ライブラリ登録: Guest
Hydrobiological Journal

年間 6 号発行

ISSN 印刷: 0018-8166

ISSN オンライン: 1943-5991

SJR: 0.221 SNIP: 0.469 CiteScore™:: 0.9 H-Index: 12

Indexed in

Artificial Hydrobiocenoses in Rehabilitation of Surface and Waste Water Quality

巻 57, 発行 5, 2021, pp. 60-69
DOI: 10.1615/HydrobJ.v57.i5.50
Get accessGet access

要約

The role of different systematic groups of aquatic organisms in the removal, transformation and transport of the pollutants is shown, as well as the effectiveness of the multicomponent artificial biocenoses to restore the aquatic environment quality. The processes in such biological systems are studied. Based on the study of physiological, biochemical and cytogenetic mechanisms of the aquatic organisms' adaptation to changes in environmental conditions, modern approaches to the polluted water purification are proposed, based on the intensification of removal, transformation and transport of nutrients and toxic substances by the aquatic organisms with significant adaptive potential. The importance was shown to create a universal database of functional, morphological, adaptive and other characteristics of promising species of the aquatic organisms and appropriate software for simulation of the possible technological schemes of treatment and restoration of biologically valid state of the surface and wastewater depending on their composition and properties.

参考
  1. Bogdanov, N.I. 2008. Biologicheskaya reabilitatsiya vodoyomov. (Biological rehabilitation of the water bodies.) Penza. 126 pp. [Rus.].

  2. Use of biological ponds with higher aquatic plants in practice of the waste waters purification. 2002. Inform. bulleten Derzhbudu 4: 22-29. [Ukr.].

  3. Gvozdiak, P.I. 2003. On the principle of bio-conveyer. VisnykNAN Ukrainy 3: 29-36. [Ukr.].

  4. Grokhovska, Yu.O. & S.V. Konontsev. 2010. Botanika z osnovamy gidrobotaniky. Nacch. posibnyk. (Botany and principles of hydrobotany. Tutorial.) Rivne. 340 pp. [Ukr.].

  5. Direnko, A.A. & Ye.M. Kotsar. 2006. Use of the higher aquatic plants in practice of the waste waters and surface flow purification. SOK 5: 15-23. [Rus.].

  6. Ivanova, M.B. 1985. Produktsiya planktonnykh rakoobraznykh vpresnykh vodakh. (Production of planktonic crustaceans in fresh waters.) Leningrad. 222 pp. [Rus.].

  7. Kotsar, O.M.m Yu.G. Krot, L.S. Kipnis & T.I. Lekontseva. 2001. Use of the higher aquatic plants for conditioning of the circulating waters in the closed bioplateau of the hydroponic type. Nauk. zap. Ternop. ped. un-tu. Ser. Biologiya 4: 133-134. [Ukr.].

  8. Krot, Yu.G., M.T. Goncharova & I.M. Konovets. 2020. Use of macrophytes in biotechnology of the surface and waste waters secondary purification. Pp. 51-54 in: Intern. sci. and pract. conf. "The European potentialfor development ofnatural science": Conf. proceed., November 27-28, 2020. Lublin, Baltija Publishing.

  9. Krot, Yu.G. 2006. The use of higher aquatic plants in biotechnologies of surface water and wastewater treatment. Hydrobiol. J. 42(3) 44-58.

  10. Krot, Yu.G. 2005. Detritophagous fishes as bioameliorators in regulated systems for cultivation of aquatic animals Ibid. 41(5): 71-78.

  11. Krot, Yu.G. & T.I. Lekontseva. 2005. Transformation of the nitrous compounds in the water medium in the closed systems offish cultivation Nauk. zap. Ternop. ped. un-tu. Ser. Biologiya 3: 227-229. [Ukr.].

  12. Makarova, Ye.i., I.P. Oturina & A.I. Sidiakin. 2009. Practical aspects of application of microalgae - inhabitants of water ecosystems. Ekosistemy, ikh optimizatsiya i okhrana 20: 120-133. [Rus.].

  13. Oksiyuk, O.P., A.I. Merezhko & T.F. Volkova. 1978. Use ofthe higher aquatic plants for water quality improvement and banks strengthening. Vodniye resursy 4: 97-114. [Rus.].

  14. Ostroumov, S.A. 2016. Rol bioty v ekologicheskikh mekhanizmakh samoochishcheniya vod. (Biota's role in environmental mechanisms of the water self-purification.) Moscow, Max-Press. 124 pp. [Rus.].

  15. Patent. 54808 Ukraine, MPK7C 02 F 3/32. Mode of deep secondary purification of waste waters. V.D. Romanenko, O.M. Kotsar, Yu.G. Krot, M.G. Tkachuk. N 2002043160; claimed on 17.04.02, published 7.03.03. Bull. N3.2 pp. [Ukr.].

  16. Patent 56423 Ukraine, MPK7C 02 F 3/34. Mode of waste waters purification from plant oils. O.M. Kotsar, Yu.G. Krot, M.G. Tkachuk. N2002043161. Claimed on. 17.04.02; published on 15.05.03, Bull. N5. 2 pp. [Ukr.].

  17. Patent 92415 Ukraine, MPK9A 01 K 61/00, 63/00, 61/04. Mode of water purification over fish cultivation in closed system. V.D. Romanenko, Yu.G. Krot, S.M. Malyna. N a200905851;. Claimed on 09.06.09; published on 25.10.10. Bull. N 20. 2 pp. [Ukr.].

  18. Patent 95279 Ukraine, MPK6C 02 F 3/32,11/02, 101/10,101/20. Mode of waste waters purification using higher aquatic plants. Yu.G. Krot, V.D. Romanenko, S.M. Malyna, T.N. Diachenko. N a201114500, Claimed on 07.12.11; published on. 25.12.14. Bull. N24. 2 pp. [Ukr.].

  19. Pashkova, O.V. 2006. Zooplankton of urbanized territories of the Kaniv reservoir. Pryrodnychyy almanakh. Ser. Biologichni nauky 8: 177-18. [Ukr.].

  20. Ratushniak, A.A. & M.G. Andreyeva. 1998. Mechanisms of higher aquatic plants symbiotic relation with accompanying hydrocarbon-oxidizing microflora. Gidrobiol. Zhurn. 34(5): 49-54. [Rus.].

  21. Romanenko V.D. 2004. Osnovy gidroekologii. (Principles of hydroecology.) Kyiv, Geneza Press. 664 p. [Rus.].

  22. Romanenko, V.D., Yu.G. Krot, T.Ya. Kyryziy et al. 2009. Pryrodni i shtuchni bioplato. Fundamentalni iprykladni aspekty. (Natural and artificial. Fundamental and applied aspects.) Kyiv. 150 pp. [Ukr.].

  23. Romanenko, V.D., Yu.G. Krot, L.A. Sirenko & V.D. Solomatina. 1999. Biotekhnologiya kultivirovaniya gidrobiontov. (Biotechnology of the aquatic organisms cultivation.) Kyiv. 264 pp. [Rus.].

  24. Silkin, V.A. & K.M. Khaylov. 1988. Bioekologicheskiye mechanism upravleniya v akva-kulture. (Bio-environmental mechanisms of management in aquaculture.) Leningrad, Nauka Press. 232 pp. [Rus.].

  25. Smirnova, N.N. 1993. Higher aquatic plants as accumulator of toxic substances. Pp. 241-251 in: Gidroekologiya ukrainskogo uchastka Dunaya i sopredelnykh vodoyemov. (Hydroecology of the Ukrainian stretch of the Danube River and adjoining water bodies.) Kyiv, Naukova Dumka Press. [Rus.].

  26. Khimko, R.V., O.I. Merezhko & R.V. Babko. 2003. Mali richky - doslidzhennia, okhorona, vidnovlennia. (Small rivers - studies, protection, rehabilitation.) Kyiv. 180 pp. [Ukr.].

  27. Baghour, M. 2019. Algal Degradation of Organic Pollutants. Pp. 565-586 in: Handbook of Ecomaterials. Ed. by L. Martinez, O. Kharissova, B. Kharisov.

  28. Bello, A.O., S. Tawabini, A.B. Khalil et al. 2018. Phytoremediation of cadmium, lead and nickel contaminated water by Phragmites australis in hydroponic systems. Ecol. Eng. 120: 126-133.

  29. Bozek, F., J. Navratil & J. Kellner. 2005. Efficiency of Nitrification and Denitrification Processes in Waste Water Treatment Plants. Modern Tools and Methods of Water Treatment for Improving Living Standards. Ed. by A. Omelchenko, A.A. Pivovarov, W.J. Swindall. NATO Science Series (Series IV: Earth and Environmental Series). Vol. 48.

  30. Brix, H. 1990. Gas exchange through the soil - atmosphere and through dead culms of Phragmites australis in a constructed reed bed receiving domestic sewage. Wat. Res. 24: 259-266.

  31. Dhir, B. 2019. Removal of pharmaceuticals and personal care products by aquatic plants. Pp. 321-340 in: Pharmaceuticals and Personal Care Products. Waste Manag. Treat. Technol.

  32. Dhir, B., P. Sharmila, &P. Pardha-Saradhi. 2009. Potential of fquatic macrophytes for removing contaminants from the environment. Critical Rev. Environ. Sci. Technol. 39(9): 754-781.

  33. Galczynska, M. 2012. Response of the mare's tail (Hippuris vulgaris L.) and frogbit (Hydrocharis morsus-ranae L.) to water pollution with heavy metals and a possibility of using these plants for water phytoremediation. Szczecin, Uczelniane ZUT. P. 85.

  34. Gonzalez-Alcaraz, M., C. Egea, F. Jimenez-Carceles et al. 2012. Storage of organic carbon, nitrogen and phosphorus in the soil-plant system of Phragmites australis stands from eutro-phicated Mediterraneans altmarsh. Geoderma 185: 61-72.

  35. He, R., J. Zeng, D. Zhao et al. 2020. Contrasting patterns in diversity and community assembly of Phragmites australis root-associated bacterial communities from different seasons. Appl. Environ. Microbiol. 45: 103-115.

  36. Iavniuk , A.A., N.L. Shevtsova & D.I. Gudkov. 2020. Disorders of the initial ontogenesis of seed progeny of the common reed (Phragmites australis) from water bodies within the Chernobyl Exclusion Zone. J. Environ. Radioact. 218: 106-256.

  37. Jie-Ting, Q., L. Shao-Yong, W. Xue-Yan et al. 2015. Impact of hydraulic loading on removal of polycyclic aromatic hydrocarbons (PAHs) from vertical-flow wetland. Toxicol. Environ. Chem. 97: 388-401.

  38. Semple, K.T., R.B. Cain & S. Schmidt. 1999. Biodegradation of aromatic compounds by microalgae. FEMS Microbiology Let. 170(2): 291-300.

  39. Krom, M.D., S. Ellner, J. Van Rijn & A. Neori. 1995. Nitrogen and phosphorus cycling and transformations in a prototype "non-polluting" integrated mariculture system, Eilat, Israel. Mar. Ecol. Progr. Ser. 118(1-3): 25-36.

  40. Krot, Yu., I. Konovets & M. Goncharova. 2021. Operation efficiency of two-stage hydrophyte mesocosm for waste water treatment. Pp. 41 in: 2nd Intern. Aquatic Mesocosm Research Symp., 12-16 April 2021. Abstr. book.

  41. Lv, T., P.N. Carvalho & M.E. Casas. 2017. Enantio selective uptake, translocation and degra-dation of the chiral pesticides tebuconazole and imazalil by Phragmites australis. Environ. Pollut. 229: 362-370.

  42. McLatchy, G.P. & K.R. Reddy. 1996. Regulation of organic matter decomposition and nutrient release in a wetland soil. J. Environ. Qual. (inreview) 3: 56-78.

  43. Mendes, R., P. Garbeva & J.M. Raaijmakers. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37: P. 634-663.

  44. Nezbrytska, I.M., S.Y. Shamanskyi, S.V. Boichenko & G.V. Kharchenko. 2021. Some problems of the use of microalgae for nitrogen and phosphorus removal from wastewater (a review). Hydrobiol. J. 57(2): 62-78.

  45. Romanenko, V., M. Goncharova, I. Konovets & L. Kipnis. 2012. Morphophysiological and cytogenetic modifications in Chironomus riparius (Diptera: Chironomidae) under the impact of copper ions. Ibid. 48(6): 86-94.

  46. Romanenko, V.D., Yu.G. Krot, T.I. Lekontseva & A.B. Podrugina. 2017. Peculiarities of phyto- and zooplankton structural organization at an extremely high content of inorganic compounds of nitrogen in the water. Ibid. 53(5): 3-14.

  47. Romanenko, V.D., Y.G. Krot, T.I. Lekontseva & G.B. Podrugina. 2020, Peculiarities of adaptation of Gammaridae of the reservoirs' littoral zone to water temperature increase. Ibid. 56(3): 3-12.

  48. Sarma, H. 2011. Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. Environ. Sci. Technol. 4: 118-138.

  49. Sparling, G.P. 1992. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust. J. Soil Res. 30: 195-206.

  50. Travieso, L., R. Canizares, R. Borja et al. 1999. Heavy metal removal by microalgae. Bull. Environ. Contam. Toxicol. 62: 144-151.

  51. Vrede, K., T. Vrede, A. Isaksson & A. Karlsson. 1999. Effects of nutrients (phosphorous, nitrogen, and carbon) and zooplankton on bacterioplankton and phytoplankton - a seasonal study. Limnol. Oceanogr. 44(7): 1616-1624.

  52. Vymazal, J. 2008. Constructed Wetlands for Wastewater Treatment: A Review. Pp. 965-980 in: The 12th World Lake Conf. Proceedings.

  53. Wu, S. P., Kuschk, H. Brix et al. 2014. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. WaterRes. 57: 40-55.

  54. Zohary, T. & R.D. Robarts. 1998. Experimental study of microbial phosphorus limitation in the eastern Mediterranean. Limnol. Oceanogr. 43(3): 387-395.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain