ライブラリ登録: Guest
Nanoscience and Technology: An International Journal

年間 4 号発行

ISSN 印刷: 2572-4258

ISSN オンライン: 2572-4266

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.7 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.11 SJR: 0.244 SNIP: 0.521 CiteScore™:: 3.6 H-Index: 14

Indexed in

ESHELBY INTEGRAL FORMULAS IN SECOND GRADIENT ELASTICITY

巻 11, 発行 2, 2020, pp. 99-107
DOI: 10.1615/NanoSciTechnolIntJ.2020031434
Get accessGet access

要約

In classical elasticity, the Eshelby integral formulas allow one to estimate the strain energy of the media containing inhomogeneities by using a particular type of surface integration. In the present paper, we derive the Eshelby integral formulas in the framework of Mindlin's second gradient elasticity theory. These formulas can be used in micromechanics applications, for example, they can be used for evaluating the effective elastic properties of composite materials in the generalized self-consistent method taking strain gradient effects into account. These effects become significant in the composites filled with small inclusions, whose size is of the order of characteristic length of matrix material.

参考
  1. Aboudi, J., Mechanics of Composite Materials: A Unified Micromechanical Approach, Amsterdam, Netherlands: Elsevier, 2013?.

  2. Andreaus, U., dell'Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., and Rizzi, N.L., Numerical Simulations of Classical Problems in Two-Dimensional (Non) Linear Second Gradient Elasticity, Int. J. Eng. Sci., vol. 108, pp. 34-50,2016.

  3. Askes, H. andAifantis, E.C., Gradient Elasticity and Flexural Wave Dispersion in Carbon Nanotubes, Phys. Rev. B, vol. 80, no. 19, p. 195412,2009.

  4. Askes, H. and Aifantis, E.C., Gradient Elasticity in Statics and Dynamics: An Overview of Formulations, Length Scale Identification Procedures, Finite Element Implementations and New Results, Int J. Solids Struct., vol. 48, no. 13, pp. 1962-1990,2011. DOI: 10.1016/j.ijsolstr.2011.03.006.

  5. Badamshina, E.R., Estrin, Y.I., Kulagina, G.S., Lurie S.A., and Solyaev, Y.O., Modeling of Anomalous Mechanical Properties of Polyurethane Modified by Carbon Single-Wall Nanotubes, Nanosci. Tech.: Int. J., vol. 2, no. 1,pp. 71-83,2011.

  6. Boutin, C., Giorgio, I., and Placidi, L., Linear Pantographic Sheets: Asymptotic Micro-Macro Models Identification, Math. Mech. ComplexSys., vol. 5, no. 2, pp. 127-162,2017.

  7. Christensen, R.M., Mechanics of Composite Materials, New York, NY: John Wiley and Sons, 1979.

  8. Christensen, R.M., Mechanics of Composite Materials, North Chelmsford, MA: Courier Corporation, 2016.

  9. dell'Isola, F., Cuomo, M., Greco, L., and della Corte, A., Bias Extension Test for Pantographic Sheets: Numerical Simulations based on Second Gradient Shear Energies, J. Eng. Math., vol. 103, no. 1, pp. 127-157,2017.

  10. dell'Isola, F., Madeo, A., and Seppecher, P., Cauchy Tetrahedron Argument Applied to Higher Contact Interactions, Arch. Rational Mech. Anal., vol. 219, no. 3, pp. 1305-1341,2018a.

  11. dell'Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E., Goaszewski, M., Rizzi, N., Boutin, C., Eremeyev, V.A., Misra, A., Placidi, L., Barchiesi, E., Greco, L., Cuomo, M., Cazzani, A., Corte, A.D., Battista, A., Scerrato, D., Eremeeva, I.Z., Rahali, Y., Ganghoffer, J.-F., Muller, W., Ganzosch, G., Spagnuolo,M., Pfaff, A., Barcz, K., Hoschke, K., Neggers, J., and Hild, F., Pantographic Metamaterials: An Example of Mathematically Driven Design and ofIts Technological Challenges, Continuum Mech. Thermodyn., pp. 1-34,2018b.

  12. Eremeyev, V.A., dell'Isola, F., Boutin, C., and Steigmann, D., Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions, J. Elasticity, vol. 132, no. 2, pp. 175-196,2018.

  13. Eshelby, J.D., The Continuum Theory of Lattice Defects, Solid State Phys., vol. 3, pp. 79-144,1956.

  14. Fleck, N.A. and Hutchinson, J.W., A Phenomenological Theory for Strain Gradient Effects in Plasticity, J Mech. Phys. Solids, vol. 41, no. 12, pp. 1825-1857,1993. DOI: 10.1016/0022-5096(93)90072-N.

  15. Gao, X.L. and Park, S.K., Variational Formulation of a Simplified Strain Gradient Elasticity Theory and Its Application to a Pressurized Thick-Walled Cylinder Problem, Int J. Solids Struct., vol. 44, nos. 22-23, pp. 7486-7499,2007. DOI: 10.1016/j.ijsolstr.2007.04.022.

  16. Lazar, M.M. and Maugin, G.A., A Note on Line Forces in Gradient Elasticity, Mech. Res. Commun., vol. 33, no. 5, pp. 674-680,2006a.

  17. Lazar, M.M. and Maugin, G.A., Dislocations in Gradient Elasticity Revisited, Proc. Royal Soc. A: Math., Phys. Eng. Sci., vol. 462, no. 2075, pp. 3465-3480,2006b.

  18. Lazar, M. and Po, G., Singularity-Free Dislocation Continuum Theory for Anisotropic Crystals, PAMM, vol. 18,no. 1,p. e201800095,2018.

  19. Lurie, S.A. and Belov, P.A., Cohesion Field: Barenblatt's Hypothesis as Formal Corollary of Theory of Continuous Media with Conserved Dislocations, Int. J. Fract., vol. 150,no. 1,pp. 181-194,2008.

  20. Lurie, S. and Belov, P., Gradient Effects in Fracture Mechanics for Nano-Structured Materials, Eng. Fract. Mech., vol. 130, pp. 3-11,2014. DOI: 10.1016/j.engfracmech.2014.07.032.

  21. Lurie, S. and Solyaev, Y., Revisiting Bending Theories ofElastic Gradient Beams, Int. J. Eng. Sci, vol. 126, pp. 1-21,2018.

  22. Lurie, S. and Solyaev, Y., On the Formulation of Elastic and Electroelastic Gradient Beam Theories, Continuum Mech. Thermodyn., pp. 1-13,2019.

  23. Lurie, S., Belov, P., Volkov-Bogorodsky, D., and Tuchkova, N., Interphase Layer Theory and Application in the Mechanics of Composite Materials, J. Mat. Sci., vol. 41, no. 20, pp. 6693-6707,2006.

  24. Lurie, S.A., Volkov-Bogorodsky, D., Leontiev, A., and Aifantis, E., Eshelby's Inclusion Problem in the Gradient Theory of Elasticity: Applications to Composite Materials, Int. J. Eng. Sci, vol. 49, no. 12, pp. 1517-1525,2011.

  25. Lurie, S., Volkov-Bogorodskii, D., and Tuchkova, N., Exact Solution of Eshelby-Christensen Problem in Gradient Elasticity for Composites with Spherical Inclusions, Acta Mech., vol. 227, no. 1, pp. 127-138, 2016a.

  26. Lurie, S., Volkov-Bogorodskii, D., Solyaev, Y., Rizahanov, R., and Agureev, L., Multiscale Modelling of Aluminium-Based Metal-Matrix Composites with Oxide Nanoinclusions, Comput. Mat. Sci., vol. 116, pp. 62-73,2016b.

  27. Lurie, S.A., Solyaev, Y., and Shramko, K., Comparison between the Mori-Tanaka and Generalized Self-Consistent Methods in the Framework of Anti-Plane Strain Inclusion Problem in Strain Gradient Elasticity, Mech. Mat., vol. 122, pp. 133-144,2018.

  28. Ma, H.M. and Gao, X.L., A New Homogenization Method based on a Simplified Strain Gradient Elasticity Theory, Acta Mech., vol. 225, pp. 1075-1091,2014. DOI: 10.1007/s00707-013-1059-z.

  29. Mindlin, R.D. and Eshel, N.N., On First Strain-Gradient Theories in Linear Elasticity, IntJ. Solids Struct., vol. 4, no. 1,pp. 109-124,1968.

  30. Mindlin, R.D., Micro-Structure in Linear Elasticity, Arch. Rational Mech. Anal., vol. 16, no. 1, pp. 51-78, 1964.

  31. Mousavi, S.M. and Aifantis, E.C., Dislocation-Based Gradient Elastic Fracture Mechanics for In-Plane Analysis of Cracks, Int. J. Fract., vol. 202, no. 1, pp. 93-110,2016.

  32. Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D., and Beskos, D.E., Bending and Stability Analysis of Gradient Elastic Beams, IntJ. Solids Struct., vol. 18, no. 2, pp. 385-400,2003.

  33. Polizzotto, C., A Unifying Variational Framework for Stress Gradient and Strain Gradient Elasticity Theories, Euro. J. Mech, A/Solids, vol. 49, pp. 430-440,2015. DOI: 10.1016/j.euromechsol.2014.08.013.

  34. Reiher, J.C., Giorgio, I., and Bertram, A., Finite-Element Analysis of Polyhedra under Point and Line Forces in Second-Strain Gradient Elasticity, J. Eng. Mech., vol. 143, no. 2, p. 04016112,2016.

  35. Vasil'ev, V. V. and Lurie, S.A., New Solution of Axisymmetric Contact Problem of Elasticity, Mech. Solids, vol. 52, no. 5, pp. 479-487,2017.

  36. Volkov-Bogorodsky, D.B. and Lurie, S.A., Eshelby Integral Formulas in Gradient Elasticity, Mech. Solids, vol. 45, no. 4, pp. 648-656,2010.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain