TOMP and importance sampling leads to smallerε in (15) when the tree representation is unbalanced,
i.e., foru1. In this case the TOMP algorithm is more efficient in finding the correct location of the large coefficients
with small sample sizes as all nodes in the tree representation belong to the ancestor set of few leaves located at the
maximum resolution. Finally, it can be noticed in Fig. 7 that error curves for OMP and TOMP eventually intersect,
with TOMP achieving smaller errorε than OMP for cases of small sample sizesM .

6.3 A Discontinuous Function

In this example, we consider the discontinuous function

u(y1, y2) =

{
sin(πy1) sin(πy2) if y1 ≤ 0.5, y2 ≤ 0.5,

0 otherwise,
(16)

previously examined in [55]. Here, the random variablesy1, y2 ∼ U [0, 1] are independent. A graphical representation
of u(y1, y2) is shown in Fig. 8(a).

Methods based on global polynomials, e.g., Legendre polynomials, result in poor approximation due to the pres-
ence of discontinuities acrossy1 = 1/2 andy2 = 1/2. Instead, this problem is well suited for the present multires-
olution framework as it gives rise to a sparse expansion in the multiwavelet basis. This sparsity is observed from the
scalar tree representation illustrated in Fig. 8(b), where only coefficients at the first two resolutions have significant
magnitudes. A 2D representation of the multiwavelet tree leaves contoured by associated coefficient magnitudes is
also illustrated in Fig. 8(c). All the weightsβi/

∑L
j=1 βj are equal in this case.

To assess the accuracy of the multiwavelet expansion ofu(y1, y2) in (16), we compute the discretèp, p ∈
{1, 2,∞}, semi-norms

εp =
(

1
N

N∑

i=1

∣∣∣uMW (y(i))− u(y(i))
∣∣∣
p
)1/p

, p ∈ {1, 2}, (17)

ε∞ = max
i=1,...,N

∣∣∣uMW (y(i))− u(y(i))
∣∣∣ ,

whereuMW denotes the approximant ofu computed with the proposed multiwavelet expansion. Figure 9 shows the
convergence ofε1, ε2, ε∞ as a function of the number of solution realizationsM , generated using the proposed
importance sampling strategy. It can be observed that TOMP outperforms OMP in terms of the number of samples
M needed to achieve a similar accuracy. Additionally, the accuracy of TOMP (or OMP) does not improve beyond
a certain level even when larger sample sizes are used. This residual error is due to the finite resolutionj and order
vectorm used in the construction of multiwavelet basis, and may be reduced by increasing these parameters.
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FIG. 8: Visualization of the nonsmooth function in (16), (a). The scalar multiwavelet tree is shown to highlight the
resulting sparsity in the multiwavelet representation, (b). Partition of[0, 1]2 colored by the weightsβi/

∑L
j=1 βj , (c).
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FIG. 9: Convergence ofε1, ε2, ε∞ norms, described in (17), withN = 1000 samples generated independently from
those used to generate the multiwavelet approximation ofu in (16). The adaptive importance sampling strategy of
Section 5.2 is used in both OMP and TOMP experiments.

The performance of the proposed framework in approximating the statistical moments of the function in (16) is
presented in Fig. 10, showing a plot of the number of samples against relative errors of the form

εµ =
|E[uMW ]− E[u]|

E[u]
and εσ =

|σ[uMW ]− σ[u]|
σ[u]

(18)

for the mean and standard deviation, respectively. In (18),E[uMW ] andσ[uMW ] are the mean and standard deviation
of u, respectively, resulting from the proposed multiwavelet expansion, whileE[u] andσ[u] are the corresponding
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FIG. 10: Relative errors in average value (a) and standard deviation (b) for the nonsmooth function (16). The rela-
tive errors produced by the proposed methodology are compared with those computed using dimensionally adaptive
sparse grids implemented in the SPINTERP MATLAB package [56] (ASG), and the spatially adaptive sparse grids
implemented in SG++ [57] (SASG).
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exact values computed analytically. Specifically, the results obtained from TOMP withm = 2 andjmax = 4 are
compared to those computed using hierarchical sparse grid collocation implemented in the SPINTERP MATLAB
package (ASG in Fig. 10) with dimensional adaptivity [56]. Moreover, the same quantities were also estimated using
spatially adaptive sparse grid collocation as implemented in SG++ package [57] (SASG in Fig. 10). It can be seen how
the proposed approach produces significantly better estimates of the statistical moments with similar sample sizes.

6.4 Kraichnan-Orszag (KO) Problem

The Kraichnan-Orszag (KO) problem is derived from the simplified inviscid Navier-Stokes equations [58] and is
expressed as a coupled system of nonlinear ODEs. We here adopt a rotated version of the original KO problem [18]

du1

dt
= u1 u3,

du2

dt
= −u2 u3,

du3

dt
= −u2

1 + u2
2, (19)

with initial conditions specified below.
In [18], the KO problem is used as a benchmark problem and analytical solutions are provided in terms of Jacobi’s

elliptic functions. The same example is used in [59] to test a treed Gaussian process model in the context of Bayesian
uncertainty quantification. If the set of initial conditions is chosen such that the planesu1 = 0 andu2 = 0 are
consistently crossed, it is shown in [18] that the accuracy of the global polynomial approximations (at the stochastic
level) deteriorates rapidly in time.

6.4.1 Results for the d = 1 KO Problem at t = 30 s

We assume initial conditions for (19) to be random and specified as

u1(t = 0) = 1, u2(t = 0) = 0.2 y − 0.1, u3(t = 0) = 0, (20)

wherey is uniformly distributed on[0, 1]. The stochastic response is reconstructed using a multiwavelet dictionary
with m = 3 and a resolution up tojmax = 7. Figure 11(a) illustrates the time history of the standard deviation ofu1
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FIG. 11: Results for the 1D KO problem. Estimates for the standard deviation ofu1 at various times are obtained
usingM = 500 realizations ofu1, (a); Convergence of the standard deviation ofu1 (t = 30 s) (as a function ofM )
computed using OMP and TOMP, (b).
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computed using2.0× 106 Monte Carlo simulations; the estimates provided by the proposed approach are also shown
for time intervals of5 s and obtained usingM = 500 realizations ofu1.

For the stochastic response att = 30 s, the relative standard deviation error

εσ =
|σMW − σref |

σref
(21)

is plotted against the number of samplesM in Fig. 11(b). The quantityσMW is an estimate for the standard devi-
ation of u1 calculated from the proposed multiwavelet expansion and importance sampling approach, asσMW =
(
∑P

i=2 α2
i )

1/2, while σref is a reference value obtained from the Monte Carlo simulation. To illustrate the effect of
the importance sampling, we also present results using OMP with uniform sampling.

Figure 12 provides more details on the proposed multiresolution approximation ofu1 using the importance sam-
pling strategy. In particular, the approximation ofu1(y1) at t = 30 s is shown in Fig. 12(a), where the multiwavelet
approximation withM = 500 coincides with the reference solution. The evolution of the adaptive importance sam-
pling measureγ(y1) is shown in Fig. 12(b). From an initially uniform measure, a large peak inγ(y1) close toy1 = 0.5,
i.e., the region with the highest response gradients, is observed. Finally, Figs. 12(c) and 12(d) show the partition of
[0, 1] for M = 500, with colors reflecting the weightswi, and the associated scalar multiwavelet tree representation,
respectively.
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FIG. 12: Approximation of the stochastic response ofu1 at t = 30s for the 1D KO problem, (a); Evolution of the
adaptive importance sampling measure for increasing number of samples, (b); Partition of[0, 1] colored by the weights
βi/

∑L
j=1 βj , (c); Scalar multiwavelet tree representation, (d).
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6.4.2 Results for d = 2 KO Problem at t = 10 s

The initial conditions of the Kraichnan-Orszag problem are again assumed to be uncertain but this time functions of
two random variables

u1(t = 0) = 1, u2(t = 0) = 0.2 y1 − 0.1, u3(t = 0) = 2 y2 − 1, (22)

wherey1 andy2 are independent and uniformly distributed on[0, 1]. A two-dimensional multiwavelet approximation
of u1 at t = 10 s is generated withm = 2 and a maximum resolutionjmax = 4, resulting in a basis of cardinality
P = 9216. Figure 13(a) shows the convergence of the standard deviation ofu1 with uniform and adaptive importance
sampling. The uniform sampling result are obtained using the OMP algorithm.
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FIG. 13: Results for the 2D KO problem. Standard deviation error (21) for the standard Monte Carlo sampling as well
as OMP and TOMP, (a); Multiwavelet expansion coefficients usingM = 5.9× 103 samples are compared to those of
least-squares regression based onM = 9.0×104 samples, (b); Partition of[0, 1]2 colored by the weightsβi/
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(c); Samples generated based on the adaptive importance sampling approach of Section 5.2 (M = 5.9× 103), (d).
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In Fig. 13(b), the expansion coefficients computed by the proposed strategy withM = 5.9 × 103 samples are
compared to those obtained using a standard least-squares regression. In the latter approach the multiwavelet coeffi-
cients are given byαLS = (ΨT Ψ)−1ΨT u in which we usedM = 9.0 × 104 samples ofu1. As may be observed
from this plot, the proposed sparse approximation technique recovers the large multiwavelet coefficients accurately
usingM < P solution realizations. Finally, Figs. 13(c) and 13(d) show the partition of[0, 1]2 with the color scheme
based on thewi, together withM = 5.9× 103 adaptively chosen samples.

6.5 Application: Passive Vibration Control Using Tuned Mass Damper Devices

Vibrations produced by harmonic or stochastic excitations may result in excessive acceleration levels for structures
with impacts on serviceability. If resonance occurs, effects of applied forces may be significantly amplified. In this
case, the available system damping plays a crucial role. Horizontal acceleration levels higher than0.5% of g (the
gravitational acceleration) may be perceived by the occupants of a given structural system, while5% of g can be con-
sidered an upper bound for serviceability related to human perception. Passive vibration control may provide a cost
effective remedy against excessive structural vibrations levels compared to expensive active control systems. Tuned
Mass Damper (TMD) devices are among the typical choices for vibration reduction. Their introduction follows from
a relatively simple observation on a two Degrees Of Freedom (DOF) spring-mass system: the steady-state undamped
response of the principal mass subject to a harmonic excitation can be minimized by applying a TMD device tuned
both to the forcing and system frequencies. The efficiency of a TMD can be defined, in this case, based on the reduc-
tion obtained in the peak acceleration response of the principal mass. Perfect efficiency, i.e., zero peak acceleration
response, is possible under idealized conditions; however, practical efficiency of TMDs is limited by the variations of
the actual system/loading conditions from those used in the TMD design. Real forcing, for example, may be charac-
terized by a broad frequency spectrum and generally has variable magnitude. This may make a TMD device, designed
for a particular frequency, less effective to prevent excessive vibration for other frequencies.

In the present study, we examine the effect of such uncertainties—relative to nominal conditions—on the efficiency
of an example TMD device. To do this, we employ the present multiwavelet regression approach in order to generate
stochastic representation of the efficiency metric.

6.5.1 Two DOF System with Passive Vibration Control

The motion of the two DOF system displayed in Fig. 14 is characterized by the triplets(ẍ1(t), ẋ1(t), x1(t)) and
(ẍ2(t), ẋ2(t), x2(t)) providing the evolution in time of the principal and TMD mass in terms of acceleration, velocity,
and displacement, respectively. Assuming a linear elastic material and small oscillations, the equations of motion of
the main system with installed TMD device can be written as

m1

m2

k1

k2
c2

c1

TMD

FIG. 14: Schematic representation of a two DOF dynamical system characterized by a principal system (subscript
“1”) and an attached TMD device (subscript “2”).

International Journal for Uncertainty Quantification



Sparse Multiresolution Regression for Uncertainty Propagation 325

Mẍ + Cẋ + Kx = f(t), (23)

where
ẍT = [ẍ1, ẍ2], ẋT = [ẋ1, ẋ2], xT = [x1, x2], f(t)T = [f1(t), f2(t)], (24)

and

M =
[
m1 0
0 m2

]
, C =

[
c1 + c2 −c2

−c2 c2

]
, K =

[
k1 + k2 −k2

−k2 k2

]
. (25)

We consider characterization of the damping coefficientsc1 andc2 in terms ofdamping ratiosξ1 andξ2,

c1 = 2 ξ1

√
m1 k1, c2 = 2 ξ2

√
m2 k2.

An instance of displacement, velocity, and acceleration time history of the principal massm1 (with TMD device
installed) subject to a unit step load applied att = 0.5 s, is illustrated in Fig. 15. In particular, reductions in acceleration
amplitudes are observed in the presence of TMD.

A better understanding of the attenuation mechanism of TMD devices may be reached through frequency analysis.
Consider the same dynamical system as in (23) where the integration in time has been extended toTtot = 10.0 s. A
family of harmonic excitations of the form

f(t) = [F ∗ sin(2πf), 0]T (26)

is considered here, with amplitudeF ∗ and frequency rangef ∈ [4, 6] Hz. A graph of the maximum acceleration in
the principal system versus the external excitation frequency is depicted in Fig. 16 for the following configurations:

• undamped principal system with no TMD device installed,

• undamped principal system with undamped TMD device installed,

• ξ1 = 0.01 damped principal system with undamped TMD device installed, and

• ξ1 = 0.01 damped principal system andξ2 = 0.10 damped TMD device installed.

After installing the TMD device, a single-peak infinite acceleration response, typical of a resonance state of the
single DOF system, is replaced by two nearby peaks of lower magnitude. Note that maximum values of acceleration
shown in Fig. 16 are obtained from transient responses integrated over a limited time duration of10.0 s. The effect of
ξ1 = 0.01 damping in the principal system also results in a significant reduction in the acceleration response relative
to the new peaks, as expected for resonance conditions. An increased damping ratioξ2 = 0.10 ratio of the TMD
device further reduces the peak acceleration response.
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Volume 4, Number 4, 2014



326 Schiavazzi, Doostan, & Iaccarino

0.0

10.0

20.0

30.0

40.0

50.0

60.0

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

M
a

x
im

u
m

 a
c
c
e

le
ra

ti
o

n
 x..

1
[g

]

f [Hz]

Acceleration Response vs. Frequency

No TMD 
No Damping

With TMD 
No Damping

With TMD 
1% System Damping

With TMD 
1% System Damping 

10% TMD Damping

FIG. 16: Acceleration response of a two DOF dynamical system with and without the TMD device installed for a
range of forcing frequenciesf . The effect of variations in the damping ratiosξ1, ξ2 of the principal system and the
TMD device is also explored.

6.5.2 Uncertainty Quantification of TMD Efficiency

In our numerical experiments, we consider the forcing frequencyf in (26) and the damping ratio of the principal
systemξ1 to be random variables. Randomness in the forcing frequency may be the result of environmental, e.g.,
due to wind, or anthropic, e.g., induced by walking or running, variations. In particular, we setf = 3.5 + 2.0 y1 and
ξ1 = 0.005 + 0.005 y2 wherey1, y2 ∼ U [0, 1] are statistically independent. Due to the low level of damping in the
system, steep gradients are likely to occur in the stochastic response, thus justifying the application of multiresolu-
tion approaches over, for instance, standard Polynomial Chaos (PC) techniques. For each realization of(y1, y2), we
evaluate the efficiencye of the TMD defined by

e =
max t |ẍ1(t)|
max t |˜̈x1(t)|

− 1, (27)

wheremax t |ẍ1(t)| is the maximum acceleration of the principal system over the time interval[0, 10 s] without any
vibration control device. Additionally,max t |˜̈x1(t)| is the corresponding value with the TMD device installed. Note
that whene ≤ 0, TMD results in amplification or no reduction in the maximum acceleration of the principal mass;
therefore, positive large values ofe are desirable. We compute the cumulative distribution function (CDF) of the TMD
efficiencye using three approaches: the Monte Carlo sampling method, a Legendre PC expansion whose coefficients
are computed by numerical integration using tensor-product Clenshaw-Curtis quadrature nodes, and the proposed
multiwavelet approach withjmax = 2, m = 2, ε = 5.0× 10−4, and adaptive importance sampling.

To assess the accuracy of our approximations, we first generate a reference CDF ofe usingM = 1.0×104 Monte
Carlo samples. We useM = 100 samples for the construction of multiwavelet representation ofe. To compute the
coefficients of the Legendre PC expansion, we useM = 10×10 andM = 14×14 nodes obtained by the tensorization
of one-dimensional Clenshaw-Curtis abscissas.

The surface plot of the TMD efficiencye as a function ofy1, y2 is illustrated in Fig. 17(a), and the resulting CDFs
of e are shown in Fig. 17(c). As expected, areas of steep gradients close to the resonance can be observed. It can be
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FIG. 17: Representation of the TMD efficiencye, defined in (27), for the two DOF system, (a). Partition of[0, 1]2

colored by the weightsβi/
∑L

j=1 βj , (b). Comparison of the CDFs ofe computed with the Monte Carlo, polynomial
chaos and proposed approaches, (c).

Volume 4, Number 4, 2014



328 Schiavazzi, Doostan, & Iaccarino

seen from the plots in Fig. 17(c) that our multiresolution method outperforms both the polynomial chaos and Monte
Carlo approaches in estimating the CDF of efficiencye.

7. CONCLUSIONS AND FUTURE WORK

A novel framework for nonintrusive, i.e., sampling-based, uncertainty propagation has been proposed that consolidates
the flexibility of multiresolution representations, in capturing piecewise-smooth stochastic responses of physical sys-
tems, with the efficiency of sparse approximation techniques. Within this framework, two existing greedy algorithms,
namely Orthogonal Matching Pursuit (OMP) and Tree-based OMP (TOMP), have been employed and extended to
reconstruct stochastic functions that lend themselves to sparse multiwavelet expansions. In order to enhance the re-
covery of dominant coefficients, the latter approach exploits the compact tree structure typically exhibited by the
multiwavelet coefficients. In addition to the standard sampling of inputs, i.e., according to their probability measure,
an adaptive importance sampling strategy has been proposed to further improve the reconstruction accuracy when the
solution of interest exhibits sharp gradients or discontinuities.

The accuracy of the proposed multiresolution framework has been demonstrated through its application to a num-
ber of benchmark problems as well as a passively controlled dynamical system under uncertainty. In particular, it
has been shown numerically that the TOMP algorithm outperforms the standard OMP solver which does not account
for any structure in the multiwavelet coefficients. Additionally, it has been illustrated that the proposed adaptive im-
portance sampling strategy achieves higher accuracy as compared to the standard sampling of inputs. The proposed
approach improves previous work on nonintrusive construction of multiresolution expansions by exploiting the spar-
sity of piecewise-smooth stochastic solutions in multiwavelet basis and, thereby, reducing the number of required
solution realizations.

In the present study, adaptivity has been investigated with the specific focus on informing the selection of input
samples, while fixing the multiwavelet basis. Future work will attempt to extend this approach by adaptively refining
the approximation basis. Additionally, theoretical results are needed to certify the advantage of the proposed impor-
tance sampling strategy over the standard counterpart. Another possible extension of the present approach consists
of associating sparsity-promoting prior probability distribution to the multiwavelet coefficients, providing an alterna-
tive way to monitor the local accuracy of the expansion, and estimating the coefficients via Bayesian update. Such a
sparse approximation has been previously introduced in [60, 61] and dubbed Bayesian Compressive Sensing. Recent
applications of this method to polynomial chaos expansions have also been considered in [62, 63].
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