ライブラリ登録: Guest
Critical Reviews™ in Immunology

年間 6 号発行

ISSN 印刷: 1040-8401

ISSN オンライン: 2162-6472

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00079 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.24 SJR: 0.429 SNIP: 0.287 CiteScore™:: 2.7 H-Index: 81

Indexed in

Diagnostic and Therapeutic Application of Exosomal microRNAs Inducing Inflammation in Type 2 Diabetes Mellitus

巻 42, 発行 1, 2022, pp. 1-11
DOI: 10.1615/CritRevImmunol.2022044927
Get accessDownload

要約

Diabetes mellitus is a class of noncommunicable chronic metabolic disorders marked by hyperglycemia due to insulin production, insulin action or both and has reached epidemic levels around the world. The two most frequent types of diabetes are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Despite substantial improvements in the knowledge and treatment of DM, the associated incidence and mortality rates remain steadily increased. Reliable markers for the early detection, monitoring and focused treatment of DM are desperately required. Conversely, microRNAs (miRNAs) have received much significance due to their regulatory involvement in gene expression. Fascinatingly, exosomes can be enclosed into miRNAs to transport or distribute them into the target cells or tissues in which they have a physiological regulatory action. Thus, exosomal miRNAs are proving to be important regulators in the establishment and maintenance of DM, however, further mode of action will be needed to investigate in order to fully comprehend the pathophysiological process. Hereby, this review outlines the recent findings on the role of exosomal miRNAs intending to understand the precise function in diagnostic and therapeutic aspects in T2DM disease.

参考
  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(Suppl 1):S67-74.

  2. Schmidt AM. Highlighting diabetes mellitus: The epidemic continues. Arterioscler Thromb Vasc Biol. 2018;38(1): e1-8.

  3. Tiwari J, Gupta G, de Jesus Andreoli Pinto T, Sharma R, Pabreja K, Matta Y, Arora N, Mishra A, Sharma R, Dua K. Role of microRNAs (miRNAs) in the pathophysiology of diabetes mellitus. Panminerva Med. 2018;60(1):25-8.

  4. Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11(11):1185-200.

  5. Castano C, Novials A, Parrizas M. Exosomes and diabetes. Diabetes Metab Res Rev. 2019;35(3):e3107.

  6. Willms E, Cabanas C, Mager I, Wood MJA, Vader P. Extracellular vesicle heterogeneity: Subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol. 2018;9:738.

  7. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478): eaau6977.

  8. Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):307.

  9. Pang H, Luo S, Xiao Y, Xia Y, Li X, Huang G, Xie Z, Zhou Z. Emerging Roles of Exosomes in T1DM. Front Immunol. 2020;11:593348.

  10. Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015;87:3-14.

  11. Lin J, Li J, Huang B, Liu J, Chen X, Chen XM, Xu YM, Huang LF, Wang XZ. Exosomes: Novel biomarkers for clinical diagnosis. Sci World J. 2015;2015:657086.

  12. Lu Y, Liu D, Feng Q, Liu Z. Diabetic nephropathy: Perspective on extracellular vesicles. Front Immunol. 2020;11:943.

  13. Preethi KA, Selvakumar SC, Ross K, Jayaraman S, Tusubira D, Sekar D. Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Mol Cancer. 2022;21(1):54.

  14. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genom Proteom Bioinform. 2015;13(1):17-24.

  15. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509-24.

  16. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-9.

  17. Lebovitz HE. Insulin resistance: Definition and conse-quences. Exp Clin Endocrinol Diabetes. 2001;109(Suppl 2):S135-48.

  18. Samuel VT, Shulman GI. Mechanisms for insulin resistance: Common threads and missing links. Cell. 2012;148(5):852-71.

  19. Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winnay JN, Garcia-Martin R, Grinspoon SK, Gorden P, Kahn CR. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542(7642):450-5.

  20. Su T, Xiao Y, Xiao Y, Guo Q, Li C, Huang Y, Deng Q, Wen J, Zhou F, Luo XH. Bone marrow mesenchymal stem cells-derived exosomal miR-29b-3p regulates aging-associated insulin resistance. ACS Nano. 2019;13(2):2450-62.

  21. Liu T, Sun YC, Cheng P, Shao HG. Adipose tissue macro-phage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem Biophys Res Commun. 2019;515(2):352-8.

  22. Li D, Song H, Shuo L, Wang L, Xie P, Li W, Liu J, Tong Y, Zhang CY, Jiang X, Li J, Zhang Y. Gonadal white adipose tissue-derived exosomal miR-222 promotes obesity-associated insulin resistance. Aging. 2020;12(22): 22719-43.

  23. Ying W, Gao H, Dos Reis FCG, Bandyopadhyay G, Ofrecio JM, Luo Z, Ji Y, Jin Z, Ly C, Olefsky JM. miR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metab. 2021;33(4):781-90.e5.

  24. Li L, Zuo H, Huang X, Shen T, Tang W, Zhang X, An T, Dou L, Li J. Bone marrow macrophage-derived exosomal miR-143-5p contributes to insulin resistance in hepatocytes by repressing MKP5. Cell Prolif. 2021;54(12): e13140.

  25. Byun JS, Lee HY, Tian J, Moon JS, Choi J, Lee SH, Kim YG, Yi HS. Effect of salivary exosomal miR-25-3p on periodontitis with insulin resistance. Front Immunol. 2022;12:775046.

  26. Westermeier F, Riquelme JA, Pavez M, Garrido V, Diaz A, Verdejo HE, Castro PF, Garda L, Lavandero S. New molecular insights of insulin in diabetic cardiomyopathy. Front Physiol. 2016;7:125.

  27. Wang X, Huang W, Liu G, Cai W, Millard RW, Wang Y, Chang J, Peng T, Fan GC. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol. 2014;74:139-50.

  28. de Gonzalo-Calvo D, van der Meer RW, Rijzewijk LJ, Smit JW, Revuelta-Lopez E, Nasarre L, Escola-Gil JC, Lamb HJ, Llorente-Cortes V. Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Sci Rep. 2017;7(1):47.

  29. Lu Y, Liu D, Feng Q, Liu Z. Diabetic nephropathy: Perspective on extracellular vesicles. Front Immunol. 2020;11:943.

  30. Sun YM, Su Y, Li J, Wang LF. Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy. Biochem Biophys Res Commun. 2013;433(4):359-61.

  31. Xie Y, Jia Y, Cuihua X, Hu F, Xue M, Xue Y. Urinary exosomal MicroRNA profiling in incipient type 2 diabetic kidney disease. J Diabetes Res. 2017;2017:6978984.

  32. Li W, Yang S, Qiao R, Zhang J. Potential value of urinary exosome-derived let-7c-5p in the diagnosis and progression of type II diabetic nephropathy. Clin Lab. 2018;64(5):709-18.

  33. Zang J, Maxwell AP, Simpson DA, McKay GJ. Differential expression of urinary exosomal microRNAs miR-21-5p and miR-30b-5p in individuals with diabetic kidney disease. Sci Rep. 2019;9(1):10900.

  34. Zhao Y, Shen A, Guo F, Song Y, Jing N, Ding X, Pan M, Zhang H, Wang J, Wu L, Ma X, Feng L, Qin G. Urinary exosomal miRNA-4534 as a novel diagnostic bio-markerfor diabetic kidney disease. Front Endocrinol. 2020;11:590.

  35. Liu D, Liu F, Li Z, Pan S, Xie J, Zhao Z, Liu Z, Zhang J, Liu Z. HNRNPA1-mediated exosomal sorting of miR-483-5p out of renal tubular epithelial cells promotes the progression of diabetic nephropathy-induced renal interstitial fibrosis. Cell Death Dis. 2021;12(3):255.

  36. Cho NJ, Kim DY, Kwon SH, Ha TW, Kim HK, Lee MR, Chun SW, Park S, Lee EY, Gil HW. Urinary exosomal microRNA profiling in type 2 diabetes patients taking dipeptidyl peptidase-4 inhibitor compared with sulfonylurea. Kidney Res Clin Pract. 2021;40(3):383-91.

  37. El Rami H, Barham R, Sun JK, Silva PS. Evidence-based treatment of diabetic retinopathy. Semin Ophthalmol. 2017;32(1):67-74.

  38. Youngblood H, Robinson R, Sharma A, Sharma S. Proteomic biomarkers of retinal inflammation in diabetic retinopathy. Int J Mol Sci. 2019;20(19):4755.

  39. Li W, Jin LY, Cui YB, Xie N. Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-17-3p ameliorates inflammatory reaction and antioxidant injury of mice with diabetic retinopathy via targeting STAT1. Int Immunopharmacol. 2021;90:107010.

  40. Jiang L, Cao H, Deng T, Yang M, Meng T, Yang H, Luo X. Serum exosomal miR-377-3p inhibits retinal pigment epithelium proliferation and offers a bio-marker for diabetic macular edema. J Int Med Res. 2021;49(4):3000605211002975.

  41. Li W, Jin L, Cui Y, Nie A, Xie N, Liang G. Bone marrow mesenchymal stem cells-induced exosomal microR-NA-486-3p protects against diabetic retinopathy through TLR4/NF-KB axis repression. J Endocrinol Invest. 2021;44(6):1193-207.

  42. Liu Y, Yang Q, Fu H, Wang J, Yuan S, Li X, Xie P, Hu Z, Liu Q. Muller glia-derived exosomal miR-9-3p promotes angiogenesis by restricting sphingosine-1-phosphate receptor S1P1 in diabetic retinopathy. Mol Ther Nucleic Acids. 2021;27:491-504.

  43. Liang G, Qin Z, Luo Y, Yin J, Shi Z, Wei R, Ma W. Exosomal microRNA-133b-3p from bone marrow mesenchymal stem cells inhibits angiogenesis and oxidative stress via FBN1 repression in diabetic retinopathy. Gene Ther. 2022;7:1-10.

  44. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW, Viswanathan V. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):42.

  45. Javed S, Hayat T, Menon L, Alam U, Malik RA. Diabetic peripheral neuropathy in people with type 2 diabetes: Too little too late. Diabet Med. 2020;37(4):573-9.

  46. Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P, Lauria G, Malik RA, Spallone V, Vinik A, Bernardi L, Valensi P. Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33(10):2285-93.

  47. Fujita Y, Murakami T, Nakamura A. Recent advances in biomarkers and regenerative medicine for diabetic neuropathy. Int J Mol Sci. 2021;22(5):2301.

  48. Venkat P, Cui C, Chopp M, Zacharek A, Wang F, Land-schoot-Ward J, Shen Y, Chen J. miR-126 mediates brain endothelial cell exosome treatment-induced neurorestorative effects after stroke in type 2 diabetes mellitus mice. Stroke. 2019;50(10):2865-74.

  49. Wang L, Chopp M, Szalad A, Lu X, Zhang Y, Wang X, Cepparulo P, Lu M, Li C, Zhang ZG. Exosomes derived from Schwann cells ameliorate peripheral neuropathy in type 2 diabetic mice. Diabetes. 2020;69(4):749-59.

  50. Fan B, Li C, Szalad A, Wang L, Pan W, Zhang R, Chopp M, Zhang ZG, Liu XS. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes. Diabetologia. 2020;63(2): 431-43.

  51. Fan B, Chopp M, Zhang ZG, Liu XS. Treatment of diabetic peripheral neuropathy with engineered mesenchymal stromal cell-derived exosomes enriched with microRNA-146a provide amplified therapeutic efficacy. Exp Neurol. 2021;341:113694.

  52. Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci. 2018;1411(1):153-65.

  53. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015;4(9):560-82.

  54. Xiong Y, Chen L, Yan C, Zhou W, Endo Y, Liu J, Hu L, Hu Y, Mi B, Liu G. Circulating exosomal mir-20b-5p inhibition restores Wnt9b signaling and reverses diabetes-associated impaired wound healing. Small. 2020;16(3):e1904044.

  55. Xiong Y, Chen L, Yu T, Yan C, Zhou W, Cao F, You X, Zhang Y, Sun Y, Liu J, Xue H, Hu Y, Chen D, Mi B, Liu G. Inhibition of circulating exosomal microRNA-15a-3p accelerates diabetic wound repair. Aging. 2020;12(10):8968-86.

  56. Xu Y, Ouyang L, He L, Qu Y, Han Y, Duan D. Inhibition of exosomal miR-24-3p in diabetes restores angiogenesis and facilitates wound repair via targeting PIK3R3. J Cell Mol Med. 2020;24(23):13789-803.

  57. Shi R, Jin Y, Hu W, Lian W, Cao C, Han S, Zhao S, Yuan H, Yang X, Shi J, Zhao H. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy. Am J Physiol Cell Physiol. 2020;318(5):C848-56.

  58. Huang C, Luo W, Wang Q, Ye Y, Fan J, Lin L, Shi C, Wei W, Chen H, Wu Y, Tang Y. Human mesenchymal stem cells promote ischemic repairment and angiogenesis of diabetic foot through exosome miRNA-21-5p. Stem Cell Res. 2021;52:102235.

  59. Wang P, Theocharidis G, Vlachos IS, Kounas K, Lobao A, Shu B, Wu B, Xie J, Hu Z, Qi S, Tang B, Zhu J, Veves A. Exosomes derived from epidermal stem cells improve diabetic wound healing. J Invest Dermatol. 2022:S0022-202X(22)00119-1.

  60. Yan C, Chen J, Wang C, Yuan M, Kang Y, Wu Z, Li W, Zhang G, Machens HG, Rinkevich Y, Chen Z, Yang X, Xu X. Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Deliv. 2022;29(1):214-28.

近刊の記事

Identification of a novel five-gene prognostic model for laryngeal cancer associated with mitophagy using integrated bioinformatics analysis and experimental verification Dong Song, Lun Dong, Mei Wang, Xiaoping Gao Function of steroid receptor coactivators (SRCs) in T cells and cancers: Implications for cancer immunotherapy Wencan Zhang, Xu Cao, Hongmin Wu, Xiancai Zhong, Yun Shi, Zuoming Sun Electroacupuncture Alleviates Ischemic Stroke by Activating the mTOR/SREBP1 Pathway Jiawang Lang, Jianchang Luo, Luodan Wang, Wenbin Xu, Jie Jia, Zhipeng Zhao, Boxu Lang KIAA1429 induces the m6A modification of LINC01106 to enhance the malignancy of lung adenocarcinoma cell via JAK/STAT3 pathway Di Xu, Ziming Wang, Fajiu Li Effect of p-estrogen receptor at serine on its function and breast growth Yuan Liang, Junhui Qin, Tiancheng Ma, Tong Yang, Zhenyu Ke, Ruian Wang Mechanistic Insights into Tanshinone IIA in the Amelioration of Post-Thyroidectomy Hypoparathyroidism Xiaoyu Qian, Lin Li, Liang Chen, Chao Shen, Jian Tang MiRNA let-7d-5p alleviates inflammatory responses by targeting Map3k1 and inactivating ERK/p38 MAPK signaling in microglia Fan Fang, Cheng Chen Role of Natural Killer Cells as Cell-Based Immunotherapy in Oral Tumor Eradication and Differentiation Both In Vivo and In Vitro Kawaljit Kaur, Anahid Jewett The Current and Future States of Natural Killer Cell-Based Immunotherapy in Hepatocellular Carcinoma Tu Nguyen, Po-Chun Chen, Janet Pham, Kawaljit Kaur, Steven Raman, Anahid Jewett, Jason Chiang Phillygenin alleviated arthritis through the inhibition of NLRP3 inflammasome and Ferroptosis by AMPK Jianghui Wang, Shufang Ni, Kai Zheng, Yan Zhao, peihong zhang, Hong Chang The value of systemic immune-inflammation index and T cell subsets in the severity and prognosis of sepsis Hao Zhou Efficacy and Nuances of Precision Molecular Engineering for Hodgkin's Disease to a Gene Therapeutic Approach Muhammad Imran Qadir, Bilal Ahmed, Nadir Hussain Serum interleukin 6 and ferritin levels are the independent risk factors for pneumonia in elderly patients Hao Yuan, Jing Tian, Lu Wen Exploration of diagnostic markers associated with inflammation in chronic kidney disease (CKD) based on WGCNA and machine learning Qianjia Wu, Yang Yang, Chongze Lin Clinical significance of serum CTRP3 level in the prediction of cardiac dysfunction and intestinal mucosal barrier dysfunction in patients with severe acute pancreatitis Qiang Shao, Lin Sun The protective effect and mechanism of mild hypothermia on pig lung injury after cardiopulmonary resuscitation Jinlin Ren, Fangfang Zhu, Dongdong Sang, Mulin Cong, Shujuan Jiang Exploring mechanism of Zilongjin in treating lung adenocarcinoma based on network pharmacology combined with experimental verification Kang Zhang, Xiaoqun Chen Gastric Cancer Immune Subtypes and Prognostic Modeling: Insights from Aging-Related Genes Analysis Jian Shen, Minzhe Li Effects of different doses of dexmedetomidine on the prevention of postoperative sleep disturbance and serum neurotransmitter level in patients under general anesthesia Huifei Lu, Fei He, Ying Huang, Zhongliang Wei Identification of key ubiquitination-related genes and their associated with immune infiltration in osteoarthritis based on mRNA-miRNA network Dalu Yuan, Hailiang Shen, Lina Bai, Menglin Li, Qiujie Ye Diagnostic and Prognostic value of peripheral neutrophil CD64 index in elderly patients with community-acquired pneumonia Yan Li, Jing Zhang, Suhang Wang, Jie Cao Identification of Metabolism-Related Prognostic Biomarkers and Immune Features of Head and Neck Squamous Cell Carcinoma Rongjin Zhou, Junguo Wang Downregulation of miR-503-5p promotes the development of pancreatic cancer via targeting cyclin E2 Fei Li, Ying-pei Ling, Pan Wang, Shi-cheng Gu, Hao Jiang, Jie Zhu
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain