ライブラリ登録: Guest
Composites: Mechanics, Computations, Applications: An International Journal

年間 4 号発行

ISSN 印刷: 2152-2057

ISSN オンライン: 2152-2073

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00004 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.08 SJR: 0.153 SNIP: 0.178 CiteScore™:: 1 H-Index: 12

Indexed in

DEVELOPMENT OF A MULTILAYER COMPOSITE MATERIAL USING GRAPHENE OXIDE-COATED MILLED GLASS FIBER AS A MATRIX REINFORCEMENT AGENT

巻 11, 発行 3, 2020, pp. 227-238
DOI: 10.1615/CompMechComputApplIntJ.2020033732
Get accessGet access

要約

This work analyzes the mechanical behavior when graphene oxide (GO) is added as a reinforcing agent to milled glass fibers (MGFs) in composite material, manufactured by a hand lay-up technique using a thermoset polymer. The objective of this investigation is to comprise the influence of reinforcement agent in a composite material. In this case, the composites were fabricated by a hand lay-up technique. Three types of test specimens were prepared, with the main difference being the reinforcement material in the matrix−Sample 1: epoxy resin only, Sample 2: epoxy with MGFs, and Sample 3: epoxy with GO-coated MGFs.
All specimens were assessed with the aid of scanning electron microscopy and energy dispersive spectroscopy analysis to evaluate the coating and elements present in the samples. Mechanical properties were obtained in the American Society of Testing Materials (ASTM) standard tensile and flexural tests. Our results show that the addition of 0.4 wt.% GO as a coating to epoxy with MGFs improves the tensile strength with 8.64% concerning the strength of epoxy resin with MGFs and a unidirectional stitched fiberglass reinforcement.

参考
  1. Acik, M., Mattevi, C., Gong, C., Lee, G., Cho, K., Chhowalla, M., and Chabal, Y.J., The Role of Intercalated Water in Multilayered Graphene Oxide, ACS Nano, vol. 4, no. 10, pp. 5861-5868, 2010, https:// doi.org/10.1021/nn101844t.

  2. Bortz, D.R., Heras, E.G., and Martin-Gullon, I., Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites, Macromolecules, vol. 45, no. 1, pp. 238-245, 2012, https://doi.org/10.1021/ma201563k.

  3. Chawla, K.K., Composite Materials, New York: Springer, pp. 137-195, 2012, https://doi.org/10.1007/978- 0-387-74365-3.

  4. Chen, D., Feng, H., and Li, J., Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications, Chem. Rev., vol. 112, no. 11, pp. 6027-6053, 2012, https://doi.org/10.1021/cr300115g.

  5. Chen, J., Zhao, D., Jin, X., Wang, C., Wang, D., and Ge, H., Modifying Glass Fibers with Graphene Oxide: Towards High-Performance Polymer Composites, Compos. Sci. Technol., vol. 97, pp. 41-45, 2014, https://doi.org/10.1016/jxompscitech.2014.03.023.

  6. Chen, M., Zhu, S., and Wang, F., Strengthening Mechanisms and Fracture Surface Characteristics of Silicate Glass Matrix Composites with Inclusion of Alumina Particles of Different Particle Sizes, Physica B: Condens. Matter, vol. 413, pp. 15-20, 2013, https://doi.org/10.1016Zj.physb.2013.01.006.

  7. Clyne, T.W. and Hull, D., An Introduction to Composite Materials, Cambridge, UK: Cambridge University Press, pp. 9-30, 2019, https://doi.org/10.1017/9781139050586.

  8. Du, S.-S., Li, F., Xiao, H.-M., Li, Y.-Q., Hu, N., and Fu, S.-Y., Tensile and Flexural Properties of Graphene Oxide Coated-Short Glass Fiber Reinforced Polyethersulfone Composites, Composites Part B: Engineering, vol. 99, pp. 407-415, 2016, https://doi.org/10.1016/j.compositesb.2016.06.023.

  9. Friedrich, K. and Almajid, A.A., Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications, Appl. Compos. Mater., vol. 20, no. 2, pp. 107-128, 2013, https://doi.org/10.1007/ s10443-012-9258-7.

  10. Fu, S., Effects of Fiber Length and Fiber Orientation Distributions on the Tensile Strength of Short-Fiber-Reinforced Polymers, Compos. Sci. Technol., vol. 56, no. 10, pp. 1179-1190, 1996, https://doi. org/10.1016/S0266-3538(96)00072-3.

  11. Gao, W., The Chemistry of Graphene Oxide, in Graphene Oxide, Springer International Publishing, pp. 61-95, 2015, https://doi.org/10.1007/978-3-319-15500-5_3.

  12. Garda, V., Vargas, L., Acuna, A., Sosa, J.B., Durazo, E., Ballesteros, R., and Ocampo, J., Evaluation of Basalt Fibers on Wind Turbine Blades through Finite Element Analysis, Adv. Mater. Sci. Eng., vol. 2019, pp. 1-12, 2019, https://doi.org/10.1155/2019/1536925.

  13. Li, Y., Umer, R., Samad, Y.A., Zheng, L., and Liao, K., The Effect of the Ultrasonication Pre-Treatment of Graphene Oxide (GO) on the Mechanical Properties of GO/Polyvinyl Alcohol Composites, Carbon, vol. 55, pp. 321-327, 2013, https://doi.org/10.1016/j.carbon.2012.12.071.

  14. Liu, L., Yan, F., Li, M., Zhang, M., Xiao, L., Shang, L., and Ao, Y., Improving Interfacial Properties of Hierarchical Reinforcement Carbon Fibers Modified by Graphene Oxide with Different Bonding Types, Composites Part A: Appl. Sci. Manuf., vol. 107, pp. 616-625, 2018, https://doi.org/10.1016/j. compositesa.2018.02.009.

  15. Ma, P.-C., Liu, J.-W., Gao, S.-L., and Mader, E., Development of Functional Glass Fibers with Nano-composite Coating: A Comparative Study, Composites Part A: Appl. Sci. Manuf., vol. 44, pp. 16-22, 2013, https://doi.org/10.1016/jxompositesa.2012.08.027.

  16. Mallick, P.K. (Ed.), Composites Engineering Handbook, Boca Raton, FL: CRC Press, pp. 1-50, 1997, https://doi.org/10.1201/9781482277739.

  17. Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A., and Mohajeri, A., Mechanical Properties of Multi-Walled Carbon Nanotube/Epoxy Composites, Mater. Design, vol. 31, no. 9, pp. 4202-4208, 2010, https://doi.org/10.1016/j.matdes.2010.04.018.

  18. Mortazavian, S. and Fatemi, A., Effects of Fiber Orientation and Anisotropy on Tensile Strength and Elastic Modulus of Short Fiber Reinforced Polymer Composites, Composites Part B: Engineering, vol. 72, pp. 116-129, 2015, https://doi.org/10.1016/jxompositesb.2014.11.041.

  19. Ning, N., Zhang, W., Yan, J., Xu, F., Wang, T., Su, H., Tang, C., and Fu, Q., Largely Enhanced Crystallization of Semi-Crystalline Polymer on the Surface of Glass Fiber by Using Graphene Oxide as a Modifier, Polymer, vol. 54, no. 1, pp. 303-309, 2013, https://doi.org/10.1016/j.polymer.2012.11.045.

  20. Park, M.-S., Lee, S., and Lee, Y.-S., Mechanical Properties of Epoxy Composites Reinforced with Ammonia-Treated Graphene Oxides, Carbon Lett., vol. 21, pp. 1-7, 2017, https://doi.org/10.5714/ CL.2017.21.001.

  21. Pascault, J.-P. and Williams, R.J.J., General Concepts about Epoxy Polymers, in Epoxy Polymers, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 1-12, 2010, https://doi.org/10.1002/9783527628704.ch1.

  22. Raju, I.S. and O'Brien, T.K., Fracture Mechanics Concepts, Stress Fields, Strain Energy Release Rates, Delamination Initiation and Growth Criteria, in Delamination Behavior of Composites, Elsevier, pp. 3-27, 2008, https://doi.org/10.1533/9781845694821.L3.

  23. Rourke, J.P., Pandey, P.A., Moore, J.J., Bates, M., Kinloch, I.A., Young, R.J., and Wilson, N.R., The Real Graphene Oxide Revealed: Stripping the Oxidative Debris from the Graphene-like Sheets, Angewandte Chemie International Edition, vol. 50, no. 14, pp. 3173-3177, 2011, https://doi.org/10.1002/ anie.201007520.

  24. Salehi-Khojin, A., Stone, J.J., and Zhong, W.-H., Improvement of Interfacial Adhesion between UHMWPE Fiber and Epoxy Matrix Using Functionalized Graphitic Nanofibers, J. Compos. Mater., vol. 41, no. 10, pp. 1163-1176, 2007, https://doi.org/10.1177/0021998306067301.

  25. Shen, X.-J., Meng, L.-X., Yan, Z.-Y., Sun, C.-J., Ji, Y.-H., Xiao, H.-M., and Fu, S.-Y., Improved Cryogenic Interlaminar Shear Strength of Glass Fabric/Epoxy Composites by Graphene Oxide, Composites Part B: Engineering, vol. 73, pp. 126-131, 2015, https://doi.org/10.1016/jxompositesb.2014.12.023.

  26. Siddiqui, N.A., Li, E.L., Sham, M.-L., Tang, B.Z., Gao, S.L., Mader, E., and Kim, J.-K., Tensile Strength of Glass Fibers with Carbon Nanotube-Epoxy Nanocomposite Coating: Effects of CNT Morphology and Dispersion State, Composites Part A: Appl. Sci. Manuf., vol. 41, no. 4, pp. 539-548, 2010, https://doi.org/10.1016/j.compositesa.2009.12.011.

  27. Siddiqui, N.A., Sham, M.-L., Tang, B.Z., Munir, A., and Kim, J.-K., Tensile Strength of Glass Fibers with Carbon Nanotube-Epoxy Nanocomposite Coating, Composites Part A: Appl. Sci. Manuf., vol. 40, no. 10, pp. 1606-1614, 2009, https://doi.org/10.1016/j.compositesa.2009.07.005.

  28. Soutis, C., Fiber Reinforced Composites in Aircraft Construction, Progr. Aerospace Sci., vol. 41, no. 2, pp. 143-151, 2005, https://doi.org/10.1016/j.paerosci.2005.02.004.

  29. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S., Graphene-Based Composite Materials, Nature, vol. 442, no. 7100, pp. 282-286, 2006, https://doi.org/10.1038/nature04969.

  30. Subhani, T., Latif, M., Ahmad, I., Rakha, S.A., Ali, N., and Khurram, A.A., Mechanical Performance of Epoxy Matrix Hybrid Nanocomposites Containing Carbon Nanotubes and Nanodiamonds, Mater. Design, vol. 87, pp. 436-444, 2015, https://doi.org/10.1016/j.matdes.2015.08.059.

  31. Umer, R., Li, Y., Dong, Y., Haroosh, H.J., and Liao, K., The Effect of Graphene Oxide (GO) Nanoparticles on the Processing of Epoxy/Glass Fiber Composites Using Resin Infusion, Int. J. Adv. Manuf. Technol., vol. 81, nos. 9-12, pp. 2183-2192, 2015, https://doi.org/10.1007/s00170-015-7427-1.

  32. Varga, C., Miskolczi, N., Bartha, L., and Lipoczi, G., Improving the Mechanical Properties of Glass-Fiber-Reinforced Polyester Composites by Modification of Fiber Surface, Mater. Design, vol. 31, no. 1, pp. 185-193, 2010, https://doi.org/10.1016/j.matdes.2009.06.034.

  33. Vassilopoulos, A.P. and Keller, T., Fatigue of Fiber-Reinforced Composites, Springer London, pp. 1-23, 2011, https://doi.org/10.1007/978-1-84996-181-3.

  34. Vitorino, L.S. and Orefice, R.L., Layer-by-Layer Technique Employed to Construct Multitask Interfaces in Polymer Composites, Polimeros, vol. 27, no. 4, pp. 330-338, 2017, https://doi.org/10.1590/0104- 1428.15616.

  35. Yu, Z., Wang, Z., Li, H., Teng, J., and Xu, L., Shape Memory Epoxy Polymer (SMEP) Composite Mechanical Properties Enhanced by Introducing Graphene Oxide (GO) into the Matrix, Materials, vol. 12, no. 7, p. 1107, 2019, https://doi.org/10.3390/ma12071107.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain