ライブラリ登録: Guest
Heat Transfer Research

年間 18 号発行

ISSN 印刷: 1064-2285

ISSN オンライン: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

MHD NATURAL CONVECTION FLOW IN A VERTICAL POROUS MICROCHANNEL FORMED BY NONCONDUCTING AND CONDUCTING PLATES IN THE PRESENCE OF INDUCED MAGNETIC FIELD

巻 48, 発行 18, 2017, pp. 1669-1692
DOI: 10.1615/HeatTransRes.2017019204
Get accessGet access

要約

This work is aimed at studying the formation of steady fully developed natural convection flow of an electrically conducting fluid in a vertical porous microchannel formed by electrically nonconducting and conducting infinite vertical parallel porous walls in the presence of induced magnetic field. The effects of velocity slip and temperature jump are taken into account. The influence of the induced magnetic field arising due to the motion of an electrically conducting fluid is taken into consideration. The governing equations of the motion are a set of simultaneous ordinary differential equations, and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field, and the temperature field. The expressions for the induced current density and skin friction have also been obtained. The influence of each governing parameter such as suction/injection, rarefaction, fluid–wall interaction, Hartmann number, and the magnetic Prandtl number on flow formation is discussed with the aid of graphs. The results indicate that for both symmetric and asymmetric heating, an increase in the suction/injection parameter leads to an increase in the skin friction at the porous microchannel nonconducting wall. Furthermore, increasing the suction/injection parameter causes reduction in the skin friction at the porous microchannel conducting wall for the case of symmetric heating, while the reverse trend occurs in the case of asymmetric heating.

によって引用された
  1. Endalew Mehari Fentahun, Sarkar Subharthi, Temporal analysis of dual phase-lag double-diffusive MHD flow within a porous microchannel with chemical reaction, Heat Transfer-Asian Research, 48, 4, 2019. Crossref

  2. Venkateswarlu M., Bhaskar P., Mathematical Study of Imposed Magnetic Field on Radiative Hydromagnetic Casson Fluid Flow in a Micro-Channel with Asymmetric Heating, Journal of Nanofluids, 10, 4, 2021. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain