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Uncertainty quantification analyses often employ surrogate models as computationally efficient approximations of com-
puter codes simulating the physical phenomena. The accuracy and economy in the construction of surrogate models
depends on the quality and quantity of data collected from the computationally expensive system models. Computa-
tionally efficient methods for accurate surrogate model training are thus required. This paper develops a novel approach
to surrogate model construction based on the hierarchical decomposition of the approximation error. The proposed al-
gorithm employs sparse Gaussian processes on a hierarchical grid to achieve a sparse nonlinear approximation of the
underlying function. In contrast to existing methods, which are based on minimizing prediction variance, the proposed
approach focuses on model bias and aims to improve the quality of reconstruction represented by the model. The perfor-
mance of the algorithm is compared to existing methods using several numerical examples. In the examples considered,
the proposed method demonstrates significant improvement in the quality of reconstruction for the same sample size.

KEY WORDS: surrogate models, simulation, Gaussian processes, regression, interpolation, model error

1. INTRODUCTION

High-fidelity computational models of physical systemsypda important role in engineering analyses. Real-world
systems are subject to various sources of uncertainty,asiphysical variability, data uncertainty, and model exror
Robust analyses of such systems typically require mulspieulations for quantification and integration of these
uncertainties [1, 2]. However, the high computational s@stolved in executing these simulations prohibit their re
current use in analysis. In such cases, engineering aisaysgeloy a surrogate model to approximate these simulations
due to the low computational costs in evaluating the resgoogsuch approximations [3, 4].

These approximations by surrogate models are not low-fjdedirsions of the computer models derived by sim-
plifying the physics of the underlying phenomena. Instesairogate model-based approximations aim to reproduce
the input-output relationship implemented by an actualutation code. Toward this end, surrogate models use the
response of the simulation code over a small subset of thigrdspace and generalize the information contained in
that data over the entire design spdee,

The quality of the engineering analysis depends on the acguwf approximation implemented by the surrogate
model. A typical measure of the accuracy of approximatioy bewritten as follows:

I(X.) = /an(x)—f (2]2.) | dx 1)

where f(x) is the input-output mapping implemented by the simulation,= {y,, X,} = {f(x:),x;}r_, is the
training data andf(z) is the approximation tgf () implemented by the surrogate model. A low valuel¢X )
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indicates high-fidelity between the underlying functighand its reconstructiorf, and the quality of reconstruction
depends on the choice 4f,.

The quality of approximation depends on two key factorssélection of the surrogate model form that is able
to match the complexity of the underlying functigh and (ii) selection of the most informative or useful traigi
data. The two factors are interlinked: the utility of thealdepends on the existence of a model which can extract
the information contained in it, and the ability of the mottehccurately approximate the underlying code depends
on the amount and the quality of data. Thus, in the constraatf accurate surrogate models, the two issues—maodel
construction and training data selection—must be consdl&rgether.

In previous work, researchers have employed various typssiroogate models such as Gaussian process re-
gression [5, 6], radial basis functions [7], polynomialpesse surfaces [3, 8], Splines [9] and polynomial chaos
expansions [10, 11]. These models are based either ortistdtr functional approximation theory and are known
to be capable of approximating a wide class of function tyji@% For some applications, studies such as [3, 13]
have evaluated the relative performance of various suteagadel types. Although such studies describe the relative
performance models for a given application; in generalctiwce of the particular surrogate modeling technique em-
ployed to approximate a simulation code is, in practiceitianty because, functionally, many of the above-mentioned
surrogate modeling methods are closely related, evenyfhiage different internal parametrizations [5, 14, 15] and
have similar approximation capabilities [9].

Once a surrogate modeling technique is selected, the desmmapproximate model then involves (i) selection
of training points and (ii) estimation of the internal paters of the model. Because the mappjiig) implied by
the simulation is not known and is expensive to evaluateséection of the optimal training point distribution that
minimizes Eq. (1) can neither be determined a priori nor tsetlan selection criteria based directly ), which
requires extensive evaluation. Consequently, sampletgaias necessarily sequential and based on selecti@rierit
defined on the intermediate estimates of the underlyingtiomprovided by the surrogate models.

The use of Gaussian process (GP) regression in the moddlidgt@erministic computer codes was introduced
by [6]. In that formulation, the underlying function is assed to represent a particular realization of a GP and
the object of modeling is to identify the particular reatima. Typical approaches to training data selection be-
long to the variance reduction class of techniques thatolofrom the optimal experiment designs discussed pre-
viously [16-18]. Using the Bayesian approach, MacKay andgTfi9, 20] have described entropy based-sample
selection criteria for reduction of parameter uncertasatgl model discrimination. These criteria are analogous to
their counterparts in optimal experiment design. More mdge Guestrin et al. [21, 22] have proposed a mutual
information-based criterion for reducing a posteriorigiogion uncertainty in GP models and presented an approx-
imate polynomial-time algorithm for the problem. Gramacyld ee [23] employ Gaussian trees to represent non-
stationary processes and employ prediction variance éodésign of sample using the space-filling Latin hypercube
designs [24, 25]. In contrast to the above approaches, Bieh@l [26] employ an error measure defined on a GP
models to approximate the reliability limit state, whictoals concentration of the sample distribution around the
limit state.

Prediction variance in GP is independent of the actual zedin of the underlying function and is instead a
function of the parameters of the assumed process covaridhas the variance minimizing sample (VMS) designs
mentioned above are optimal for a class of functions repteseby a given set of GP parameters. The resulting
distribution of the training points is uniform throughohetdomain and designed to capture the behavior of an entire
class of functions (represented by the surrogate modetrpeteais) rather than the particular realization impliedHzsy t
underlying function.

The density and distribution of training points in GP is detmed by the covaraiance parameters, which in turn
represent the variation in the underlying function. Whem thriation in the underlying function is even and spread
throughout the domain, then the distribution of trainingnp®that is spread uniformly over the domain is neccessary
and efficient. However, if the variation in the underlyingiétion is localized to only a small part of the domain,
such distributions result in sampling the entire domaireldasn localized variation. In such cases, VMS represents
an inefficient use of a scarce sample budget. In such casam@esdistribution correlated with the variation in the
underlying function is desirable. This paper focuses onggeration of such training point distributions and the
development of surrogate models to extract of informatimmained in them.
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In contrast to the selection of training points based on iptieh variance (which is solely a property of the
approximating model), this paper explores the possibidftjraining point selection based on prediction bias (which
directly describes the relation between the model and thenlying function). Toward this end, first a novel modeling
technique based on hierarchical decomposition of a givection in terms of approximation error is proposed. In this
method, sparse Gaussian processes are employed in a hieahdecomposition of the model error—each layer of
the model approximates the error in the approximation basqutevious layers.

Next, the bias minimizing sampling (BMS) algorithm is dey@d as an adaptive algorithm for sequential realiza-
tion of the hierarchical error decomposition model. Using information contained in the residuals, the BMS algo-
rithm traverses this tree sequentially and adjusts the sty of the model (in terms of the number of nodes) accord-
ing to the local variation in the underlying function. Fuetinore, by using covariance functions with localized/i¢uas
localized kernels, and sampling only in the support of thaé&ks, the algorithm also achieves a nonuniform training
point distribution in which the sample density depends @wdriation in the underlying function.

Preliminary results have established the efficiency of thethod relative to the VMS distributions proposed
earlier [16—20]. Specifically, in tests conducted thusBMS samples are seen to provide a significantly better qualit
of approximation than VMS for the same number of samples #nds, BMS appears to represent a much more
efficient procedure for the construction of surrogate madel

The rest of this paper is organized as follows: In Section &)$5ian process regression (GPR) is introduced
and its predictive distribution is analyzed. The distribatof the training points selected to minimize the prediati
variance is also analyzed in Section 2. In Section 3, spase$ian processes are motivated as approximations to
the GPR. Sections 2 and 3 form the background for the dismussi Section 4, where the proposed hierarchical
error decomposition using sparse Gaussian processesaduned. In Section 5, the proposed sequential algorithm
to achieve the hierarchical decomposition suggested itiddet is presented. The BMS algorithm is first compared
to VMS in terms of the quality of approximation in Section 5The computational complexities of the two algorithm
are compared in Section 5.8, and finally in Section 5.9, tieeofiboth the algorithms for uncertainty quantification is
illustrated and the estimates of the surrogate models anpared.

2. BACKGROUND

The following notation will be used : Q@ — R, Q € R is the underlying functionxr = {x;,xa,...,x; | x; € Q}
represents thetraining points. The sébr = {xr,yr} represents the training data, where = {y1,y2,...,y: | y:

= f(x;) + €;} is the set of measured function values or sampies;» A(0, 02) is the measurement noise, and
fr = {f1, fo, ..., ft| fi = f(x;)} is the set of underlying function values.

Our objective is to generalize the information containedata, D, so as to infer the value of the underlying
function, fp, at any arbitrary set op prediction pointsxp € . In this section, GP- and SGP-based regression
techniques are reviewed. Both are probabilistic methodshich inference aboufr is made by computing the
distributionp(fp| D). The primary motivation for SGP is developed as a computatip efficient approximation to
GP.

2.1 Gaussian Process Regression

In GPR, it is assumed that the underlying function valuesasgnt a particular realization of a GP, and the objective
then is to identify the particular realization based on th@ing data.

The GP is a generalization of the multivariate Gaussianiligton and thus may be thought of as a collection
(indexed by points in the domain) of multivariate Gausseamdiom variables. A GP is fully defined with the specifica-
tion of the mean functionn(x), and the covariance functidri{x, x’). In general, these functions must be selected so
as to reflect our assumptions about the underlying funcsioch as about its stationarity, periodicity, etc. [5, 14, 27
As is common in literature [5, 6, 28], in this paper it is assdrthat the mean functiom(-) = 0 and the covariance
function is the squared exponential function

D )2
(e = mee [_%Zw] @

d=1
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TogetherP = {l, 04, 0,,} form the parameters of the covariance function and thuseo&fA model. In order to be
able to make predictions using the model, these parametesshma inferred from the given data. A common method
employed is the maximization of the log marginal likelihddi

1 _ 1 D
logp(yr|xr;©) = _EyT(KTT +ol) ly — §|09|KTT + 021 + 5|0927T (3

Of special interest are the parametérs; {l1,ls,...,lp} known as length-scale parameters, which correspond
to the length of the variation in function values implied &) in each dimension o2. Authough a small value df
indicates significant variation in the function values iaith dimension, a large value gfindicates that the variablity
in the function value is not impacted by changes inithedimension.

The GP predictive distribution is given by [9}(fp |y, x1, xp, ©) ~ N (m, S) with

m=Kpr (KTT + Gil)_l yT (4)

~1
S=Kpp —Kpr (Krr +021)  Krp %)

where, Krr = [k(xi,xj)]i_’j is thet x t matrix of the covariances between the training pois Kpp is the

p x p matrix of the covariances between the prediction pokys and Kpr is thep x ¢t matrix of covariances
betweenxkp andx with K1 p as its transpose. The mean of the posterior distributioris taken to be the predicted
values of the underlying function at the-. This estimate is a function of the (i) measurement unagstafii) the
separation between the training points, (iii) the measuaddge of the underlying function at the training points, and
(iv) separation between the training points and the prigtigioints. By collecting all the terms that do not depend on
the prediction pointsxp, Eq. (4) may be rewritten as follows:

m = KPTWT (6)

wherewr = (KTT + 0311)71 yr- The function value predicted by GPR at a test location is thweighted sum of
the correlation between the test location and each of tiv@rapoints.

If a computer code is used to evaluéteor y, then typically, there is no measurement noise @ndhay be set to
zero. Under such circumstances, the GPR model is inteige)ae.,m(xr) = fr andS(xr) = 0. However, in this
paper,o,, value is set to a very small value, so as to stabilize the giwerof the covariance matrix without affecting
the value of the prediction numerically.

2.1.1 GP Prediction Variance and Variance-Based Training Point Selection

The covariance of the predicted valuBsrepresents the uncertainty in prediction [Eq. (5)]. Adwgtediction mean,
for a given model © fixed), the uncertainty in prediction is a function of the m@@ment noise, and the separation
between the training points and the separation betweenrétigtion points and the training points. This posterior
uncertainty is always less than the prior uncertaiity p; however, unlike the prediction mean, it is independent
of the measured values of the function at any of the trainimigtp, yr. When the measurements are taken from an
unknown GP, the influence gir is implied indirectly in the estimation & of the unknown GP.

The predicted variance of a 1D GP with = {1,1,10~°} and sampled at nine uniformly distributed points in
[—4,4] is shown in Fig. 1(a). The predicted variance is a functiothefdistance between a prediction point and the
training points. The prediction variance has local peakb@mmidpoint between two neighboring data points. This
shape remains the same throughout the domain; however iimispeear the boundaries of the domain, the value of
the variance increases. This is due to the asymmetry in thebacof data points and the effect of length scale. At
length scald = 1, prediction variance at points around the center of the domanfluenced by a greater number
of data points than the points near the boundary of the damaim consequence, in Eq. (5) the correction to prior
variance is larger for test points near the center than aetim@ar the boundaries. This effect is exaggerated for a
model with a larger length scale= 2 [see Fig. 1(c)]. For a model with smaller length scéle; 0.45, the effect of
neighboring data points is more localized and therefoeesttape of variance curve is uniform throughout the domain
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FIG. 1: Predicted variance of Gaussian process regression. Feathe data locations (squares), prediction variances
of three models, with different values of the length-scaeameters are shown. (&) = {1,1,107%}, (b) © =
{0.45,1,10-6}, and (c)© = {2,1,1076}.

[see Fig. 1(b)]. The behavior in higher dimensions is sintibethe 1D case, except that the symmetry is with respect
to the value of the length scale in each dimension.

An important consequence of this behavior is that for a gideprediction variance may be minimized only by
equidistribution of sample points in the domain. Thus, &thms for VMS designs, tend to generate sample distri-
butions, which are relatively uniform and have a relativilyh concentration of sample points along the boundaries
of the domain. The behavior in higher dimensions is simitethie 1D case, except that the equidistribution is with
respect to the value of the length scale in each dimension.

A simple numerical experiment illustrates this point. Sogg = [0, 1]2. We consider a uniform grid dfl x
51 = 2601 prediction pointsXp € Q. We assume that the underlying function is a GP with knowaipatersg,
and seek the locations of thetraining points X € €2, that minimize the total prediction variancg,= tracgS),
whereS is a51 x 51 covariance matrix defined according to Eq. (5).

We first consider the anisotropic ca®e= {0.1,0.5,1, 1e — 6}. The sample distribution far = 16 andn = 32
are shown in Figs. 2(a) and 2(b), respectively. koe 16, the sample distribution is aligned in two rows. In each
row, the average separation between neighboring poiotd3d 1 and the average separation between the two rows is
0.5383. The total prediction variance i$6.312. Doubling the number of training points to= 32, reduces the total

1 ‘ 1
09 091g [} o ) O o g o o] o o
08 o ° ° ° ° o o o 038
07t g 07
06 g 06
0.5 R 0.50--—-0-—--—- O O 0~ O O~ O~ Q- -0
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02 10 ° ° ° ° ° ° ° 02
o1l wlo 0 1© © o © 0 o o ©° 9

. . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

@ (b)
FIG. 2: Prediction variance minimizing sample distribution: 2Dsatropic GP with knowr® = {0.1,0.5,1,1075}.
(@)n = 16 and (b)n = 32.
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prediction variance t@3.8549 and distributes the samples in three rows. In each row, tbage separation between
neighboring points i9.0997 and the average separation between the ro@si& 4.

Figure 3(a) shows the sample distribution for the isotragise. The Voronoi tesselation of the domain with the
sample locations as Voronoi centers is also shown in Fig. t8(aeinforce the equipartition of the domain by the
sample locations. Cells in the tesselation are approxisnet@gruent to each other.

The above examples illustrate that the optimal samplelbligion that minimizes the total prediction variance over
the domain is such that the average distance of the traimitggto the prediction points is minimized. Furthermore,
when the prediction points are uniformly distributed owes iomain, this results in equidistribution (with respect t
the distance metric defined in the process covariance) dfdiréng points in the domain.

In the modeling of simulation codes, model parameters at&mmwvn a priori and must be estimated based on
the training data. For such cases, starting with an iniaahgle distribution, a sequentialized version of the above
algorithm may be considered [28, 29]. In each iteration,rttoelel parameters are estimated using existing training
data. In turn, a new training point is added at the locatiothefhighest prediction variance indicated by the model.
In subsequent sections of this paper, this sequentialipedithm is referred to as VMS and serves as the benchmark
for comparisons.

3. SPARSE GAUSSIAN PROCESS REGRESSION

Driven by computational concerns, several approximattonGPR models known as sparse Gaussian process re-
gression (SGPR) models, have been developed [30—34]oQeii-Candela and Rasmussen [35] has shown that the
common idea behind these approximations is to induce aaelaétween the prediction variablfs and the training
variablesfr, through another subset of inducing variablgs,defined at locationscyy € .

The inducing variabledy;, follow the same distribution a&- andfp, i.e.,fy ~ N (0, Kyy), and Rfr, £p) may
be computed by marginalizing the joint prior of all threeighfe sets:

Pt tr) = [ PUEr £, f)dt ™)

As a consequence of marginalization, the actual valuesadifitiucing variabled;, do not influence the inference.
However, as discussed subsequently, the locations of thueiing variablesx;, are critical to inducing a relationship

between the prediction and training variables. Followhgterminology of Quifionero-Candela and Rasmussen [35],
these locations are call@aducing inputsn this paper.
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FIG. 3: Prediction variance minimizing sample distribution: 2Btr®pic GP with knowr® = {0.25,0.25,1,1075}.

(@)n = 16 and (b)n = 32.
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Sparse approximations to GP are based on two key assumpftoméirst assumption, which leads to approxima-
tion of the exact joint prior above, is the conditional indagence betweefy and fp, given fi;. Equation (7) may
then be written as

P(fT,fp) 2/P(lefU)P(fp|fU)P(fU)de (8)

Under this assumption, interaction betwderandfp is induced througlfi;. This is in contrast to GPR, where the
relation betweerfr andfr is direct because the joint posterig(fr, fp|yr) is described in terms of the exact joint
prior p(fr, fp).

In addition, formulation of SGP involves assumptions regag the approximations of conditionals;|f;; and
fr|fy. Several different approximations have been suggestadinig to a different joint prior betweefz andfr and,
consequently ,to different approximate posterior distigns [30, 32, 35]. In this paper, we use the fully indeperide
training conditional (FITC) approximation described in4[3

As areference, witlQ 4 g £ KAUK[}}JKUB, prediction based on this approximation is provided a®vadl:

m = Qpr (Qrr + diagKrr — Qrr + Gil])il yr 9)

. —1
S =Kpp — Qpr (Qrr + diagdKrr — Qrr + 021)) ~ Qrp (10)
where diag-) is a diagonal matrix containing only the diagonal elemehta®argument matrix.
By collecting all the terms that do not contain the preditfimints,x », the mean predicted value may be written
in the form
m = Kpywy (11)

where
wy = KibKor (Qrr + diagKrr — Qrr + 021) ' yr (12)

Thus, unlike in GPR [Eq (6)], in SGP, predicted values areiglted sum of the correlation between the prediction
location(s) and the inducing inputs. The weighting itsglaifunction of the correlation between the inducing inputs,
the training locations and the measurement noise. As a quesee of inducing the relation betweé&n and fr
through variable$;;, the SGP model is, in general, not interpolative and is ragheapproximation.

As in GP, the prediction variance in SGP is also a functiorhefdistance; however, the variance is minimum at
the location of the inducing inputs, rather than the trajrpoints.

Training in SGP involves estimation &f;, apart from© and may, in general, involve selecting these parameters
via maximization of the marginal likelihood

1 1 _ n
log[p(yr|xv)] = _§|OQ|QTT + Al - in (Qrr +A) 'y — §|0927T (13)

whereA = diagKrr — Q7] + 021 In this paper, for reasons that become apparent in subsediseussion, the
xy are specified independently of the parame&ers

The following notation will be used hencefortiP (x; xr, ©) refers to a GP model in which parametérsire
learned based on information in training dataat The corresponding SGP model based on inducing paotatss
represented aSGP (x;xr,xy, ©).

4. HIERARCHICAL ERROR DECOMPOSITION USING SGP

The principal objective of this paper is to develop an ebased sequential modeling and training point selection
algorithm for an a priori unknown function. The proposedutioh, BMS (presented in Section 4), relies on hierar-
chical decomposition of the approximation error space.afovthis end, in this section we begin by introducing the
hierarchical Gaussian processes (HGPs), which generajgresentation of a given function through a hierarchical
decomposition of the approximation error using a multitegehierarchy of sparse Gaussian processes. Subsequently,
in Section 4.1, such hierarchical decompositions are s#lieed and employed toward the reconstruction of an un-
known function. In this section, the proposed hierarchialomposition of the approximation error space, synthesis
analysis of HGP models, and their variation localizing @nies are discussed.
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4.1 Hierarchical Decomposition

The first step in the development of HGP models is to considéidevel hierarchical decomposition of an a priori
known functionf : Q@ — R, Q € RP, which is represented by its dense samplifigr, yr = f(zr)}. With

k={1,2,..., M} as an index into th&/-level hierarchy, such a decomposition may be represested a
€1 = f
k=1 e = €1+ es
k=2 ey = és + e3 (14)
k=M |ey = én+ent

The first layer of the model approximates = f with é; andes = e; — ¢é; is the corresponding approximation
error. Similarly, in subsequent laye, is the kth layer approximation to the errat, in the previous layer, and
ex+1 = e — € is the corresponding approximation error of the currenttay

At the kth level of hierarchy, the error at poigte , ex(x), is approximated by a SGP network®7, inducing
inputs,x’f], which are centered at locatio6% = {ci ; € 2,5 =1,2,... Ny} with Weight3w’f], with parameter®y,
estimated using datger, yr = f(xr)}:

ér(x) = SGP(x;x7,%f7, Or) = Khywh (15)

whereK%,; is the correlation matrix withV;, columns, which span the subspace represented bitithayer approx-
imation. Note that the parameters of each layer are baseldeoastimates of approximation error computed at the
location of the training points;, and is therefore same for all the layers.

From Eq. (14), it follows that

M
f= Z e +enmi1 = fu + e (16)
k=1

wheref,, is defined as thé/-level approximation to functioffi, and the corresponding error dueitb-level approxi-
mation,er;+1 = f — fu. In generalgy is the approximation error due to thle— 1)-level hierarchical approximation

of f:
) k—1
ek=f—feoi=f->_ ¢ (17)
j=1
Thus, each layek approximates the error space due to the- 1)-th level approximation of the functiofi. Further-
more, using thé&th layer approximation model in Eq. (15), thé-level approximation may be written as

M

M
Fru(x) =Y SGP(x; ek, x1, %7, 0k) = > Kpywiy (18)
k=1

k=1

4.2 HGP Parameters

Equation (18) describes the reconstruction of the giventfan in terms of the set of inducing inputs,= {Cy } |
and the set of covariance function paramet@s;z [0, | O, | ©,---0]7. In what follows, the elements «f are
referred to as the structural parameters and the eleme®@savé referred to as the approximation parameters. The
quality of approximation represented by the reconstruditioEq. (18) depends on the choice of the approximation
and structural parameters.

In general, given the number of inducing inpud§,, the optimal structural and approximation parameters may
be simultaneously estimated as in [34]. However, as the ramhinducing inputs increases, the complexity of the
parameter identification problem increases because thisiaption is with respect tq N, + 1)D + 1 variables.
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Instead, in this work, the structural parameters are seirdity to an ordering imposed by a hierarchical analysis
grid defined on the problem domain, Then, given a set of structural parameters, the optithal 1 approximation
parameters are subsequently identified. Specificallykthéayer approximation parametef3; are chosen so as to
minimize

2 T
Je = Y [en(0) = x| = (ex —Khywh) (er —Khywiy) (19)
xeXs
whereey, = [e(x1), ex(X2), - - ., ex(xn)]T = ex(X;) represents a sampling ef andw?; is defined as in Eq. (12).

This reduction in computational complexity comes at thegof having to maintain the analysis grid and the
reduced approximation power due to the discretization efalfowable structural parameter values. As is discussed
subsequently, this setting of structural parameters datgto the geometry of the problem domain and independent
of the parameters yields a localization of the variatiorhim ainderlying function.

4.3 Analysis Grid

The analysis grid employed in this paper is a ternary treehiichveach layer is a dyadic partition of the previous layer.
The intersections of such partitions form the nodes of the.tfThe association to HGP is established by an ordered
assignment of each layer of the tree to a corresponding iayee HGP. The number and position of nodes at a given
layer in the tree correspondingly determine the numberaii@dmg inputs and their locations in each HGP layer. This
tree achieves binary partition of the domain and thus allagé/en region in the domain to be resolved in terms of
multiple inducing inputs of possibly decreasing lengthesead thus represents a richer set of inducing inputs than is
provided by a simpler structure such as the binary tree.

An example of an analysis grid defined over a donfaig [a, b] € & is shown in Fig. 4. The construction of the
grid begins with the setting ¥, the number of nodes in layer 1, including two on the domaumialary. Thesev;
nodesC; = {cl,j};\’:ll are separated from each other at a resolusios: (b —a)/(N; — 1). Thus, thejth node inC1,
c1,5, 1S situated at locatioj — 1) * p; + a.

Nodes in subsequent layers are generated according to emeifiti procedure that allows fokth-level node;, ;

to be expanded in terms of its child nodééf’j) in level k + 1. Specifically,

41
{Cht1,2j—1, Cht1,25} if j=1
k,j . .
C,ng{) =9 {ert1.2j-2,Chp1,2j-1,Chp1,25) I 1<j <2841 (20)
{Chs1,2j—2, Cht1,2j—1} if j=2F+1
k p
C4,2i
4 0 0O O 0O OO0 OO0 OO O 0O O O O O O |pa
3| ¢ O O O O O O ) |ps
2| C Q C2,25-2 C2,2j-1 Q) C2,25 D | p2
1 C1,1 c1,5 C1,3 P1
| | | | | | | | | | | | | | | | |
a =R b

FIG. 4: Analysis grid.
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where .
Ck+1,2j—2 = i(ck,j + ¢k j—1) (leftchild)
Ck+1,2j—1 = Ck,j (middle child) (21)
1 . .
Ck+1,25 = i(Ck,jJrl +cg,;) (right child)

and,pkH = (1/2)pk-
Thus, the left and right child nodes are of the type; (i = 1,2,...,2*~1 k > 1), and have two parentsj_; ;

andcg—_1 ;+1, while the middle child nodes; 1, k¥ > 1, have only one parent;_; ;.

Finally, the (k + 1)th layer nodes are given iy = ij:kl C’,g’i{) In general, each levdl consists ofV;, =

2% + 1 centers(y, = {cx..}, including two on the boundary of the domain. Furthermoaghenode in théth layer
is separated from its neighbor py = p;/2*~! and located at; ; = a + px(j — 1), j = 1,2,...,2% + 1. Also,
because each higher layer is obtained through partitioneoptevious layeiy C Co C --- Cpr—1 C Cyy.

As shown in Fig. 4, level 1 corresponds to the lowest layehwdch node separated py = (b — a)/2 and at
the highest level, there ag’ + 1 uniformly spaced nodes separatedday= (b — a)/2™ 1. Thus,p, progressively
decreases dsincreases. This ordering gn. as a function of level of hierarchy, facilitates a coarsdite decom-
position of the function such that coarse scale trendsane modeled in the initial layers and fine scale features are
modeled in successive layers of the hierarchical model.

Extensions to higher dimensions follow directly.fif: R” — R is a function defined in a domain of interest
[a,b]P, then starting with\V; = 3 in each dimension, each layer of the analysis grid contaips= (2% + 1)"
centersCy = {cx..}. Furthermore, each node in théh layer is separated from its neighbor py = (b — a)/2*.
Note that it is not necessary to start with = 3. One could start with any arbitrary value fdf and proceed with
dyadic partition of scale and domain as stated above.

4.4 HGP lllustration

We consider a/ = 6 level HGP decomposition of the following test example:
flz)==-14+1 -2+ 19:102)6_””2 +2 sin(67rgc)e_(m_0'73)2 (22)

Figure 5 illustrates thé/ = 6 HGP decomposition. In Fig. 5, the position of thg centersC), are indicated by
squares, while the locations of the measurements are shodois

At each layer, given measuremenis, = {{f(Xx), Xx}, Xr = Cx}, the HGP analysis consists of estimation of
the approximation parametef8;,, of thekth layer according to Eq. (19). Thus, the weights correspanib the Ny,
inducing inputsyy, ;, are estimated using thé, residuese;, available atX, locations.

As the model proceeds to higher scales, the approximatforsaronstitute only variations at finer scale. Thus, the
algorithm captures the trends and coarse scale featugés jrin the initial layers, while the finer scale variations are
captured in the higher layers. In addition, progressiorigbér layers leades to systematic reduction in approxonati
error. Table 1 lists the mean-square approximation erter ahch layer of approximation is added to the model.

4.5 Weight Matrix

Analysis of the weights [see Eq. (18)] corresponding to éadhcing input shows the variation sensitive modeling
implemented by HGP. Toward this end, we begin by considesingsualization of the weights according to the
geometry of the approximation.

TABLE 1: HGP reconstruction of test function
Layer 1 2 3 4 5 6
MSE | 10.035 8.4275 1.7372 0.3242 0.3559 2.6383e-6
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FIG. 5: HGP lllustration:f is the underlying function anf, thekth level approximation foy. The errore;, = f — f

is available through residuads,, indicated by vertical linesé; is a SGP approximation te, with inducing inputs
XE.@k=1,N, =3,(b)k =2,No =5,(c)k =3,N3 =9, (d) k =4, Ny = 17, () k = 5, N5 = 33, and (f)
k = 6, Ng = 65.
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The HGP coarse-to-fine decomposition of a function empldy# grid of (2214 M —2) inducing inputs toward
an M -level decomposition of the function. The weights corresting to each inducing input in the hierarchical model
can be collected in a weight matrix (WM) of sidé x 22+ with nonzero elements only at positions corresponding
to the position of the centers of ti¢h layer. An example is shown in the Fig. 6.

Such a weight matrix provides a visualization of the relasignificance of the inducing inputs within the structure
of the approximation. Figure 7(a) shows the inducing inpee tfor the six-level HGP decomposition of the test
function (22). The corresponding weight matrix is shown ig. ¥ (b), where each rectangle is shaded according to
the magnitude of the weightBy;, ;|. As a consequence of using the squared exponential coearfanctions, which
have quasi-localized support, a high value of the weigh} indicates high correlation between tffe— 1)th-layer
approximation errorg;,, and the inducing input centeredat;.

The correlation between the weights and the approximatiam e is further extended to the underlying function
itself. In Fig. 7, while lower layers account for coarse soadriations in the function, concentration of level sixdms
centered in the intervdl, 2] correspond to fine scale variations in the function in therival [0, 2]. This illustrates
a localization of the functiorf. However, because HGP hierarchy is based on the decongposftthe error space,
the layer at which fine scale variations of a function are ati@rized depends on the quality of the approximation in
the previous layers rather than the function itself. Thing,HiGP does not directly characterize the variation scale in
inherent in the function. Instead, the HGP scale charaettoin is apparent and depends on the approximation in the
lower layers.

k m,
i W4,1 W4,2 W4,3 W4,4 W4,5 W4,6 W4,7 W4,8 W4,9 W4,1O W4,11 W4,12 W4,13 W4,14 W4,15 W4,16 W4,17 Z
i W3,1 W3,2 W3,3 W3,4 W3,5 W3,6 W3,7 W3,8 W3,9 i
i W21 2,2 W2,3 2,4 W25 i
l W11 W1,2 W13 i
' 1]2]3[4]5 |67 /8]9[10/11]12[13/14[15[1617|
FIG. 6: Weight matrix.
6, |
6l 3
51 1 25
5,
2
X X
3 | 4
g g 1
T = 5
5 3f 1 53
]
2t T
0.5
1+
1t . . . . . . 3 o . . . .
-4 -3 -2 -1 0 1 2 3 4 -4 -2 0 2 4
X X
(@) (b)

FIG. 7: HGP decomposition of the test example. (a) HGP model tre€@naleight matrix,W.
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4.6 Variation Sensitive Modeling

Athresholding scheme similar to wavelets may be employ&t3R to yield an efficient representation of the function
with a drastically reduced inducing input set. Specificaliyen an)M-level HGP decompoasition of a functigfy a
compressed representationfoinay be generated by a thresholding operation [36]:

~ M Ny
fu = Z ZKPUT(wk,j) (23)
k=1 j=1
wheredr(-) is the thresholding function
x if|x|>T
T(x) = { 0 if IxI <T (24)

Figure 8 shows the result of a thresholded reconstructidineotest function. The thresholded weight matii¥,,
is shown in Fig. 8(b). Figure 8(d) identifies the nodes thateexcluded from the reduced representation. Although a
HGP construction ha&"/+! + (M —2) = 132 inducing inputs, the thresholded representation uses®rly76 nodes

oF § ‘
/\/\ | 3
i 25
5 ol
2
= ar =4
(] [}
: :
g = 1.5
EES SE
1
2,
2,
05
1,
4 3 -2 -1 o0 3 4 -4 ) 0 2 4
X X
(a) (b)
8 ‘ ‘ ‘ ‘
ol 0.04
5 0.035
0.03
47 i47 | | | 7
S
B 0.025
ol 2 3 1 Ho.02
0.015
2,
0 / 0.01
1} I o.005
_2 i i i i i i i 0
4 3 2 4 0 1 2 3 4 -4 -2 0 2 4
X X
(© (d)

FIG. 8: HGP compression. (a) Reduced model tree, (b) thresholdeghtumatrix, W, (c) reconstruction, and (d)
W —-W,.
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to generate a representation of similar quality. The reduwedel tree is shown in Fig. 8(a), and the corresponding
reconstruction based on the thresholded tree is shown ir8Fdy.

Although the MSE in HGP reconstruction2s6383 x 109, the MSE due to reconstruction from reduced node
set is0.0011. As a measure of the significance of the retained nggd®,|/ > |W| = 0.98. In the addition, as seen
in Fig. 8(d), a significant number of the nodes belonging ®kth= 6, that were pruned out are located outside the
approximate interval—1, 2], which is the interval in which the functiofi(x) displays its highest variation. On the
other hand, Fig. 8(b) shows the concentration of higherlagdes, with significant weights, within this interval. $hi
example suggests a variation sensitive model, in which émsity and the scale of inducing inputs must correspond
to the localization of the features contained in the undiegljunction.

5. BIAS MINIMIZING SAMPLING

The HGP algorithm presented in Section 4 allows for the aansbn of aM -level hierarchical representation of
an a priori known function. This representation, which éstssof (22/+* + M — 2) inducing inputs, may then be
compressed to produce a sparse representation by retainiynghose inducing inputs with significant contributions
to the overall representation. The resulting compressedeinapart from providing an efficient representation in
terms of the approximation error, provides a variationsae model in which the location of the inducing inputs
correspond to the location of variation in the underlyingdtion.

However, in the construction of surrogate models for compaimulation, the underlying function is a priori
unknown. The BMS method proposed in this section implema&isequential algorithm, which traverses the analysis
grid sequentially and arrives at a sparse representatiamafpriori unknown function through discovery of signifitan
inputs in the grid. Furthermore, by linking sampling resimio and localization to nodes on the grid, BMS achieves
sequential sensitive modeling and, as a consequence rgejvariation sensitive sample distribution.

As in HGP, BMS implements an hierarchical error decompmsiti-urthermore, in BMS the nodes of the analysis
grid correspond to both the location of the inducing inpuis the location of the training points. The algorithm starts
with an initial coarse sample distribution and an initialdebconsisting of inputs at a coarse scale. It then implement
an iterative feedback procedure that systematically teleades on the grid for sample refinement and subsequent
model update.

The BMS algorithm implements an adaptive procedure for¢fiaement of an existing model and the correspond-
ing sample distribution. In each iteration, the selectiba node for refinement and modeling is based on criteria that
use information contained in the residuals, which represeampling of the true approximation error in the current
function estimate.

5.1 Steps of the BMS Algorithm
A procedural outline of the algorithm is presented as fodow
1. select node from the set of allowable candidate nodes.
2. sample function at child nodes of the selected node.
3. add the input of the selected node to the model.
4. add children of the modeled node to the set of allowableicate nodes.
5. repeat till the maximum number of samples allowed arertake

Procedurally, steps 1-3 of the BMS algorithm outline impdertra. select-refine-model cycle. The trajectory of the
sequential BMS algorithm through the analysis grid is goedrby two key ideas:

1. In each iteration, the set of allowable candidate no@gsconsists of all the unmodeled children of previously
modeled nodes. This set represents the inducing inputsarthallowed to enter the model in the next iteration.
From this set of allowable candidate nodes, a subset of niededected, according to the selection criteria
(Section 5.4) for subsequent modeling.
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2. A selected node is refined by sampling at its child nodetioea before it is modeled.

These ideas are illustrated in Fig. 9. In Fig. 9(a), nadesorrespond to previously modeled that which correspond
to f1. NodesC», which form the set of all unmodeled children of the previgusodeled nodes, form the set of
allowable candidate nodé€s,, for the next iteration.

Suppose node; » is selected for modeling in the next iteration (i.e., an itidg input centered at the location
of the node is to be added to the model). The selected Gde ¢ » is first refined by taking measurements at the
locations of the child nodeSr = {cs32, ¢33, c3.4}, and is then introduced into the model. Modeling of the defc
nodec, o introduces the child nodes into the set of allowable nodeth® next iteration. Thus, as seen in Fig. 9(b),
the set of allowable candidate node€is = (Ca \ C}) UCr = {C1 \ c2,2} U{c3,2,¢33,¢34}.

From the modeling perspective, the above procedure haslibe/ing two important consequences:

1. Allowing only unmodeled children of previously modeleatdes to enter the model ensures that each inducing
input enters the model only once. This ensures that thdiiteralgorithm does not get stuck in a recursive loop
in searching through the grid.

2. Because new inputs can only enter the pool of allowabldidate nodes through refinement of parent nodes,
no child node is added to the model before at least one of itmpaodes is modeled. This imposes intergener-
ational continuity on the inputs and thus ensures that theéefraiescends analysis grid in order.

The location of the unmodeled children of previously modeledes corresponds to all the previously sampled
locations. Thus, in each iteration, all previously sampbegtions are eligible for refinement. However, the resotut
of sample refinement is limited by the corresponding regmiudf allowable nodes. As a consequence of intergenera-
tional continuity of inputs, a region in the domain is sanajdé a given resolutiopy,, only after its neighborhood has
been sampled at resolutipp_; .

As a consequence of the grid-based regime, if a child nodesefezted node is already modeled or sampled, it is
not sampled again. Also, if a node is selected after botheighiboring nodes. ;_; andc. ;4; have been selected,
then no new samples need be taken. In such an iteration, artydacing input need be introduced into the model
and only the input corresponding to the middle child is neadygled to the set of allowable nodes because the other
child nodes would have already been introduced by the neigidpnodes.

5.2 Maximum Sampling Resolution

The procedure described above allows for traversal of théais grid down to an arbitrary grid depth with arbitrarily
high sampling resolution via refinement. However, in p@gtthe maximum number of samples allowed and the
maximum sampling resolution are typically limited.

O0000O0O0O0O0OO0O0O0O0ODO0O0O0OO0OO0OO 0OO00O0O0O000O00D0O0O000O0O0

€32 €33 C34

o o o o o o o o o ©o @ © ¢ o o o o o
C2,1 C2,2 C2,3 C2.4 C2.5 C2,1 C2.3 C2.4 C2,5
o 2 ? 2 ? 9
¢ e . e
C1,1 C1,2 C1,3 C1,3
(@ (b)

FIG. 9: Grid traversal in BMS algorithm. (a) Iteration 1 and (b) &ton 2.
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In this paper, the maximum allowable sampling rate is assuimeorrespond to the highest resolution of the grid
and the maximum sample siz&max is assumed to be less thaff, whereM is the highest grid level. Also, the
Mth-level nodes are modeled without further refinement aadefiore do not spawn new child nodes.

5.3 Modeling

In BMS, because the refinement of a selected ndtiprecedes its modeling, the number of sampl€} i€ always
more than the number of modeled nod@& ) and the resulting linear system represents an approxamadither
than interpolation. In order to start the algorithm, the BMSnitialized by selecting all layer 1 node;. Thus,

Cy = C;. Refinement of these nodes results in samples, ), at the location of all the layer 2 nodeSr = Cs.
Thus,X; = C5, which corresponds to the location of levek 2 nodes on the grid. The BMS algorithm is presented
as follows:

BMS Algorithm
1.1
2. set Nmax
3.initialize: e — f, fii1—0,X; 10
4. bootstrap: Ca « C1,C; «— Cy
5. Cr < REFI NE( C})
6. X; — X;,_1UCRr

7a. estimte: ©; = minJ[O,]

7b. synt hesi s: &; — SGP (x; Cr,C?, (3)2-)
8. if |X;| > Nmaxterm nate.

9. Ca— (Ca\C})UCR

10. Oy, « CF USELECT(Caa, e141(Ca))
11. 1 —i+1

12. goto 5

whereC? is a node in the set of allowable candidate nodgs which is selected for refinement and subsequent
modeling in theith iteration. This selection is based on a criteriBRLECT, which uses the residues at location of
nodes inC 4 to identify the selected node (see Section 5.4). Refinenfahecselected node is implemented by the
REFI NE(C) procedure, which identifies the location of the child nookthe selected nodes (Section 4.3). After the
child nodes have been identified, the underlying functisaispled at the location of child nodes and, subsequently,
the child nodes are added to the set of allowable candidatestor further possible refinement.

5.4 Selection Criteria

In BMS, before a selected node is modeled, it is refined by §ampt the location of its child nodes. As a conse-
qguence, information about the error in tih-level approximatiorjﬂ- is available as residues.(X;) = f(X;) —
fi(Xl-) at all the previously sampled locations;. These correspond to the location of all nodes in the setamiable
candidate nodeS 4. In BMS algorithm, the information contained in these rasiglis directly employed in each iter-
ation to select a nodej, ; from the setC4 such that the resulting error in approximation is systecadlti reduced.
Specifically, the node corresponding to the greatest resglaelected from the set of allowable candidate nodes for
modeling in the next iteration

iy = argmax (|ej11(ca)]) (25)
cA€Cy

5.5 BMS lllustration

We revertto the test function in Eq. (22) to illustrate the 8Blgorithm. A maximum sampling resolution(@f-a)/2°
is assumed. Thug/ = 6 and the maximum number of samplegfs+ 1 = 65.
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The first 20 inducing inputs selected by BMS are shown in Figa). The correspondence between the inducing
input distribution and variation in the underlying fungtits noted.

Because the locations of unmodeled children (leaf noddseitree) of previously modeled nodes are the training
sample locations, the correspondence of inducing inptrildigion to variation extends to training sample disttiba
[Fig. 10(b)]. In contrast, the training sample distributidue to VMS algorithm, shown in Fig. 10(b), is relatively
uniformly distributed. As a consequence, as seen in Figo)lflte approximation due to BMS algorithm captures
the variability of the test function ifi-1, 2] whereas the approximation due to VMS does not. In additiae,td the
behavior discussed previously, VMS expends more samplieidomain boundaries, where there is no variation in
the underlying function.

In order to characterize the variation-sensitive trainsagnple distribution generated by BMS, we consider the
effect of translation of the underlying function within tdemain. Toward this end, we consider the sample distri-
butions generated for test function of the tyfle — ¢), wheret € Q is the translation parameter. Figure 11 shows
the training-point distributions for various translatioof the test function (22). Each row shows the distributibn o
the first 30 training points generated whgfx) is translated by. As the function,f(x) moves from -3 to 3, the
training-point distribution shifts correspondingly; toen the density of the training points along the diagonabssr
the image is higher. On the basis of this experiment, for ¢aitte size of the intervdt — 1, ¢ + 2] (in Fig. 10(b), this
interval corresponds to [-1,2]) represents 36.18% of threaio(2 and contains 59.92% of the samples, on average.
This experiment illustrates that in addition to localipatiof the features in the underlying function, BMS training-
point distributions achieve variation sensitivity beaatise density of the training points in feature regions isbig
when compared to other regions of the domain.

In addition to the 1D test function above, the performandabeBMS algorithm is evaluated against the following
2D functions:

filw,y) = 2e72 0512 207 (26)

folay) = peaks(z,y) (27)

fs(z,y) = fi(z,y) +erf(z — .3) + 2erf(y — 2.21) o
falz,y) = fa(z,y) + erf(z — .3) + erf(y — 2.21) e

grid level, k

@ (b)
FIG. 10: Comparison of BMS and VMS for the test example (22): (a) Shilvesnodel tree and the first 20 modeled
nodes, which correspond to the location of inducing inpafsjn BMS and (b) the corresponding 35 BMS sample
locations,X; are superimposed with the test function and the correspgrtdaining points selected by VMS. Note
the spatial localization of the variation in the underlyfogction by both the inducing inputs and sample locations in
BMS.
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FIG. 11: Distribution of training points generated by BMS for varsawanslations of the test function in Eq.(22).

wherepeaks is a MATLAB function:

1
folw,y) = 3(1 — z)2e " ~W+D" _ 10 (% — a2’ - y5) e §€7(1+1)27y2 (30)
and
2 [T .
0

These functions are modeled at a maximum grid le¥él,= 6, and, thus, the maximum number of possible
training-point locations is 4225. In subsequent compassboth BMS and VMS select locations from this set of
possible training point locations and the difference betwthe predicted and the true function value at unselected
locations is used a measure of model error.

The four 2D test functions and the sample distributions duBNMIS and VMS are shown in Figs. 12 and 13. In
all the cases, when compared to VMS, BMS achieves higher Isarages in feature regions within the boundary.
In addition to the features within the boundary, functighsand f, have variations in the interval [-2,2] along the
four boundaries. In the case ¢, BMS accounts for this variation on three dimensions; initalt, the sample
density in the interior feature is now sparser. In the casf ot 150 samples, BMS has not accounted for variations
along the boundary at all. This behavior is due to the sedulemdture of the algorithm and the fact that the node
selection is based only on the residues and not the erranastj which is presented in Section 5.6. Thus, through
sequential search and modeling, BMS achieves a traininglsaahistribution that is representative of the features of
the underlying function.

5.6 Error Estimate

The internal hierarchical modef;,, employed by the algorithm represents a mechanism with winiformation
content in the sample distribution may be extracted. Intaatdia sampling of the corresponding approximation error
ert1 = f — fk is available at the location of the unmodeled nodgs, In each iteration of BMS, the information
contained in these residues can be used to obtain an estifithtetrue errore ;. In addition tofk, such an estimate
may then be employed to characterize the quality of appration to the underlying functioryy,, implemented by
BMS.

One such estimate of the errey,. 1, is obtained by employing the bases in the set of allowahtelidate nodes,
C 4, to model the residue

€r1=GP(x,Ca,0) (32)
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FIG. 12: Comparison of BMS and VMS for 2D test examples. (@) (b) fs, (c) fi BMS samples, (d)f; BMS
samples, (eYf; VMS samples, and (ffs VMS samples.

When the sample density is low, such an estimate is expexteslitiased. However, as the sample density increases, a
richer set of possible inducing inputs become availabtg inand the fidelity of the estimate to the true approximation
errorimproves. The estimate described here is intendetade a practical feedback about the quality of the funrctio
estimatefk, and may be used as a qualitative description of the se@lisatirch implemented by BMS.
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FIG. 13: Comparison of BMS and VMS for 2D test examples. {a) (b) f4, (c) fo BMS samples, (d)fy BMS
samples, (e, VMS samples, and (ff, VMS samples.

5.7 Error Rate Comparison

In Fig. 14, the BMS reconstruction error as a function of thmber of samples is shown for the 1D test function. Also
shown is the reconstruction error due to the VMS algorithigufe 15 shows the corresponding curves for the 2D test
functions. As is seen in those figures, BMS achieves a sysieneauction in the error through sequential addition
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---VMS
—BMS

10 20 30 40 50 60 10 20 30 40 50 60
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FIG. 14: Log error versus number of samples for the 1D test exampldiga error and (b) mean error.

of localized bases with localized sampling. Furthermdre,gerformance of BMS is superior to the performance of
VMS.

5.8 Computational Complexity

The computational complexity in model construction for GBR(n3) and therefore directly related to the number
of training points;.. However, SGP reduces the computational complexity in homigstruction toO (nm?), where

m is the number of inducing inputs, which is always less thamihmber of training points. Thus, the computational
complexity of the HGP and BMS algorithms is primarily in texmof the number of inducing inputs, rather than the
number of training points and for the same number of traipiigts the computational complexity in the construction
of BMS is lower than VMS. In terms of memory requirements, S algorithm requires storage of thetraining
points and, in addition to the parameters of the GP, whictedépmn the choice of the covariance function. For the
squared exponential covariance, the number of parametdisi 1; thus, the memory requirements of the VMS
algorithm are of the order aD(n + D). In BMS, in addition to the location of training points, thechtion and
parameters corresponding to the inducing inputs must astdred. Thus, the memory requirements are of the order
of O[n+ (m +1)D].

BMS represents a sequential algorithm in whieh + 1) inducing inputs are introduced in the model in the
first iteration of the algorithm. In subsequent iteratiamrdy one inducing input is introduced into the model and the
computational complexity for these iterations is thereflarear in the number of training poin(n).

However, in the initial iteration, even with three induciimguts in each dimension, the complexity grows expo-
nentially as the number of dimensions increases. This exmital growth is due to the use of the ternary tree as the
hierarchical grid. Although such a geometric grid allowslfizalization of the features of the underlying functian, i
makes the first iteration of the BMS algorithm expensive fghkr dimensional problems.

The principal advantage of VMS over BMS is in that VMS alloves the locations and number of the training
points in the first iteration to be arbitrarily selected. tiure work, a similar extension of BMS may be considered
where an arbitrary subset of the first layer of the analysiigrselected to start the algorithm.

It is however noted that in both VMS and BMS, the initial setmaifining points guides the selection of the sub-
sequent training-point locations and; therefore, afftudsquality of the surrogate model and the number of samples
required to achieve a model of given quality. For BMS, th&ahisample distribution should provide good coverage
of the domain, which can lead to subsequent discovery ofgatifes of the underlying function.

For efficient training of VMS, the initial sample distribati should yield a surrogate model whose estimated
length-scale parameters are appropriate to the variatidhel underlying function. This requires an initial sample
distribution that has a sufficiently large number of samgie®ad throughout the domain. In other words, the VMS

Volume 1, Number 4, 2011



342

10”

10

Hombal & Mahadevan

—BMS

80

@

100

120

140

40 60 80 100 120 140

(b)

100

120

140

40 60 80 100 120 140

—BMS

40

60

80

)

100

120

140

40 60 80 100 120 140

(h)

FIG. 15: Log error versus number of samples for 2D test exampled; (g max error, (b)f; log mean error, (c)s3
log max error, (d)fs log mean error, (ef, log max error, (f)f2 log mean error, (g)f4 log max error, and (h¥, log

mean error.

International Journal for Uncertainty Quantification



Bias Minimization in Gaussian Process Surrogate Modeling 343

algorithm aims to achieve space filling of the domain withpesg to the prediction variance. Because the prediction
variance of GP depends on the distance between the traivingspand the prediction point, in general, the VMS
algorithm selects the farthest unsampled regions. Howesgeseen in Fig. 1, due to the asymmetry of training points
induced by the domain boundary, the prediction variancgsémbe higher in the neighborhood of the domain bound-
ary. Consequently, if the initial training-point density ot sufficiently high, the VMS algorithm tends to choose
training points along the boundary at a higher rate thangaired. As seen in Figs. 12(e), 12(f), 13(e) and 13(f), the
sample density along the boundary points is higher thaniittise interior of the domain.

Thus, both VMS and BMS require a sufficiently large numberrafning points in the initial set to provide
domain coverage. In high-dimensional problems such Inié@ning points are prohibitive to obtain due to the “curse
of dimensionality”. In addition to the initial training pais, the curse of dimensionality also affects the subsdquen
sample distribution of VMS. Few functions exhibit consigteariation all across the domains. In higher dimensions,
due to the increase in volume of the input space, this coretion of features in the domain is more pronounced.
Thus, VMS-based surrogate models require a significanglydrinumber of samples spread throughout the domain to
capture the true variation in the underlying function. Imast, localization provided by the BMS algorithm allows
for more efficient (in terms of number of samples) constnrctf the surrogate model even in higher dimensions.
This is illustrated by the relative performance of the VM8 &MS algorithms for the 2-D test functiofi. In general,
construction of surrogate models for high-dimensionabjems involves a pronounced trade-off between the quality
of approximation and the number of training points.

5.9 Uncertainty Quantification

Computational efficiency of surrogate models allows forceffit computation of output uncertainty due to uncertain-
ties in the input variables. In this section, the two surtegaodels are employed for uncertainty quantification and
the effect of the quality of the approximation implementgdie surrogate models on the quality of the uncertainty
estimates is discussed.

Toward this end, we consider the two-dimensional test foncf; [Eq. (26)]. The uncertainties in the two input
variables are assumed to be independently normally dis&ibz ~ AN(1,0.05) andy ~ N(0,0.05). Baseline
estimates of the statistics of the response value were catpsing Monte Carlo sampling of the underlying function
with 10° samples of the two input variables. The corresponding @stisnof the mean and variance of the response
variable were 1.7575 and 0.0112, respectively, and thedriain of the relative frequencies is shown in Fig. 16(a).

The VMS and BMS surrogate models, trained with various nusibétraining points, were evaluated with the
same samples of the input variables used above. The histagtihe relative frequencies of the responses of the VMS
and BMS surrogate models constructed using 200 trainingtpds shown in Figs. 16(b) and 16(b), respectively. It
is seen that the distribution of the predicted values of tireogiate model constructed with BMS is similar to the
histogram of the original function. In contrast, at 200 séapthe corresponding distribution of the surrogate model
constructed with VMS is considerably different from thattoé original function. The estimated means and variances
of the two surrogate models constructed using a differentbar of training points is shown in Fig. 17. As is seen
in Fig. 17(a), for BMS the estimated mean and variance of titpud converges faster than VMS to the mean and
variance computed using the original function.

The dominant feature in the functigh is an exponential peak that is highly localized in the donjigig. 12(a)].

The surrogate model constructed using VMS is dominated mpkes along the boundary and in the interior of the
domain, where the function displays no variation and isdftee unable to localize the feature. The VMS surrogate
model is consistently biased over several sample rates I5i@)]. This results in poor estimates of the uncertasntie

in the response variable. On the other hand, the surrogadelmonstructed using the BMS algorithm localizes the
feature and thus provides consistently better estimatéseafneans and variances over several sample rates. This is
further illustrated by considering the one-dimensionst fenction

f5(x) = —0.4 tanh(50z), 2z € [—4,4] (33)

which displays a discontinuity in the functional behaviaedo the sharp variation aroumd= 0 (Fig. 18). In order to
consider uncertainty propagation estimates in the redgidheodiscontinuity, the input distribution was chosen to be
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x ~ N(0.07,0.01), which corresponds to the location of the lower bend in F&3.Qn the basis of0®> samples from

this input distribution, the corresponding estimates oamand variance of the response variable were estimated
to be —0.3988 and2.7318 x 10~5. A performance similar to that of the original test functigfi) was observed:
BMS provides better localization and approximation qygliig. 19). In addition, the uncertainty estimates of BMS
converged faster than those due to VMS (Fig. 20).

6. CONCLUSION

In the approximation of high-fidelity computer simulatiamsing surrogate models, the underlying function is invari-
ably undersampled because factors such as the size of thamand the number of input variables limit the sample
budget. Thus, perfect reconstruction of the underlyingfiam is not possible. Instead, the underlying function mus
be reconstructed as an approximation using the limitedalat#able.

The principal motivation behind this work was to seek aléines to VMS designs for the construction of the
widely used GP surrogate models. Our preliminary studiesaled that VMS designs are geared toward improving
the statistical properties of the approximation. Althowgich designs are desirable, they are not directly related to
reducing the bias in approximation with respect to the ulydey function. Our primarily goal was to investigate the
possibility of generating bias-minimizing designs andwalerstand the differences between bias-minimizing dssign
and variance-minimizing designs.

Max Error
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FIG. 19: Log error versus number of samples for functifn (a) /5 log max error and (b5 log mean error.
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Because the underlying function is not known, the optimalmple distribution cannot be determined a priori;
instead, a suboptimal sequential estimate must be soughard this end, we first developed the HGP algorithm,
which achieves hierarchical decomposition of a known fimmcon a tree and suggests the possibility of a variation-
sensitive modeling and compressed representation. The &ytBithm was then developed as a serialization of the
HGP algorithm that achieves variation-sensitive modetlimgugh sequential discovery of significant nodes in the tre
and in turn achieves variation-sensitive sample distigdouthrough coarse-to-fine sample refinement.

Using numerical examples, it is shown that using such samligtebutions, critical features of the underlying
function may be adequately resolved with greater samploapemy than previous methods. Thus, for the same
number of samples, such distributions result in higher iuagconstructions when compared to previous meth-
ods.

In BMS, the location of the inducing inputs is restrictedhe grid. In each iteration, the node with the largest error
is selected as the inducing input to be introduced into théehdrestricting the location of inducing inputs provides a
localization of the features in the underlying functiontifhe location of the inducing input fixed, the fidelity of the
approximation is controlled by selecting the length-seadd variance parameters that result in the largest reductio
of the approximation error.

Typically, the parameters of both GP and SGP are identifiedyudLE. However, in HGP and BMS algorithms
the parameters of the approximating function are identiftsidg a least-squares criterion [Eq. (19)] so as to directly
reduce the approximation error.

The proposed framework is not unique to GPs, and any regressbdel that uses bases with local or quazi-local
support may be employed in this framework (e.g., RBF [37Pwidver, the location of the training points depends
on the class of approximations considered and, therefees, within the overall framework of GPs, the best training
points for the squared exponential covariance functiohbgillifferent from those for the Matern covariance funcsion

The proposed method is based on the hierarchical apprarimaitthe fitting error of a surrogate model in which
only the mean prediction is considered. A more robust imfeeavould employ the entire predictive distribution and
is part of the further work. Considering uncertainties atelavel of the approximation will also lead to probabilisti
node selection criteria, which considers both the mean aridnce in the residues instead of the current deternmgnisti
criteria, which only considers the mean. Such a probaigiligide selection is expected to provide a balance between
bias and variance and is likely to yield a “breadth-first'veresal of the grid rather than the “depth-first” traversal
implemented by the current deterministic criteria.
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One possible way to handle multivariate responses is tatearisndividual SGPs for each response. When com-
bined with an appropriate metric that combines the erromsaich response, the BMS algorithm may be extended
for multivariate responses and we obtain one sample disioito for all the dimensions. However, it is noted that for
highly multivariate responses, construction of indivitklarogate models is computationally expensive. In addjta
fundamental issue with modeling each output independénthe correlation between the output variables. Although
functional or statistical correlations across the indirtresponses may be exploited to “compress” the dimengion o
the output space, such compressions may not always be [gossib

In addition to the issues concerning the modeling of the iplelbutputs and the estimation of the surrogate model
parameters, a metric that combines the errors in each aditpension must be identified. For multivariate responses,
the selection of this metric is not trivial and expected teeheonsequences on the sample distribution and quality of
the reconstruction. For this reason, the selection praesthwld involve a multiobjective optimization to accouot f
the errors and variations in each dimension or could consigigregate measures, such as norms of the error residuals:
le|1, or |e|2, wheree is a vector consisting of error residue in each dimension.

In general, training-point selection and the constructibsurrogate models for multivariate outputs is not anal-
ogous to the univariate case, and the behavior of the afgoffior the multivariate case does not immediately follow
from its behavior for the univariate case. The quality of timeertainty estimates depends on the quality of the ap-
proximation. By considering the quality of the approxinoatover the entire domain, the constructed surrogate model
exhibits high fidelity to the underlying function and thuspides accurate uncertainty quantification throughout the
defined domain. In general, the domain represents the rangessible input variables. However, in certain uncer-
tainty quantification applications, only certain regiorigtte domain may be of interest. In such cases, it may be
more important to seek quality of approximation within tlegion of interest. Toward this end, the domain must be
redefined by using the distributions of the input variabteglentify the regions of interest.

In addition to the results presented in this work, furthedeation of the performance of the algorithm for different
test cases is needed. In addition, further study of the ptiegeand characteristics of the algorithm is warranted,
including extension of the algorithm to higher dimensiond ¢he possibility of a more efficient selection criteria
apart from the greatest residue heuristic employed in tbikw
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