ライブラリ登録: Guest
Journal of Enhanced Heat Transfer

年間 8 号発行

ISSN 印刷: 1065-5131

ISSN オンライン: 1563-5074

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00037 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.6 SJR: 0.433 SNIP: 0.593 CiteScore™:: 4.3 H-Index: 35

Indexed in

Condensation Heat Transfer and Pressure Drop Measurements in Miniature Horizontal Tubes with Low Mass Flux Rates

巻 10, 発行 3, 2003, pp. 335-354
DOI: 10.1615/JEnhHeatTransf.v10.i3.80
Get accessGet access

要約

Both a flow visualization experiment and measurements of heat transfer and pressure drop were conducted for water undergoing complete condensation in a family of horizontal tubes with diameters from 1.7 to 4 mm. The flow visualization experiment reveals a skewed annular liquid film over nearly the entire condensation length. Average heat transfer coefficients were calculated for tubes of 1.7, 2.5, 3.2, and 4.0 mm diameter, over a range of mass fluxes from 10 to 25 kg/m2s, at saturation temperatures of 60, 70, 80, and 90 °C. At a fixed mass flux, results for complete condensation show the average heat transfer coefficient decreases and pressure drop increases with increasing condensation length. For the same mass flux and at comparable condensation lengths, the average heat transfer coefficient and pressure drop increase with decreasing tube diameter. The effects of saturation temperature and mass flux are shown for each of the four tube diameters tested.

によって引用された
  1. Chen Yongping, Shi Mingheng, Cheng Ping, Peterson G. P., Condensation in Microchannels, Nanoscale and Microscale Thermophysical Engineering, 12, 2, 2008. Crossref

  2. Holley Brian, Faghri Amir, Analysis of pulsating heat pipe with capillary wick and varying channel diameter, International Journal of Heat and Mass Transfer, 48, 13, 2005. Crossref

  3. Goldstein R.J., Ibele W.E., Patankar S.V., Simon T.W., Kuehn T.H., Strykowski P.J., Tamma K.K., Heberlein J.V.R., Davidson J.H., Bischof J., Kulacki F.A., Kortshagen U., Garrick S., Srinivasan V., Heat transfer—A review of 2003 literature, International Journal of Heat and Mass Transfer, 49, 3-4, 2006. Crossref

  4. Fronk Brian M., Garimella Srinivas, Condensation of ammonia and high-temperature-glide ammonia/water zeotropic mixtures in minichannels – Part I: Measurements, International Journal of Heat and Mass Transfer, 101, 2016. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain