ライブラリ登録: Guest
Critical Reviews™ in Biomedical Engineering

年間 6 å·ç™ºè¡Œ

ISSN 印刷: 0278-940X

ISSN オンライン: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Near-Field Microwave Tomography of Biological Tissues: Future Perspectives

巻 50, 発行 4, 2022, pp. 1-12
DOI: 10.1615/CritRevBiomedEng.2022042194
Get accessDownload

要約

This overview shows the mapping of specific visualization techniques, depth assessment of the structure of the underlying tissues and used wavelengths of radiation. Medical imaging is currently one of the most dynamically developing areas of medical science. The main aim of the review is a systematization of information on the current status of the microwave imaging of biological objects, primarily of body tissues. The main options of microwave sensing of biological objects are analyzed. Two basic techniques for sensing differing evaluation parameters are characterized. They are microwave thermometry (passive) and near-field resonance imaging. The physical principles of microwave sensing application are discussed. It is shown that the resonant near-field microwave tomography allows visualization of the structure of biological tissues on the basis of the spatial distribution of their electrodynamic characteristics - permittivity and conductivity. Potential areas for this method in dermatology, including dermatooncology, are shown. The known results of applying the method to patients with dermatoses are given. The informativeness of the technology in the early diagnosis of melanoma is shown. The prospects of microwave diagnostics in combustiology, reconstructive and plastic surgery are demonstrated. Thus, microwave sensing is a modern, dynamically developing method of biophysical assessment of body tissues. There is a strong indication of the feasibility of application of microwave sensing in combustiology (in different periods of burn disease), as well as in reconstructive surgery. Further research in this and other areas of biomedicine will significantly expand the range of possibilities of modern technologies of visualization.

Figures

  • Principles of microwave radar-based imaging technology. Figure reproduced from (Adachi et al.) under a
Creative Commons license.49
  • Electrodynamic model of resonance near-feld
measuring system: (1) exiting line; (2) receiving line; (3)
resonator; (4) load of resonator; (5) near-feld antenna as
cylindrical capacitor; and (6) magnetic loop of resonator
  • Measurement system and replaceable applicators
with various depth of sounding
  • Resonance characteristic of measurement system: (1) without contact bio object and (2) with contact
bio object
  • Explanation of depth’s sounding by method of
near-feld resonance tomography
キーワード: microwave probing, skin, wound, burn
参考
  1. Gladkova ND, Sergeev AM. Manual of optical coherence tomography. Moscow: Fizmatlit; 2007.

  2. Gladkova ND, Fomina YuV, Urutina MN. The possibilities of the optical coherence tomography method in dentistry: A methodological guide. Nizhny Novgorod: Nizhny Novgorod State Medical Academy; 2005.

  3. Demidov LV, Sokolov DV, Bulycheva IV, Shashkov BV, Makhson AN. Improving methods for diagnosing skin melanoma. Bulletin of the N.N. Blokhin Russian Research Center of the Russian Academy of Medical Sciences. 2007;18(1):36-41.

  4. Stuchly MA. Applications of time-varying magnetic fields in medicine. Crit Rev BIomed. Eng. 1990;18(2):89-124.

  5. Gaikovich KP. Subsurface near-field scanning tomography. Phys Rev Lett. 2007;98(18):183902.

  6. Lazebnik M, Madsen EL, Frank GR, Hagness SC. Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Phys Med Biol. 2005;50(18):4245-58.

  7. Martusevich AK, Kostrov AV. Biomedical applications of microwave radiation: Innovative approaches. EPJ Web of Conferences. 2018;195:00003.

  8. Naito S, Hoshi M, Mashimo S. In vivo dielectric analysis of free water content of biomaterials by time domain reflectometry. Anal Biochem. 1997;251(2):163-72.

  9. Petrosyan VI. Resonant radiation of water in the radio range. JTP Lett. 2005;31(23):29-33.

  10. Schertlen R, Pivit F, Wiesbeck W. Wound diagnostics with microwaves. Biomed Tech. 2002;47(Suppl 1):672-3.

  11. Semenov S. Microwave tomography: Review of the progress towards clinical applications. Philos Trans A Math Phys Eng Sci. 2009;367(1900):3021-42.

  12. Zaman A, Rezaeieh SA, Abbosh AM. Lung cancer detection using frequency-domain microwave imaging. Electron Lett. 2015;51(10):740-1.

  13. Galka AG, Martusevich AK, Yanin DV, Kostrov AV. Resonansce near-field microwave probing of burn wound. J Commun Technol Electron. 2020;65(9):1038-45.

  14. Turchin IV. Methods of optical biomedical visualization: From subcellular structures to tissues and organs. Uspekhi fizicheskikh nauk. 2016;186(5):550-67.

  15. Arsenyev AV, Volchenko AN, Likhacheva LV, Pechersky VI. Application of the RF-near-field sounding method in the diagnostics of biological objects. Sci Tech Bull Inform Technol Mechan Opt. 2011;2:154-7.

  16. Gaikovich KP. Scanning near-field electromagnetic tomography. Phys Rev Lett. 2007;98(18):183902.

  17. Kostrov AV, Strikovsky AV, Yanin DV, Zagainov VE, Plotnikov AF. Research of electrodynamic parameters of biological tissues. Almanac Clin Med. 2008;17:96-9.

  18. Li X, Bond EJ, van Veen B, Hagness S. An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection. IEEE Antennas Propagat Mag. 2005;47(1):19-34.

  19. Reznik AN, Yurasova NV. Near-field microwave tomography of biological media. J Tech Phys. 2004;74(4):108-16.

  20. Semenov S, Kellam J, Althausen P, Williams T, Abubakar A, Bulyshev A. Microwave tomography for functional imaging of extremity soft tissues: Feasibility assessment. Phys Med Biol. 2007;52(18):5705-19.

  21. Kostrov AV, Smirnov AI, Yanin DV, Strikovsky, Panteleeva GA. Resonant near-field microwave diagnostics of inhomogeneous media. Izvestiya RAS. A series of physical. 2005;69(12):1716-20.

  22. Reznik AN, Yurasova NV. Detection of contrast formations inside biological media using near-field microwave diagnostics. J Tech Phys. 2006;76(1):90-104.

  23. Bennett D, Li W, Taylor Z, Grundfest W, Brown E. Stratified media model for terahertz reflectometry of the skin. IEEE Sensors J. 2011;11(5):1253-62.

  24. Mehta P, Chand K, Narayanswamy D, Beetner DG, Zoughi R, Stoecker WV. Microwave reflectometry as a novel diagnostic tool for detection of skin cancers. IEEE Trans Instrum Meas. 2006;55(4):1309-6.

  25. Sunaga T, Ikehira H, Furukawa S, Shinkai H, Kobayashi H, Matsumoto Y, Yoshitomi E, Obata T, Tanada S, Murata H, Sasaki Y. Measurement of the electrical properties of human skin and the variation among subjects with certain skin conditions. Phys Med Biol. 2002;47(1):N11-5.

  26. Baloshin YuA, Sorokin AA, Volchenko AN. Electrodynamic model of RF-near-field sounding of physical objects. Izvestiya VUZov. Instrumentation. 2011;12:68-73.

  27. Foster KR, Schwan HP. Dielectric-properties of tissue and biological-materials - A critical review. Crit Rev Biomed. Eng. 1989;17(1):25-104.

  28. Raicu V, Kitagawa N, Irimajiri A. A quantitative approach to the dielectric properties of the skin. Phys Med Biol. 2000;45(2):L1-4.

  29. Alanen E, Lahtinen T, Nuutinen J. Penetration of electromagnetic fields of an open-ended coaxial probe between 1 MHz and 1 GHz in dielectric skin measurements. Phys Med Biol. 1999;44(7):N169-76.

  30. Yanin DV, Galka AG, Smirnov AI, Kostrov AV, Strikovsky AV, Orlinskaya NYu, Epishkina AA, Grebenkin EV. Noninvasive diagnosis of melanoma and other skin neoplasms by resonant near-field microwave sensing. J Radio Electron. 2015;1:20.

  31. Yanin DV, Galka AG, Smirnov AI, Kostrov AV, Strikovsky AV. The resonant near-field microwave diagnostics of inhomogeneous media. Adv Appl Physics. 2014;2(6):555-70.

  32. Hayashi Y, Miura N, Shinyashiki N, Yagihara S. Free water content and monitoring of healing processes of skin burns studied by microwave dielectric spectroscopy in vivo. Phys Med Biol. 2005;50(4):N8-14.

  33. Caratelli D, Massaro A, Cingolani R, Yarovoy A. Accurate time-domain modeling of reconfigurable antenna sensors for noninvasive melanoma skin cancer detection. IEEE Sensors J. 2012;12(3):635-43.

  34. Rezaeieh SA. Feasibility of using wideband microwave system for non-invasive detection and monitoring of pulmonary oedema. Sci Rep. 2015;5:231-6.

  35. Yao J, Tchafa FM, Jain A, Tjuatja S, Huang H. Far-field interrogation of microstrip patch antenna for temperature sensing without electronics. IEEE Sens J. 2016;16:7053-60.

  36. Abbosh A. Miniaturization of planar ultrawideband antenna via corrugation. IEEE Antennas Wirel Propag Lett 2008;7:685-8.

  37. Ojaroudi M, Ghobadi C, Nourinia J. Small square monopole antenna with inverted t-shaped notch in the ground plane for UWB application. IEEE Antennas Wirel Propag Lett. 2009;8:728-31.

  38. Lakrit S, Ammor H, Terhzaz J, Tribak A. Realization and measurements of a miniature square patch antenna for ultra wideband applications. Int J. Microw Opt Technol. 2015;10:307-13.

  39. Liu H-W, Yang C-F. Miniature hook-shaped monopole antenna for UWB applications. Electron Lett. 2010;46:265-6.

  40. Azim R, Islam MT, Misran N. Compact tapered-shape slot antenna for UWB applications. IEEE Antennas Wirel Propag Lett. 2011;10:1190-3.

  41. Li L-W, Li Y-N, Yeo TS, Mosig JR, Martin OJ. A broadband and high-gain metamaterial microstrip antenna. Appl Phys Lett. 2010;96:164101.

  42. Pandey G, Singh H, Bharti P, Meshram M. Metamaterial-based UWB antenna. Electron Lett. 2014;50:1266-8.

  43. Liu H, Zhu S, Wen P, Xiao X, Che W, Guan X. Flexible cpw-fed fishtail-shaped antenna for dual-band applications. IEEE Antennas Wirel Propag Lett. 2014;13:770-3.

  44. Samsuzzaman M, Islam MT. A semicircular shaped super wideband patch antenna with high bandwidth dimension ratio. Microw Opt Technol Lett. 2015;57:445-52.

  45. Natarajan R, George JV, Kanagasabai M, Shrivastav AK. A compact antipodal vivaldi antenna for UWB applications. IEEE Antennas Wirel Propag Lett. 2015;14:1557-60.

  46. Mahmud M, Islam MT, Samsuzzaman M, Kibria S, Misran N. Design and parametric investigation of directional antenna for microwave imaging application. IET Microw Antennas Propag. 2016;11:770-8.

  47. Mosallaei H, Sarabandi K. Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans Antennas Propag. 2004;52:2403-14.

  48. Alani S, Zakaria Z, Saeidi T, Ahmad A, Imran MA, Abbasi QH. Microwave imaging of breast skin utilizing elliptical uwb antenna and reverse problems algorithm. Micromachines. 2021;12:647.

  49. Adachi M, Nakagawa T, Fujioka T, Mori M, Kubota K, Oda G, Kikkawa T. Feasibility of portable microwave imaging device for breast cancer detection. Diagnostics. 2022;12:27.

  50. Martusevich AK, Galka AG, Krasnova SY, Soloveva AG, Kostrov AV. Near-field microwave sensing of human skin: Physiological pattern. Archiv Euromedica. 2018;8(2):120.

  51. Martusevich AK, Krasnova SY, Petrov SV, Galka AG, Petrov MS, Novikov AV. Application of near-field microwave probing in diagnosing Dupuytren's disease. Sovremennye Tehnologii v Medicine. 2019;11(4):106-10.

  52. Panteleeva GA, Davoyan ZV, Yanin DV, Kostrov AV. Resonant near-field microwave diagnostics of dermatoses with palmar-plantar localization. Abstr. of scientific papers of the 3rd Congress of Dermatovenerologists. Kazan, 2009. p. 51.

  53. Martusevich AK, Golygina ES, Anuchin AA, Galka AG, Tuzhilkin AN, Fedotova AF, Epishkina AA. Microwave detection of skin dielectric properties in some laboratory animals. Archiv Euromedica. 2020;10(1):46.

  54. Martusevich AK, Epishkina AA, Golygina ES, Tuzhilkin AN, Fedotova AS, Galka AG. Near-field resonance microwave sounding to study dielectric properties of different skin areas (experimental study). Sovremennye Tehnologii v Medicine. 2020; 12(5):57-61.

  55. Philipsen PA, Knudsen L, Gniadecka M, Ravnbak MH, Wulf HC. Diagnosis of malignant melanoma and basal cell carcinoma by in vivo NIR-FT Raman spectroscopy is independent of skin pigmentation. Photochem Photobiol Sci. 2013;12(5):770-6.

  56. Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996;41(11):2231.

  57. Arai T. Burns. Nihon Rinsho. 2016;74(20):231-5.

  58. Daigeler A, Kapalschinski N, Lehnhardt M. Therapy of burns. Chirurg. 2015;86(4):389-401 (in German).

  59. Tan Q, Xu P. Repair of skin and soft tissue defects around the knee joint. Zhonghua Shao Shang Za Zhi. 2015;31(5):321-4.

  60. Martusevich AK, Krasnova SYu, Galka AG, Peretyagin PV, Kostrov AV. Resonance near-field microwave probing as a method for exploration of deep burn wound structures in experiment. Sovremennye Tehnologii v Medicine 2018;10(3):125-9.

  61. Tamura T, Tenhunen M, Lahtinen T, Repo T, Schwan HP. Modelling of the dielectric properties of normal and irradiated skin. Phys Med Biol. 1994;39(6):927-36.

  62. Kolesov SN, Volovik MG. Modern methodology of thermal imaging studies and thermal imaging medical equipment. Opt J. 2013;80(6):59-67.

  63. Volovik MG, Kolesov SN. Substantiation of the choice of functional samples in medical thermal imaging (on the example of an alcohol sample). Opt J. 2015;82(7):62-74.

  64. Hammody Z, Argov S, Sahu RK, Cagnano E, Moreh R, Mordechai S. Distinction of malignant melanoma and epidermis using IR micro-spectroscopy and statistical methods. Analyst. 2008;133(3):372-8.

  65. Martusevich AK, Galka AG, Krasnova SYu, Golygina ES. The influence of reactive oxygen species and NO on oxidative metabolism and dielectric properties of living tissue. J Integr OMICS. 2020;10(2):39-42.

  66. Shao W, McCollough T. Advances in microwave near-field imaging: Prototypes, systems, and applications. IEEE Microw Mag. 2020;21(5):94-19.

  67. Song H, Sasada S, Kadoya T, Okada M, Arihiro K, Xiao X, Kikkawa T. Detectability of breast tumor by a hand-held impulse-radar detector: Performance evaluation and pilot clinical study. Sci Rep. 2017;7(1):16353.

  68. Topfer F, Dudorov S, Oberhammer J. Millimeter-wave near-field probe designed for high- resolution skin cancer diagnosis. IEEE Trans Microw Theory Techn. 2015;63(6):2050-9.

  69. Chand K, Mehta P, Beetner DG, Zoughi R, Stoecker WV. Microwave reflectometry as a novel diagnostic method for detection of skin cancers. Proc. IEEE Instrumentation and Measurement Technology Conf. 2005:1425-8.

  70. Taeb A, Gigoyan S, Safavi-Naeini S. Millimetre-wave waveguide reflectometers for early detection of skin cancer. IET Microw Antennas Propag. 2013;7(14):1182-6.

  71. Gao Y, Zoughi R. Millimeter wave reflectometry and imaging for noninvasive diagnosis of skin burn injuries. IEEE Trans Instrum Meas. 2017;66(1):77-84.

  72. Ireland D, Bialkowski K, Abbosh A. Microwave imaging for brain stroke detection using Born iterative method. IET Microw Antennas Propag. 2013;7(11):909-15.

  73. Mohammed BJ, Abbosh AM, Mustafa S, Ireland D. Microwave system for head imaging. IEEE Trans Instrum Meas. 2014;63(1):117-23.

  74. Mustafa S, Mohammed B, Abbosh A. Novel preprocessing techniques for accurate microwave imaging of human brain. IEEE Antennas Wireless Propag Lett. 2013;12:460-3.

  75. Candefjord S, Winges J, Malik AA, Yu Y, Rylander T, McKelvey T, Fhager A, Elam M, Persson M. Microwave technology for detecting traumatic intracranial bleedings: Tests on phantom of subdural hematoma and numerical simulations. Med Biol Eng Comput. 2017;55(8):1177-88.

  76. Ljungqvist J, Candefjord S, Persson M, Jonsson L, Skoglund T, Elam M. Clinical evaluation of a microwave-based device for detection of traumatic intracranial hemorrhage. J Neurotrauma. 2017;34(13):2176-82.

  77. Inum R, Rana MM, Shushama KN, Quader MA. EBG based microstrip patch antenna for brain tumor detection via scattering parameters in microwave imaging system. Int J Biomed Imaging. 2018;2018:8241438.

  78. Amin B, Shahzad A, Farina L, Parle E, McNamara L, O'Halloran M, Elahi MA. Dielectric characterization of diseased human trabecular bones at microwave frequency. Med Eng Phys. 2020;78:21-8.

  79. Alkhodari M, Zakaria A, Qaddoumi N. Monitoring bone density using microwave tomography of human legs: A numerical feasibility study. Sensors. 2021;21(21):7078.

  80. Zamani A, Rezaeieh SA, Abbosh AM. Lung cancer detection using frequency-domain microwave imaging. Electron Lett. 2015;51(10):740-1.

  81. Istuk N, Porter E, O'Loughlin D, McDermott B, Santorelli A, Abedi S, Joachimowicz N, Roussel H, O'Halloran M. Dielectric properties of ovine heart at microwave frequencies. Diagnostics. 2021;11(3):531.

  82. Semenov SY, Svenson RH, Posukh VG, Nazarov AG, Sizov YE, Bulyshev AE, Souvorov AE, Chen W, Kasell J, Tatsis GP. Dielectrical spectroscopy of canine myocardium during acute ischemia and hypoxia at frequency spectrum from 100 kHz to 6 GHz. IEEE Trans Med Imaging. 2002;21(6):703-7.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain