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We present a data-driven numerical approach for modeling unknown dynamical systems with miss-

ing/hidden parameters. The method is based on training a deep neural network (DNN) model for

the unknown system using its trajectory data. A key feature is that the unknown dynamical system

contains system parameters that are completely hidden, in the sense that no information about the

parameters is available through either the measurement trajectory data or our prior knowledge of

the system. We demonstrate that by training a DNN using the trajectory data with sufficient time

history, the resulting DNN model can accurately model the unknown dynamical system. For new

initial conditions associated with new, and unknown, system parameters, the DNN model can pro-

duce accurate system predictions over longer time.
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1. INTRODUCTION

There has been a growing interest in learning unknown dynamical systems using observational
data. A common approach is to construct a mapping from the state variables to their time deriva-
tives. Various numerical approximation techniques can be used to construct such a mapping.
These include sparse regression, polynomial approximations, model selection, and Gaussian pro-
cess regression (Brunton et al., 2016; Mangan et al., 2017; Raissi et al., 2017a; Rudy et al., 2017;
Schaeffer et al., 2018; Wu et al., 2019; Wu and Xiu, 2019), to name a few. More recently, deep
neural networks (DNNs) have been adopted to construct the mapping. Studies have empirically
demonstrated the ability of DNN to model ordinary differential equations (ODEs) (Qin et al.,
2019; Raissi et al., 2018; Rudy et al., 2019) and partial differential equations (PDEs) (Long
et al., 2018a,b; Raissi, 2018; Raissi et al., 2017b,c; Sun etal., 2019). A notable recent develop-
ment is to model the mapping between two system states separated by a short time (Qin et al.,
2019). This approach essentially models the underlying flowmap of the unknown system, and is
notably different from the earlier approach of modeling themap between the state variables and
their time derivatives. The flow map based approach eliminates the need for temporal derivative
data, which are often difficult to acquire in practice and subject to larger errors. Once an accurate
DNN model for the flow map is constructed, it can be used as an evolution operator to conduct
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system predictions. In particular, the residual network (ResNet), developed in the image analysis
community (He et al., 2016), was found to be suitable for recovering the flow map (Chen and
Xiu, 2021; Qin et al., 2019). Since its introduction (Qin et al., 2019), the flow map based DNN
modeling approach has been extended to modeling of non-autonomous dynamical systems (Qin
et al., 2021a), parametric dynamical systems (Qin et al., 2021b), and partially observed dynam-
ical systems (Fu et al., 2020), as well as PDEs (Wu and Xiu, 2020).

The focus of this paper is on a different type of data-driven modeling problem. We assume
that the target unknown dynamical system is parameterized by a set of parameters that are com-
pletely hidden, in the sense that no prior knowledge about the form, or even the existence, of
the parameters is available. The only available information of the dynamical system is in the
form of the trajectory data of its state variables. The trajectory data are also parameterized, in
an unknown manner, by the hidden parameters. Our goal is to construct a predictive model of
the underlying dynamical system by using only the trajectory data. Once the predictive model is
constructed, it shall be able to produce accurate predictions of the system states over time, for
any given initial conditions that are parameterized by the hidden parameters in an unknown man-
ner. The distinct feature of this work is that no knowledge ofthe system parameters is assumed
to be available, not in the (unknown) governing equations orin the trajectory data (for training
or prediction). This is often the case for many complex systems, whose dynamics are controlled
by a large, and sometimes unknown, number of parameters thatare not measurable.

The method proposed in this paper is motivated by the work of Fu et al. (2020), who studied
the modeling of partially observed dynamical systems wheretrajectory data of only a subset of
the state variables are available. While the celebrated Mori–Zwanzig (MZ) formulation (Mori,
1965; Zwanzig, 1973) defines a closed-form dynamical systemfor the observed state variables,
the MZ system is intractable for practical computations as it involves a memory integral of an
unknown kernel function. Upon assuming a finite effective memory length, a DNN structure
with explicit incorporation of “past memory” was proposed in Fu et al. (2020) and shown to be
highly effective for learning and modeling partially observed systems. Compared to other DNN
strutures with memory gates, e.g., LSTM, the DNN structure from Fu et al. (2020) is notably
simpler and serves as a direct approximation of the MZ formulation.

In this paper, we adopt the DNN structure developed in Fu et al. (2020) and demonstrate that
it can be used to model unknown dynamical systems with hiddenparameters. The theoretical
motivation is that the hidden parameters can be viewed as a set of unobserved state variables with
trivial dynamics. Consequently the DNN structure from Fu etal. (2020) becomes applicable.
Moreover, for long-term prediction accuracy and stability, we introduce a recurrent structure
during network training. Once the DNN model is constructed,it is able to produce accurate
system predictions over longer time, for any given initial conditions containing unknown hidden
parameters.

2. SETUP AND PRELIMINARIES

Let us consider a dynamical system,

dx̃

dt
(t;α) = f(x̃,α), x̃(0;α) = x̃0, (1)

wherex̃ ∈ R
n are state variables andα ∈ R

d are system parameters. We assume that the form
of the governing equations, which manifests itself viaf : Rn × R

d → R
n, is unknown. More

Journal of Machine Learning for Modeling and Computing



Modeling Unknown Dynamical Systems with Hidden Parameters 81

importantly, we assume that the information about the system parametersα is not available. In
fact, even the dimensionalityd of α can be unknown.

2.1 Learning Objective

We assume trajectory data are available for the state variables x̃. LetNT be the total number of
observed trajectories. For eachith trajectory, we have

X(i) =
{
x̃
(
t
(i)
k

)}
, k = 1, . . . ,K(i), i = 1, . . . , NT , (2)

where
{
t
(i)
k

}
are discrete time instances at which the data are available,andK(i) is the total num-

ber of data entries in theith trajectory. Note that eachith trajectory is associated with an initial
conditionx̃(i)

0 and system parametersα(i), both of which are unknown.
Our goal is to construct an accurate numerical model,M for the system (1), by using the

data set (2). More specifically, let

0 = t0 < · · · < tN = T,

be a sequence of time instances with a finite horizonT > 0. This will be our prediction time
stencil. We seek a predictive modelM such that, for any given initial conditionx0, which is
associated with an unknown system parameterα, the model prediction is an accurate approxi-
mation of the true system, in the sense that

M(tk;x0,α) ≈ x̃(tk;x0,α), k = 1, . . . , N, (3)

with satisfactory accuracy.

2.2 Related Study

Our topic is related to, and extends to, two recent studies onmodeling dynamical systems. The
first related study is on recovering unknown deterministic dynamical systems. When data of
the state variablesx are available, it was shown in Qin et al. (2019) that the residual network
(ResNet) can be used to construct a predictive model. In fact, for autonomous systems, the
ResNet based DNN model is an exact integrator of the underlying system. It is a one-step pre-
dictive model and consequently requires only trajectory data of two consecutive data entries. For
parameterized systems, when the parametersα are known from the trajectory data, the ResNet
model can be modified to incorporate more input neurons to represent the system parametersα.
See Qin et al. (2021b) for details.

Another related study is on modeling unknown dynamical systems with partially observed
state variables. Letx⊤ = (z⊤,w⊤) be the full set of state variables, wherez ∈ R

n is the subset
of the state variables with available data, andw ∈ R

d is the subset of missing variables. Based
on the celebrated MZ formulation (Mori, 1965; Zwanzig, 1973), the evolution ofz follows a
generalized Langevin equation,

d

dt
z(t) = R

(
z(t)

)
+

∫ t

0
K
(
z(t− s), s

)
ds+ F(t,x0), (4)

which involves a Markovian termR, a memory integral with kernelK and a random termF
involving the unknown initial condition. Upon making an assumption on finite effective memory,
a discrete approximate MZ equation was proposed in Fu et al. (2020),

Volume 3, Issue 3, 2022



82 Fu et al.

d

dt
ẑ(t)

∣∣∣∣
t=tn

= R
(
ẑ(t)

)∣∣
t=tn

+M(ẑn−nM
, . . . , ẑn−1, ẑn), (5)

whereẑn = ẑ(tn) is the solution at timetn = n∆ over a constant time step∆; nM is the num-
ber of memory terms. A DNN structure to explicitly account for the memory terms was then
proposed in Fu et al. (2020) and shown to be highly effective and accurate.

3. METHOD DESCRIPTION

In this section, we describe the details of our proposed deeplearning approach for systems with
hidden parameters. The distinct feature of our work is that not only are the system equations un-
known, the associated system parameters remain completelyunknown throughout the modeling
and prediction process.

3.1 Motivation

For the unkonwn system with missing/hidden parameters (1),one can view it in an alternative
form, 




dx̃

dt
= f(x̃,α), x̃(0) = x̃0,

dα

dt
= 0, α(0) = α.

(6)

If one treatsα also as state variables with trivial dynamics and viewsX̃ = (x̃⊤,α⊤)⊤ as the
complete set of state variables, the data set (2) onx̃ then represents the data of a subset of the full
variable setX̃. From this perspective, the memory based DNN structure, designed in Fu et al.
(2020) for partially observed systems, becomes applicable. Hereafter we will employ the DNN
structure of Fu et al. (2020) and modify it to suit our modeling needs.

3.2 Network Structure

Our basic DNN structure consists of a forward block and a recurrent block. For notational con-
venience, hereafter we shall assume a constance time step,

∆ ≡ t
(i)
k+1 − t

(i)
k , ∀k = 1, . . . ,K(i) − 1, i = 1, . . . , NT , (7)

for all the trajectory data, as well as for the prediction time stencil. [Variable time steps can
be readily incorporated into the DNN model as an additional input. See Qin et al. (2021b) for
details.]

3.2.1 Forward Block

The forward block of our DNN model is similar to the DNN with memory model developed in
Fu et al. (2020). The structure of the forward block is illustrated in Fig. 1, where we use the
following notation

Xi:j =
(
x⊤

i , . . . ,x
⊤

j

)⊤
, j ≥ i, (8)

to denote the concatenated vector of the state variables of consecutive indices fromxi toxj. The
input layer of the DNN,Xn−nM :n, incorporates (nM + 1) state vectorsx, each of which has
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FIG. 1: Illustration of forward block

sizen. The output layer incorporates a single state vectorx of lengthn. A standard fully con-
nected feedforward network (FFN) serves as the mapping fromthe input layer to the output
layer. We useN to denote the mapping operator defined by the FFN. An operatorÎ is introduced
to the input layer and then applied to the output of the FFN. This is to reintroducexn before the
DNN output layer to achieve the ResNet-like operation.

More specifically, the DNN inputXin = Xn−nM :n ∈ R
D, where the dimensionD, i.e., the

number of neurons in the input layer, is

D = n× (nM + 1). (9)

The operator̂I is defined as a(n×D) matrix,

Î = [In, 0, . . . , 0],

where the size(n× n) identity matrixIn is concatenated bynM zero matrices of size(d × d).
The fully connected FFN connecting the input and output layers then defines a mapping operator

N(·; Θ) : RD → R
n, (10)

whereΘ is the hyperparameter set associated with the FFN. Upon applying the operator̂I to
the input and reintroducingxn at the output of the FFN operation, our DNN model defines the
following operation,

xout =
[
Î+N

](
Xin

)
, (11)

which in turn can be written as

xn+1 = xn +N(xn,xn−1, . . . ,xn−nM
; Θ), n ≥ nM . (12)

We remark thatnM ≥ 0 is the number of memory steps included in our DNN model. Let
TM = nM×∆. This shall be the length of the effective memory, a concept introduced in Fu et al.
(2020). The choice ofTM is problem dependent and requires certain prior knowledge/experience
about the underlying system. Sometimes trial and error is also necessary. Such practice is not
uncommon in many aspects of numerical analysis, for example, choices of domain size and grid
size. Note thatnM = 0 represents the memoryless case, which reduces the DNN backto the
standard ResNet structure used for modeling the complete system Qin et al. (2019).
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3.2.2 Recurrent Block

The forward DNN block discussed in the previous section is essentially the same DNN structure
developed in Fu et al. (2020), for modeling systems with missing variables. In principle, it is
also applicable for modeling systems with hidden parameters, as explained in Section 3.1. How-
ever, during our initial numerical experimentations, we have repeatedly discovered that it lacks
sufficient long-term numerical stability. To mitigate the numerical instability, we thus introduce
a recurrent structure, in conjunction with the forward block, in our final DNN model.

The structure of the recurrent block is illustrated in Fig. 2, wherenR ≥ 1 is the number
of recurrent steps. The trivial case ofnR = 1 reduces the DNN model to the forward block
structure in the previous section. The recurrent blocks areto recursively apply the forward DNN
block overnR time steps and compute the loss function using the outputs ofthenR steps.

Using the notation (8), our final DNN model withnR recurrent steps can then be defined as,
for any timetn with n ≥ nM ,





Xin = Xn−nM :n,

xk+1 =
[
Î+N

]
(Xk−nM :k), k = n, . . . , n+ nR,

Xout = Xn+1:n+nR
.

(13)

Note that thenR forward blocks share the same parameter setΘ. In other words, it is the same
forward block that is applied recurrentlynR times. The input of the entire DNN network is

the same as that of the nonrecurrent forward block,Xn−nM :n =
(
x⊤
n−nM

, . . . ,x⊤
n

)⊤
, nM + 1

steps of solution vectors. The output of the DNN is a sequenceof nR steps of the outputs of the
forward block.

We remark that, although the recurrent forward block is not amathematical necessity, it is an
important component from a practical point of view. Our extensive numerical experimentations,
not only in this work but also in related work such as Fu et al. (2020), have indicated that

FIG. 2: Illustration of recurrent-forward-block structure withnR recurrent steps
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the use of recurrent forward block can significantly enhancenumerical stability for long-term
system predictions. Unfortunately, due to the lack of available mathematical analysis of the basic
properties of DNN, we are unable to provide rigorous stability analysis of the proposed DNN
model at this stage.

It is also worth noting that one may construct a many-to-manyDNN mapping from the
nM + 1 memory terms in the “past” to the entirenR terms in the “future.” Such a construc-
tion does not perform as well as the proposed one-step recurrent forward structure. In addition,
the many-to-many mapping is less flexible, as it does not readily provide a one-step forward
prediction.

3.3 Network Training and Predictive Modeling

The DNN model (13) effectively defines a mapping

Xout = N (Xin; Θ), (14)

whereXin consists ofnM + 1 steps of the state variablesx, andXout consists ofnR steps of
the state variables. Therefore, to train the DNN model, we require state variable trajectories of
length at leastntot = nM + nR + 1.

Let us assume that eachith trajectory in our data set (2) has its number of entries satisfying
K(i) ≥ ntot entries. (In other words, the trajectories with a smaller number of entries are already
eliminated from the data set.) We then randomly select a piece of ntot number of consecutive
entries from the trajectory and regroup them into two segments: the firstnM + 1 entries vs. the
lastnR entries: {

X(i),Y(i)
}
, (15)

where

X(i) =

[
x
(
t
(i)
k

)⊤
, . . . ,x

(
t
(i)
k+nM

)⊤ ]⊤
,

Y(i) =

[
x
(
t
(i)
k+nM+1

)⊤
, . . . ,x

(
t
(i)
k+nM+nR

)⊤ ]⊤
.

(16)

This random selection procedure is repeated for all theNT trajectories in the data set (2).
Note that for eachi = 1, . . . , NT trajectory, it is possible to select more than one such grouping
wheneverK(i) > ntot. Upon conducting the random sequence selection for all the trajectories
in (2), we obtain a collection of the grouping (15). After reordering all the selected groupings
with a single index, we obtain the training data set for our DNN model,

X = {Xj ,Yj}, j = 1, . . . , J, (17)

whereJ is the total number of data groupings. (Note that at this stage the information of theith
trajectory, from which the grouping{Xj ,Yj} is originated, is not important.)

Our DNN model training is then conducted by minimizing the following mean squared loss:

Θ∗ = argmin
Θ

1
J

J∑

j=1

∥∥N (Xin
j ; Θ)−Yj

∥∥2
. (18)
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Upon finding the optimal network parameterΘ∗, we obtain our trained network model in the
form of (13),

xout =
[
Î+N(·; Θ∗)

](
Xin

)
, (19)

where the optimized parameterΘ∗ will be omitted hereafter, unless confusion arises otherwise.
The trained DNN model defines a predictive model for the unknown dynamical system (1)

with hidden parameters. It requiresnM + 1 initial conditions. Once given a sequence ofnM + 1
state variablesx, which are associated with unknown parametersα, the DNN model is able to
conduct one-step prediction iteratively for the system state, corresponding to the same (and yet
still unknown) parametersα. More specifically, the predictive scheme takes the following form:
For any unknown hidden parameterα,

{
xk = x(tk;α), k = 0, . . . , nM ,

xn+1 = xn +N(xn,xn−1, . . . ,xn−nM
; Θ∗), n ≥ nM .

(20)

4. NUMERICAL EXAMPLES

In this section, we present four numerical examples to examine the performance of the proposed
method. The examples include (1) a nonlinear pendulum system with two hidden parameters;
(2) a larger linear system with 100 hidden parameters; (3) a nonlinear chemical reactor system
with one hidden parameter that induces bifurcation in the system behavior; and (4) a nonlinear
system for modeling cell signaling cascade with 12 hidden parameters. In all the examples, the
underlying “true” models are known and used only to generatethe training data sets. Note that
in the training data sets, only the solution trajectories are recorded; the corresponding parameter
values are not recorded. By doing so, the parameters in the true models remain completely hidden
from the DNNs. To validate the trained DNN predictive models, we use the corresponding true
models to generate a set of initial conditions that are not inthe training data sets and with the
associated parameter values hidden. The DNN predictive models are then used to produce system
predictions over a longer time horizon and compared againstthe reference solutions generated
by the true models.

In all the examples here, the time step is fixed at∆ = 0.02. The number of memory steps
nM and recurrent stepsnR are problem dependent and determined numerically by gradually
increasing the values till converged numerical results areobtained. Unless otherwise noted, the
DNNs used in the examples consist of three hidden layers, with 30 neurons each, and have
rectified linear unit (ReLU) activation function.

4.1 Example 1: Nonlinear Pendulum System

We first consider a small nonlinear system, the damped pendulum system,

{
ẋ1 = x2,

ẋ2 = −αx2 − β sinx1,
(21)

where the system parametersα = (α,β)⊤ are treated as hidden and confined to a regionDα =
[−0.05, 0.15]× [8, 10]. The domain of interest for the state variables is set asD

x
= [−0.5, 0.5]×

[−1.6, 1.6].
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The memory step is tested fornM = 10, 20, 40, 60, 80, 100, and 120, and the recurrent step
is tested fornR = 1, 10, 20, and 40. The model prediction errors at different memory steps and
the recurrent steps are shown in Fig. 3. The prediction errors are computed using,ℓ2-norm of the
DNN model predictions against the reference solutions at time levelt = 100, averaged over 100
simulations with random initial conditions and system parameters. We observe that the accuracy
improvement over increasingnM starts to saturate withnM ≥ 100. We also notice that a larger
nR produces better results consistently.

The DNN model predictive results withnM = 100 andnR = 40 are shown in Fig. 4, with
two sets of arbitrarily chosen initial conditions and (hidden) system parameters. This corresponds
to memory lengthnM ×∆ = 0.4, which is in fact rather short. We observe very good agreement
between the DNN model predictions and the reference solutions for the long-term integrations up

(a) (b)

FIG. 3: Example 1. Model prediction errors at different memory steps and recurrent steps. (a) Errors vs.
nM , (b) errors over time fornR = 40.

(a) (b)

(c) (d)

FIG. 4: Example 1. Model predictions up tot = 100 withnM = 100 andnR = 40 using two sets of
arbitrary initial conditions and system parameters. (a), (c) x1; (b), (d)x2.
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to t = 100. The corresponding numerical errors are plotted in Fig.5, along with the comparison
of the phase portraits.

4.2 Example 2: Larger Linear System

We now consider a larger linear system involving 20 state variables,

ẋ = Ax, x ∈ R
20, A ∈ R

20×20,

where among the 400 entries of the coefficient matrixA, we treat 100 of them as hidden param-
eters. More specifically, let us rewrite the system in terms of x = (p;q), wherep ∈ R

10 and
q ∈ R

10 satisfy {
ṗ = Σ11p+ (I +Σ12)q,

q̇ = −(I+Σ21)p− Σ22q.
(22)

Here,I is the identity matrix of size 10× 10, andΣij ∈ R
10×10, i = 1, 2, j = 1, 2 are four

coefficient matrices. We set three of the coefficient matrices to be known, withΣ11 = Σ12 = 0,
andΣ22 with the entries listed in Appendix A. The 100 entries of the matrix Σ21 are treated
as hidden parameters within the domain[−0.05, 0.05]100. The domain of interest for the state
variables is set as[−2, 2]20. With a larger number of missing hidden parameters (compared to

(a) (b)

(c) (d)

FIG. 5: Example 1. Model predictions and errors up tot = 100 withnM = 100 andnR = 40 using two
sets of arbitrary initial conditions and parameters as in Fig. 4. (a), (c) phase plot; (b), (d) error.
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Example 1), this problem requires longer memory length to construct an accurate DNN model.
Memory steps ofnM = 100, 300, 500, 700, 900, 1100, 1300, and 1500 are tested. The results
indicate thenM = 1300 is sufficient to produce converged prediction results.The recurrent step
is tested fornR = 1 tonR = 5. For this problem, the number of recurrent step does not induce
a noticeable difference in the prediction. We therefore fixnR = 1. The DNN model predictions
for long-term integration up tot = 100 withnM = 1300 andnR = 1 are shown in Fig. 6 for the
state variablesp and in Fig. 7 for the state variablesq, using a set of arbitrarily chosen initial
conditions and hidden parameter values. We observe very good agreement between the DNN
model predictions and the corresponding reference solutions.

FIG. 6: Example 2. Model predictions ofp up tot = 100 withnM = 1300 andnR = 1.
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FIG. 7: Example 2. Model predictions ofq up tot = 100 withnM = 1300 andnR = 1.

4.3 Example 3: CSTR

We now consider a smaller nonlinear system with bifurcationbehavior controlled by the hid-
den parameter. It is a continuous stirred-tank chemical reactor (CSTR) model with a single and
irreversible exothermic reaction. The (unknown) governing equations are





ẋ1 = −x1 + Da(1− x1) exp

(
x2

1+ x2/γ

)
,

ẋ2 = −x2 + B Da(1− x1) exp

(
x2

1+ x2/γ

)
− β(x2 − x2c),

(23)
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wherex1 is the conversion andx2 the temperature, Da the Damköehler number,B the heat of
reaction,β the heat transfer coefficient,γ the activation energy, andx2c the coolant temperature.
The dimensionless Damköehler number Da plays an importantrole in determining the qualitative
system behavior and will be assumed to be a hidden parameter.All other parameters are fixed:
B = 22.0,β = 3.0,γ = 12.0, andx2c = 0.5.

We restrict the range of the hidden Da number to be within± 10% of the value 0.078. This is
an intentional choice, as Da= 0.078 is the critical value at which the system exhibits bifurcation
behavior: the system reaches steady state when Da< 0.078 and limit cycle state when Da>
0.078.

To generate the training data set, we set the domain of interest for the state variables to be
(x1, x2) ∈ [0.1, 1.0]× [0.5, 5.5]. The time step is set as∆t = 0.02. Upon conducting numerical
tests, we set the memory step tonM = 700 and the recurrent step tonR = 1.

We show the DNN trajectory predictions in Fig. 8, with two sets of arbitrarily chosen initial
conditions and parameters where trajectories exhibit steady state and limit cycle, respectively.

(a) (b)

(c) (d)

(e) (f)

FIG. 8: Example 3. Model predictions up tot = 50 with nM = 700 andnR = 1 with two cases of
arbitrarily chosen initial conditions and system parameters. (a) Case 1:x1, (b) Case 1:x2, (c) Case 2:x1,
(d) Case 2:x2, (e) Case 1: relative error, (f) Case 2: relative error.
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We observe that the predictions match the reference solutions very well in both cases. To de-
termine the qualitative behavior of the solutions, we compute the amplitude of the solutions
when they reach a stable state over a relatively longer time intervalt ∈ [50, 70]. If the trajectory
reaches a steady state, then the amplitude approaches 0; if the trajectory becomes periodic, then
its amplitude approaches a constant value. Figure 9 shows the amplitudes of the predictions with
respect to the value of Da, for bothx1 andx2. We clearly observe the transition from steady
state to periodic state when Da≈ 0.078. The comparison between the DNN predictions and the
reference true solutions again shows good agreement.

4.4 Example 4: Cell Signaling Cascade

We consider a dynamical system model for the autocrine cell-signaling loop. The three-dimensio-
nal state variable[e1p, e2p, e3p]

⊤ denotes the dimensionless concentrations of the active form of
the enzymes. The true (and unknown) governing equations are





de1p

dt
=

I(t)

1+G4e3p

Vmax,1(1− e1p)

Km,1 + (1− e1p)
−

Vmax,2e1p

Km,2 + e1p
,

de2p

dt
=

Vmax,3e1p(1− e2p)

Km,3 + (1− e2p)
−

Vmax,4e2p

Km,4 + e2p
,

de3p

dt
=

Vmax,5e2p(1− e3p)

Km,5 + (1− e3p)
−

Vmax,6e3p

Km,6 + e3p
,

(24)

whereI = 1.0,G4 = 0.2 are fixed and the parametersKm,i,Vmax,i, i = 1, . . . , 6, are hidden para-
meters, for a total of 12 hidden parameters. For this study, we restrict the hidden parameters to
within ± 10% of their nominal values. The nominal values for allKm,i, i = 1, . . . , 6, are fixed at
0.2, and forVmax,1 is 0.5, forVmax,2,3,4 are 0.15, forVmax,5 is 0.25, and forVmax,6 is 0.05. The
domain of interest for the state variable is[0, 1]3.

The training data are constructed by collecting two randomly selected sequences of consec-
utive data entries from 75,000 trajectories, generated by uniformly distributed random initial
conditions over 300 steps with a time step∆t = 0.1. In our DNN model, the memory steps are
set asnM = 50 and the recurrent steps asnR = 12. The trajectory predictions and the error
plots are shown in Fig. 10, with a set of arbitrary initial conditions and system parameters. We
observe that the DNN predictions match the reference solutions very well for up tot = 20.

(a) (b)

FIG. 9: Example 3. Solution amplitudes at limiting states with respect to Da number: (a) amplitude ofx1

vs. Da, (b) amplitude ofx2 vs. Da.
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(a) (b)

(c) (d)

FIG. 10: Example 4. Model predictions and errors up tot = 20 withnM = 50 andnR = 12 using a set of
arbitrary initial conditions and parameters. (a)x1, (b)x2, (c)x3, (d) error.

5. CONCLUSION

We presented a deep learning strategy for modeling unknown dynamical systems with hidden
parameters. By incorporating both memory terms in the network input layer and recurrent terms
in the network loss function computation, the proposed DNN is able to learn the unknown flow
map of the system, by only using trajectory data of the state variables. A distinct feature of
the DNN structure is that it is able to model the system with completely hidden and unknown
parameters. This can be useful for practical problems, where many system parameters cannot
be measured. The proposed DNN method thus provides a highly flexible approach for learning
unknown dynamical systems.
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on Machine Learning, Stockholmsmässan, Stockholm, Sweden, pp. 3208–3216, 2018b.

Volume 3, Issue 3, 2022



94 Fu et al.

Mangan, N.M., Kutz, J.N., Brunton, S.L., and Proctor, J.L.,Model Selection for Dynamical Systems via
Sparse Regression and Information Criteria,Proc. R. Soc. London, Ser. A: Math. Phys. Eng. Sci., vol.
473, no. 2204, 2017.

Mori, H., Transport, Collective Motion, and Brownian Motion, Prog. Theor. Phys., vol. 33, no. 3, pp. 423–
455, 1965.

Qin, T., Chen, Z., Jakeman, J., and Xiu, D., Data-Driven Learning of Nonautonomous Systems,SIAM J.
Sci. Comput., vol. 43, no. 3, pp. A1607–A1624, 2021a.

Qin, T., Chen, Z., Jakeman, J., and Xiu, D., Deep Learning of Parameterized Equations with Applications
to Uncertainty Quantification,Int. J. Uncertainty Quant., vol. 11, no. 2, pp. 63–82, 2021b.

Qin, T., Wu, K., and Xiu, D., Data Driven Governing EquationsApproximation Using Deep Neural Net-
works,J. Comput. Phys., vol. 395, pp. 620–635, 2019.

Raissi, M., Deep Hidden Physics Models: Deep Leaming of Nonlinear Partial Differential Equations,J.
Mach. Learn. Res., vol. 19, no. 25, pp. 1–24, 2018.

Raissi, M., Perdikaris, P., and Kamiadakis, G.E., Machine Leaming of Linear Differential Equations Using
Gaussian Processes,J. Comput. Phys., vol. 348, pp. 683–693, 2017a.

Raissi, M., Perdikaris, P., and Kamiadakis, G.E., Physics Informed Deep Leaming (Part I): DataDriven
Solutions of Nonlinear Partial Differential Equations, arXiv: 1711.10561, 2017b.

Raissi, M., Perdikaris, P., and Kamiadakis, G.E., Physics Informed Deep Leaming (Part II): DataDriven
Discovery of Nonlinear Partial Differential Equations, arXiv: 1711.10566, 2017c.

Raissi, M., Perdikaris, P., and Kamiadakis, G.E., Multistep Neural Networks for Data-Driven Discovery of
Nonlinear Dynamical Systems, arXiv: 1801.01236, 2018.

Rudy, S.H., Brunton, S.L., Proctor, J.L., and Kutz, J.N., Data-Driven Discovery of Partial Differential
Equations,Sci. Adv., vol. 3, no. 4, p. e1602614, 2017.

Rudy, S.H., Kutz, J.N., and Brunton, S.L., Deep Learning of Dynamics and Signal-Noise Decomposition
with Time-Stepping Constraints,J. Comput. Phys., vol. 396, pp. 483–506, 2019.

Schaeffer, H., Tran, G., and Ward, R., Extracting Sparse High-Dimensional Dynamics from Limited Data,
SIAM J. Appl. Math., vol. 78, no. 6, pp. 3279–3295, 2018.

Sun, Y., Zhang, L., and Schaeffer, H., NEUPDE: Neural Network Based Ordinary and Partial Differential
Equations for Modeling Time-Dependent Data, arXiv: 1908.03190, 2019.

Wu, K., Qin, T., and Xiu, D., Structure-Preserving Method for Reconstructing Unknown Hamiltonian Sys-
tems from Trajectory Data, arXiv: 1905.10396, 2019.

Wu, K. and Xiu, D., Numerical Aspects for Approximating Governing Equations Using Data,J. Comput.
Phys., vol. 384, pp. 200–221, 2019.

Wu, K. and Xiu, D., Data-Driven Deep Leaming of Partial Differential Equations in Modal Space,J. Com-
put. Phys., vol. 408, p. 109307, 2020.

Zwanzig, R., Nonlinear Generalized Langevin Equations,J. Stat. Phys., vol. 9, no. 3, pp. 215–220, 1973.

APPENDIX A. DETAILS OF EXAMPLE 2

The detailed setting of Example 2 isx = (p;q), wherep ∈ R
10 andq ∈ R

10 satisfy

{
ṗ = Σ11p+ (I +Σ12)q,

q̇ = −(I+Σ21)p− Σ22q.
(A.1)
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Here,I is the identity matrix of size 10× 10, andΣij ∈ R
10×10, i = 1, 2, j = 1, 2 are four

coefficient matrices. We set three of the coefficient matrices as fixed, withΣ11 = Σ12 = 0, and

Σ22 × 103

=




1500 124 814 −104 −179 −223 −731 −189 −400 242

124 836 679 277 197−515 −52.1 −273 101 301

814 679 1500 651 755−605 −379 −546 −225 223

−104 277 651 1960 720−782 −299 −775 −180 506

−179 197 755 720 2290−973 518 −19.1 −604 −369

−223 −515 −605 −782 −973 1290 −400 412 314 −420

−731 −52.1 −379 −299 518 −400 1960 68.3 455 −316

−189 −273 −546 −775 −19.1 412 68.3 576 −53.6 −332

−400 101 −225 −180 −604 314 455 −53.6 1030 265

242 301 223 506 −369 −420 −316 −332 265 1090




.

The 100 entries of the matrixΣ21 are treated as hidden parameters.
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