ライブラリ登録: Guest
Nanoscience and Technology: An International Journal

年間 4 号発行

ISSN 印刷: 2572-4258

ISSN オンライン: 2572-4266

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.7 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.11 SJR: 0.244 SNIP: 0.521 CiteScore™:: 3.6 H-Index: 14

Indexed in

OPTIMIZATION OF THE DISPLAY PARAMETERS OF A ROOM TEMPERATURE LIQUID CRYSTAL "4-PENTYL-4'CYANOBIPHENYL" BY USING SINGLE-WALLED CARBON NANOTUBES

巻 13, 発行 1, 2022, pp. 25-33
DOI: 10.1615/NanoSciTechnolIntJ.2021039165
Get accessGet access

要約

Modifications in the display parameters of 4-pentyl-4'cyanobiphenyl caused by the dispersion of single-walled carbon nanotubes have been explored. Dielectric spectroscopy for the planar and homeotropic aligned samples has been carried out. Threshold and switching voltages, dielectric permittivity, and dielectric anisotropy have been determined for the pure and dispersed samples. The electro-optical experiments demonstrate that the threshold voltage required for the switching of the molecular directors from the planar to homeotropic orientation reduces due to the dispersion of single-walled carbon nanotubes. The steepness of the transmission-voltage curve also improves due to the dispersion of single-walled carbon nanotubes.

参考
  1. Avouris, P., Molecular Electronics with Carbon Nanotubes, Acc. Chem. Res., vol. 35, pp. 1026-1034, 2002.

  2. Baik, I.S., Jeon, S,Y., Lee S.H., Park, K.A., Jeong, S.H., An, K.H., and Lee, Y.H., Electrical-Field Effect on Carbon Nanotubes in a Twisted Nematic Liquid Crystal Cell, Appl. Phys. Lett., vol. 87, p. 263110, 2005.

  3. Basu, R., Effect of Carbon Nanotubes on the Field-Induced Nematic Switching, Appl. Phys. Lett., vol. 103, p. 241906, 2013. doi: 10.1063/1.4846676.

  4. Baughman, R.H., Zakhidov, A.A., and de Heer, W.A., Carbon Nanotubes-the Route Toward Applications, Science, vol. 297, pp. 787-792, 2002.

  5. Bianco, A., Kostarelos, K., Partidos, C.D., and Prato, M., Biomedical Applications of Functionalized Carbon Nanotubes, Chem. Commun., vol. 5, pp. 571-577, 2005.

  6. Chen, H.Y. and Lee, W., Effects of Single-Walled and Multi-Walled Carbon Nanotubes on the Transient Current in Doped Nematic Cells in a Polarity-Reversed Field, Proc. SPIE Int. Soc. Opt. Eng., vol. 5947, p. 59470T-8, 2005.

  7. Chen, H.Y. and Lee, W., Faster Electro-Optical Response Characteristics of a Carbon-Nanotube-Nematic Suspension, Appl. Phys. Lett., vol. 90, p. 033510, 2007.

  8. Chen, H.Y. and Lee, W., Suspension of Field Screening in Nematic Liquid Crystals by Carbon Nanotubes, Appl. Phys. Lett., vol. 88, p. 222105, 2006.

  9. Dhar, R., Pandey, A.S., Pandey, M.B., Kumar, S., and Dabrowski, R., Optimization of the Display Parameters of a Room Temperature Twisted Nematic Display Material by Doping Single-Wall Carbon Nanotubes, Appl. Phys. Express, vol. 1, p. 121501, 2008. doi: 10.1143/APEX.1.121501.

  10. Dhar, R., Verma, R., and Rath, M.C., Sarkar, S.K., Wadhawan, V.K., Dabrowski, R., and Tykarska, M., Tuning of the Electrical Parameters of a Twisted-Nematic Display Material by Using Electron Beam Irradiation, Appl. Phys. Lett., vol. 92, p. 014108, 2008. doi: 10.1063/1.2829882.

  11. Dierking, I., Scalia, G., Haluska, M., Dettlaff, U., Roth, S. and Giesselmann, F., Aligning and Reorienting Carbon Nanotubes with Nematic Liquid Crystals, Adv. Mater. (Weinheim, Ger.), vol. 16, p. 865, 2004.

  12. Dierking, I., Scalia, G., and Morales, P., Liquid Crystal-Carbon Nanotube Dispersions, J. Appl. Phys., vol. 97, p. 044309, 2005. doi: 10.1063/1.1850606.

  13. Dunmur, D.A., Manterfield, M.R., and Miller, W.H., Dunleavy, J.K., The Dielectric and Optical Properties of the Homologous Series of Cyano-Alkyl-Biphenyl Liquid Crystals, Mol. Cryst. Liq. Cryst., vol. 45, p. 127, 1978. doi: 10.1080/00268947808084998.

  14. Hill, N.E., Vaughan, W.E., Price, A.H., Davies, M., Dielectric Properties and Molecular Behaviour, New York: Van Nostrand, 1969.

  15. Iijima, S., Helical Microtubules of Graphitic Carbon, Nature, vol. 354, pp. 56-58, 1991.

  16. Jorio, A., Dresselhaus, G., and Dresselhaus, M.S., Eds., Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications (Topics in Applied Physics), New York: Springer, 2008.

  17. Lee, C.W. and Shih, W.P., Quantification of Ion Trapping Effect of Carbon Nanomaterials in Liquid Crystals, Mater. Lett., vol. 64, pp. 466-468, 2010.

  18. Lee, H., Yang, S., Lee, J.H., and Park, Y.S., Improvement of the Relaxation Time and the Order Parameter of Nematic Liquid Crystal Using a Hybrid Alignment Mixture of Carbon Nanotube and Polyimide, Appl. Phys. Lett., vol. 104, p. 191601, 2014. doi: 10.1063/1.4875615.

  19. Lee, W. and Chen, H.Y., Observation of Transient Current in a Nanotube-Doped Liquid-Crystal Cell Induced by a Polarity-Reversed Field, Jpn. J. Appl. Phys., vol. 46, p. 2962, 2007.

  20. Lim, Y.J., Bhattacharyya, S.S., Tie, W., Park, H.R., Lee, Y.H., and Lee, S.H., Effects of Carbon Nanotubes on Electro-Optic Characteristics in Vertically Aligned Liquid Crystal Display, Liq. Cryst., vol. 40, pp. 1202-1208, 2013. doi: 10.1080/02678292.2013.806997.

  21. Manjuladevi, V., Gupta, R.K., and Kumar, S., Effect of Functionalized Carbon Nanotube on Electro-Optic and Dielectric Properties of a Liquid Crystal, J. Mol. Liq., vol. 171, pp. 60-63, 2012. doi: 10.1016/j. molliq.2012.03.026.

  22. Milne, W., Teo, K., Amaratunga, G.A.J., Legagneux, P., Gangloff, L., Schnnell, J.-P., Semet, V., Thien Binh, V., and Groening, O., Carbon Nanotubes as Field Emission Sources,Mater. Chem., vol. 14, no. 6, pp. 933-943, 2004.

  23. Onsager, L., The Effects of Shape on the Interaction of Colloidal Particles, Ann. N.Y., Acad. Sci., vol. 51, p. 627, 1949.

  24. Pandey, M.B., Dhar, R., Agrawal, V.K., Dabrowski, R., and Tykarska, M., Study of Different Modes of Dielectric Relaxation in a Newly Synthesized Material Exhibiting Ferro-, Ferri- and Antiferro-Electric Phases, Liq. Cryst., vol. 31, no.7, pp. 973-987, 2004.

  25. Park, K.A., Lee, S.M., Lee, S.H., and Lee, Y.H., J. Phys. Chem., vol. 111, p. 1620, 2007.

  26. Pumera, M., The Electrochemistry of Carbon Nanotubes: Fundamentals and Applications, Chem-AEur. J., vol. 15, pp. 4970-4978, 2009.

  27. Qi, H. and Hegmann, T., Impact of Nanoscale Particles and Carbon Nanotubes on Current and Future Genera-tions of Liquid Crystal Displays, J. Mater. Chem., vol. 18, pp. 3288-3294, 2008. doi: 10.1039/b718920f.

  28. Reich, S., Thomsen, C., and Maulzsch, J., Carbon Nanotubes: Basic Concepts and Physical Properties, New York: Wiley, 2004.

  29. Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Physical Properties of Carbon Nanotubes, London: Imperial College Press, 1998.

  30. Srivastava, S.L. and Dhar, R., Study of Liquid Crystalline Phases from Temperature Dependent Dielectric Constant, Indian J. Pure Appl. Phys., vol. 37, p. 891, 1999.

  31. University of Hamburg, http://liqcryst.chemie.unihamburg. de/en/lc_data.php.

  32. Verma, R., Dabrowski, R., and Dhar, R., Thermodynamic, Electrical and Electro-Optical Features of the Racemic Mixture of an Antiferroelectric Liquid Crystal Suitable for Displays, Liq. Cryst., vol. 42, pp. 1785-1797, 2015. doi: 10.1080/ 02678292.2015.1088083.

  33. Verma, R., Dhar, R., Agrawal, V.K., Rath, M.C., Sarkar, S.K., Wadhawan, V.K., and Dabrowski, R., Electron Beam Irradiation-Induced Transformations in the Electrical Properties of 4'-Octyl-4-Cynobiphenyl (8CB), Liq. Cryst, vol. 36, pp. 1003-1014, 2009a. doi: 10.1080/02678290903220972.

  34. Verma, R., Dhar, R., Dabrowski, R., Tykarska, M., Wadhawan, V.K., Rath, M.C., and Sarkar, S.K., Electron Beam Irradiation-Induced Transformations in the Electro-Optical And Dielectric Properties of a Twisted Nematic Display Material (5CB), J. Phys. D: Appl. Phys., vol. 42, p. 085503, 2009b. doi: 10.1088/0022-3727/42/8/085503.

  35. Verma, R., Dhar, R., Rath, M.C., Sarkar, S.K., Wadhawan, V.K., Dabrowski, R., and Tykarska, M.B., Optimization of the Display Parameters of a Room Temperature Nematic Material (6CHBT) by Using Electron Beam Irradiation, J. Disp. Technol., vol. 6, pp. 8-13, 2010. doi: 10.1109/JDT.2009.2033393.

  36. Yang, K.X. and Lee, W., Temperature-Dependent Electric Characteristics in an E7/CNT Colloid, Mol. Cryst. Liq. Cryst., vol. 475, pp. 201-208, 2007.

  37. Yang, W., Thordarson, P., Gooding, J.J., Ringer, S.P., and Braet, F., Carbon Nanotubes for Biological and Biomedical Applications, Nanotechnology, vol. 18, p. 412001, 2007.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain