ライブラリ登録: Guest
Hydrobiological Journal

年間 6 号発行

ISSN 印刷: 0018-8166

ISSN オンライン: 1943-5991

SJR: 0.221 SNIP: 0.469 CiteScore™:: 0.9 H-Index: 12

Indexed in

Some Problems of the Use of Microalgae for Nitrogen and Phosphorus Removal from Wastewater (a Review)

巻 57, 発行 2, 2021, pp. 62-78
DOI: 10.1615/HydrobJ.v57.i2.60
Get accessGet access

要約

Literature data on the capability of different species of microalgae to remove nitrogen and phosphorus compounds from wastewater have been generalized in the paper. The peculiarities of the influence of biotic and abiotic factors on the process of nutrients assimilation by algal cells have been analyzed. The ways of utilization of algal biomass taken from the treated wastewater are discussed.

参考
  1. Vayshlya, O.B. & D.V. Kulyatov. 2011. Promising species of microalgae for pollutants biodegradation in aquatic ecosystems of the southern part of the Western Siberia. Izvestiya Samarskogo Nauchnogo Tsentra RAN 13(1): 787-789. [Rus.].

  2. Gromov, B.V. 1976. Ultrastruktura sinezelenykh vodorsley. (Ultrastructure of blue-green algae.) Leningrad, Nauka Press. 96 pp. [Rus.].

  3. Direktiva N91/271/YeES vid 21 travnya 1991 r. "Pro ochystky miskykh stichnykh vod". (Directive N 91/271/YeES of 21 May 1991 "On Municipal Wastewater Treatment".) URL: http://zakon.rada.gov.ua (19.06.2020).

  4. Klochkova, T.A., A.V. Klimova & N.G. Klochkova. 2019. Prospects of the use of the Kamchatka Laminaria in the regional plant cultivation. Vestnik Kamchatskogo Gosudarstvennogo Tekhnicheskogo Universiteta 48: 90-103. [Rus.].

  5. Kuzmenko, M.I. 1982. Miksotrofizm sinezelenykh vodorosley i yego ekologicheskoye znacheniye. (Mixotrophic nutrition of blue-green algae and its ecological importance.) Kiev, Naukova Dumka Press. 212 pp. [Rus.].

  6. Solovchenko, A.Ye., A.A. Lukyanov, S.G. Vasilyeva et al. 2014. Possibilities ofbiotechnological treatment of agricultural waste products using microalgae. Vestnik Moskovskogo Universiteta Seriya 16. Biologiya 1: 38-49. [Rus.].

  7. Solovyeva, Ye.A. 2009. Sovershenstvovaniye tekhnologii udaleniya azota i fosfora v komplekse po ochistke stochnykh vod i obrabotke osadka. (Improvement in the technology of nitrogen and phosphorus removal from wastewater and bottom sediments.) Author's abstract of Doctor Thesis. Saint-Petersburg. 38 pp. [Rus.].

  8. Subbotina, Yu.M., I.R. Smirnova & K.A. Kutkovskiy. 2015. Theoretical and methodological approaches to wastewater treatment using the components of aquatic ecosystem. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta 5(127): 99-106. [Rus.].

  9. Yagafarova, G.G., A.E. Yakhina, L.R. Akchurina & S.V. Leontyeva. 2019. Prospects of chlorophenol compounds removal from water bodies using algae. Problemy Sbora, Podgotovki i Transporta Nefti i Nefteproduktov 4(120): 151-158. [Rus.].

  10. Abdelaziz, A.E.M., G.B. Leite & P.C. Hallenbeck. 2013. Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply. Environ. Technol. 34: 1783-1805.

  11. Abdel-Raouf, N., A.A. Al-Homaidan & I.B.M. Ibraheem. 2012. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 19: 257-275.

  12. Aguilar-May, B. & M. Del Pilar Sanchez-Saavedra. 2009. Growth and removal of nitrogen and phosphorus by free living and chitosan immobilized cells of the marine cyanobacterium Synechococcus elongates. J. Appl. Phycol. 21: 353-360.

  13. Andersen, R.A. 2013. The microalgal cell. Pp. 1-20 in: Handbook of microalgal culture: applied phycology and biotechnology. / Ed. by A. Richmond & Q. Hu. Oxford, Wiley Press.

  14. Ansari, F.A., P. Singh, A. Guldhe & F. Bux. 2017. Microalgal cultivation using aquaculture wastewater: integrated biomass generation and nutrient remediation. Algal Res. 21: 169-177.

  15. Aslan, S. & I.K. Kapdan. 2006. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 28: 64-70.

  16. Bhatnagar, A., M. Bhatnagar, S. Chinnasamy & K. Das. 2010. Chlorella minutissimada promising fuel alga for cultivation in municipal wastewaters. Appl. Biochem. Biotechnol. 161: 523-536.

  17. Biris-Dorhoi, E.S., M. Tofana, T. Mihaiescu et al. 2016. Applications of microalgae in wastewater treatments: a review. ProEnvironment 9(28): 459-463.

  18. Capodaglio, A.G., P. Hlav3nek & M. Raboni. 2015. Physico-chemical technologies for nitrogen removal from wastewater: a review. Rev. Ambient. Aqua 10: 481-489.

  19. Collos, Y. & J.A. Berges. 2003. Nitrogen metabolism in phytoplankton. In: Encyclopedia of Life Support Systems. / Ed. by C.M. Duarte. EOLSS Publishers (UNESCO). URL: http://www.eolss.net.

  20. Craggs, R.J., W.H. Adey, B.K. Jessup & W.J. Oswald. 1996. A controlled stream mesocosm for tertiary treatment of sewage. Ecol. Eng. 6: 149-169.

  21. Craggs, R.J., P.J. McAuley & V.J. Smith. 1997. Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res. 3: 1701-1707.

  22. Cuaresma, M., M. Janssen, C. Vilchez & R. Wijffels. 2009. Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnol. Bioeng. 104(2): 352-359.

  23. Dahmani, S., D. Zerrouki, L. Ramanna et al. 2016. Cultivation of Chlorellapyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region. Bioresour. Technol. 219: 749-752.

  24. Darley, W.M. 1982. Algal biology: a physiological approach. Oxford & London, Blackwell Scientific Publications. 168 pp.

  25. Delgadillo-Mirquez, L., F. Lopes, B. Taidi & D. Pareau. 2016. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports 11: 18-26.

  26. Eladel, H., S. Esakkimuthu & A. Abomohra. 2019. Dual role of microalgae in wastewater treatment and biodiesel production. Pp. 85-121 in: Application of microalgae in wastewater treatment. /Ed. by S.K. Gupta & F. Bux. Cham, Springer Press.

  27. Emparan, Q., R. Harun & M.K. Danquah. 2019. Role ofphycoremediation for nutrient removal from wastewaters: A review. Applied Ecology and Environmental Research 17(1): 889-915.

  28. Fernandes, T.V., M. Suarez-Munoz, L.M. Trebuch et al. 2017. Toward an acologically lptimized N, P recovery from wastewater by microalgae. Frontiers in Microbiology 8: 1-6.

  29. Flynn, K.J., J.A. Raven, T. Rees et al. 2010. Is the growth rate hypothesis applicable to microalgae. J. Phycol. 46: 1-12.

  30. Fogg, G.E. 1966. Algal cultures andphytoplankton ecology. Madison, Milwaukee & London, University of Wisconsin Press. 126 pp.

  31. Gonzalez, L.E, R.O. Canizares & S. Baena. 1997. Efficiency of ammonia and phosphorus removal from a Colombian agro industrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour. Technol. 60(3): 259-262.

  32. Grobbelaar, J.U. 1982. Potential of algal production. Water SA 8(2): 79-85.

  33. Hessen, D.O., P.J. Faerovig & T. Andersen. 2002. Light, nutrients, and P:C ratios in algae: grazer performance related to food quality and quantity. Ecology. 83(7): 1886-1898.

  34. Kang, C.D, J.Y. An, T.H. Park & S.J. Sim. 2006. Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochem. Eng. J. 31(3): 234-238.

  35. Kebede-Westhead, E.C., C. Pizarro & W.W. Mulbry. 2006. Treatment of swine manure effluent using freshwater algae: production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. J. Appl. Phycol. 18: 41-46.

  36. Kim, M.K., J.W. Park, C.S. Park et al. 2007. Enhanced production of Scenedesmus sp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresour. Technol. 98: 2220-2228.

  37. Klochenko, P.D., V.V. Grubinko, G.B. Gumenyuk & O.M. Arsan. 2003. Peculiarities of ammonium nitrogen assimilation in green and blue-green algae. Hydrobiol. J. 39(6): 102-108.

  38. Klochenko, P.D., G.V. Kharchenko, I.B. Zubenko & T.F. Shevchenko. 2007. Some peculiarities of accumulation of heavy metals by macrophytes and epiphyton algae in water bodies of urban territories. Hydrobiol. J. 43(6): 46-57.

  39. Klochenko, P.D., G.V. Kharchenko, V.G. Klenus & T.F. Shevchenko. 2008.137Cs and 90Sr accumulation by higher aquatic plants and phytoepiphyton in water bodies of urban territories. Hydrobiol. J.44(1): 48-59.

  40. Kong, Q.X., L. Li, B. Martinez et al. 2010. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Biochem. Biotechnol. 160: 9-18.

  41. Kothari, R., R. Prasad, V. Kumar & D. Singh. 2013. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresour. Technol. 144: 499-503.

  42. Kunz, A. & S. Mukhtar. 2016. Hydrophobic membrane technology for ammonia extraction from wastewaters. Eng. Agric. 36(2): 377-386.

  43. Laliberte, G., P. Lessard, J. Noue & S. Sylvestre. 1997. Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresour. Technol. 59: 227-233.

  44. Larsdotter, K. 2006. Wastewater treatment with microalgae - a literature review. Vatten. 62: 31-38.

  45. Lee, K. & C.G. Lee. 2001. Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol. Bioprocess Eng. 6: 194-199.

  46. Lee, K. & C.G. Lee. 2002. Nitrogen removal from wastewaters by microalgae without consuming organic carbon source. J. Microbiol. Biotechnol. 12: 979-985.

  47. Li, K., Q. Liu, F. Fang et al. 2019. Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresour. Technol. 291: 1-16.

  48. Li, Y., W. Zhou, B. Hu et al. 2012. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater. Biotechnol Bioeng. 109(9): 2222-2229.

  49. Liu, X., K. Ying, G. Chen et al. 2018. Influence of light intensity on microalgal growth, nutrients removal and capture of carbon in the wastewater under intermittent supply of CO2. J. Chem. Technol. Biotechnol. 93: 3582-3589.

  50. Madkour, A.G., S.H. Rasheedy, M.A. Dar et al. 2017. The differential efficiency of Chlorella vulgaris and Oscillatoria sp. to treat the municipal wastewater. J. Biol. Agric. Healthcare 7(22): 83-94.

  51. Mahapatra, D.M., H.N. Chanakya & T.V. Ramachandra. 2013. Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J. Appl. Phycol. 25(3): 855-865.

  52. Markou, G., D. Vandamme & K. Muylaert. 2014. Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res. 65: 186-202.

  53. Martinez, M.E., S. Sanchez, J.M. Jimenez et al. 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 73: 263-272.

  54. Medvedeva, N.G., S.V. Zinovyeva, T.B. Zaytseva, P.D. Klochenko & T.F. Shevchenko. 2018. Toxicity of 4-tertoctylphenol and its biodegradation by microalgae of the genus Microcystis (Cyanoprokaryota). Hydrobiol. J.54(3): 89-102.

  55. Metting, F.B. 1996. Biodiversity and application of microalgae. Journal of Industrial Microbiology 17: 477-489.

  56. Mehar, J., A. Shekh, NU Malchira & S. Mudliar. 2019. Potential of microalgae for integrated biomass production utilizing CO2 and food industry wastewater. Pp. 41-67 in: Application of Microalgae in Wastewater Treatment. Springer Press.

  57. Molina, E., J. Fernandez, F.G. Acien & Y. Chisti. 2001. Tubular photobioreactor design for algal cultures. J. Biotechnol. 92: 113-131.

  58. Nezbrytskaya I.N., Kureyshevich A.V. 2015. . Hydrobiol. J. 51(4): 46-56.

  59. Nezbrytskaya, I.N., A.V. Kureyshevich, A.A. Yarovoy et al. 2019. Peculiarities of the influence of high concentrations of ammonium on the functioning of some species of Cyano-prokaryota, Chlorophyta, and Euglenophyta. Hydrobiol. J. 55(2): 69-82.

  60. Nzayisenga, J.C., X. Farge, S.L. Groll et al. 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnol. Biofuels. 13: 1-8.

  61. Oswald, W.J. & H.B. Gotaas. 1957. Photosynthesis in sewage treatment. Trans. Am. Soc. Civil. Eng. 122: 73-105.

  62. Phang, S.M., M.S. Miah, B.G. Yeoh & M.A. Hashim. 2000. Spirulina cultivation indigested sago starch factory wastewater. J. Appl. Phycol. 12: 395-400.

  63. Powles, S.B. 1984. Photoinhibition of photosynthesis induced by visible light. Annu. Rev. Plant Physiol. 35: 15-44.

  64. Ruiz-Marin, A., L. Mendoza-Espinosa & T. Stephenson. 2010. Growth and nutrient removal in free and immobilized green algae in batch and semi continuous cultures treating real waste-water. Bioresour. Technol. 101: 58-64.

  65. Shahid, A., AZ Khan, T. Liu, S. Malik et al. 2017. Production and processing of algal biomass. Algae based polymers, blends and composites. Elsevier Press. 273 pp.

  66. Shahid, A., S. Malik, H. Zhu et al. 2020. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation: (a review). Sci Total Environ. doi: 10.1016/j.scitotenv.2019.135303.

  67. Shamanskyi, S.I. & S.V. Boichenko. 2016. Development of environmentally safe technological water disposal scheme of aviation enterprise. Eastern European Journal of Enterprise Technologies 6/10(84): 49-57.

  68. Shamanskyi, S.I. & S.V. Boichenko. 2018. Environment-friendly technology of airport's sewerage. Pp. 161-175 in: Advances in sustainable aviation. / Ed. by T. Karakof, C. Colpan & Y. Sohret. Cham, Springer Press.

  69. Shevchenko, T.F., P.D. Klochenko & O.P. Bilous. 2018. Response of epiphytic algae to heavy pollution of water bodies. Water Environ. Res. 90(8): 706-718.

  70. Shevchenko, T., P. Klochenko & I. Nezbrytska. 2020. Response of phytoplankton to heavy pollution of water bodies. Oceanol. Hydrobiol. St. 49(3): 267-280.

  71. Silva-Benavides, A.I. & G. Torzillo. 2012. Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. Journal of Applied Phycology 24: 267-276.

  72. Solovchenko, A., A.M. Verschoor, N.D. Jablonowski & L. Nedbal. 2016. Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnol. Adv. 34(5): 550-564.

  73. Su, Y., A. Mennerich& B. Urban. 2011. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settle able algal-bacterial culture. Water Res. 45: 3351-3358.

  74. Su, Y., A. Mennerich & B. Urban. 2012. Coupled nutrient removal and biomass production with mixed algal culture: impact of biotic and abiotic factors. Bioresour. Technol. 118: 469-476.

  75. Sukachova, K., M. Trtilek & T. Rataj. 2015. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Res. 71: 55-63.

  76. Sydney, E.B., T.E. Silva, A. Tokarski et al. 2011. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl Energ. 88(10): 3291-3294.

  77. Talbot, P. & J. De laNoue. 1993. Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions. Water Res. 27: 153-159.

  78. Tam, N.F.Y. & Y.S. Wong. 2000. Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ. Poll. 107(1): 145-151.

  79. Wang, B. & C.Q. Lan. 2011. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal waste-water effluent. Bioresour. Technol. 102(10): 5639-5644.

  80. Wang, L., M. Min, Y. Li et al. 2010. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 162: 1174-1186.

  81. Wang, L., Y. Wang, P. Chen & R. Ruan. 2010. Semi continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures. Appl. Biochem. Biotechnol. 162: 2324-2332.

  82. Wang, J.H., T.Y. Zhang, G.H. Dao et al. 2017. Microalgae-based advanced municipal waste-water treatment for reuse in water bodies. Appl Microbiol. Biotechnol. 101(7): 2659-2675.

  83. Woertz, I., A. Feffer, T. Lundquist & Y. Nelson. 2009. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J. En-viron. Eng. 135(11): 1115-1122.

  84. Wu, L.F., P.C. Chen, A.P. Huang et al. 2012. The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour. Technol. 113:14-18.

  85. Zhou, W., M. Min, Y. Li et al. 2012. A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour. Technol. 110: 448-455.

  86. Zhu, L., Z. Wang, Q. Shu et al. 2013. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res. 47:4294-4302.

によって引用された
  1. Sirotiya Vandana, Ahirwar Ankesh, Mourya Megha, Khan Mohd Jahir, Rai Anshuman, Kwatra Rajeev, Sharma Anil K., Harish , Schoefs Benoit, Marchand Justine, Varjani Sunita, Vinayak Vandana, Astaxanthin bioaccumulation in microalgae under environmental stress simulated in industrial effluents highlighting prospects of Haematococcus pluvialis: knowledge gaps and prospective approaches, Phytochemistry Reviews, 2022. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain