ライブラリ登録: Guest
International Journal for Uncertainty Quantification

年間 6 号発行

ISSN 印刷: 2152-5080

ISSN オンライン: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

KERNEL-BASED STOCHASTIC COLLOCATION FOR THE RANDOM TWO-PHASE NAVIER-STOKES EQUATIONS

巻 9, 発行 5, 2019, pp. 471-492
DOI: 10.1615/Int.J.UncertaintyQuantification.2019029228
Get accessGet access

要約

In this work, we apply stochastic collocation methods with radial kernel basis functions for an uncertainty quantification of the random incompressible two-phase Navier-Stokes equations. Our approach is nonintrusive and we use the existing fluid dynamics solver NaSt3DGPF to solve the incompressible two-phase Navier-Stokes equation for each given realization. We are able to empirically show that the resulting kernel-based stochastic collocation is highly competitive in this setting and even outperforms some other standard methods.

参考
  1. Ghanem, R. and Spanos, P., Stochastic Finite Elements: A Spectral Approach, New York: Springer-Verlag, 1991.

  2. Schwab, C. and Gittelson, C., Sparse Tensor Discretizations of High-Dimensional Parametric and Stochastic PDEs, Acta Numer., 20:291-467, 2011.

  3. Graham, I., Kuo, F., Nuyens, D., Scheichl, R., and Sloan, I., Quasi-Monte Carlo Methods for Elliptic PDEs with Random Coefficients and Applications, J. Comput. Phys, 230(10):3668-3694, 2011.

  4. Barth, A., Schwab, C., and Zollinger, N., Multi-Level Monte Carlo Finite Element Method for Elliptic PDEs with Stochastic Coefficients, Numer. Math, 119(1):123-161,2011.

  5. Jakeman, J. and Roberts, S., Stochastic Galerkin and Collocation Methods for Quantifying Uncertainty in Differential Equations: A Review, ANZIAM J, 50:815-830, 2009.

  6. Babuska, I., Nobile, F., and Tempone, R., A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data, SIAMRev., 52(2):317-355, 2010.

  7. Gams, B., Klie, H., Wheeler, M., Wildey, T., Yotov, I., and Zhang, D., Stochastic Collocation and Mixed Finite Elements for Flow in Porous Media, Comput. Methods Appl. Mech. Eng., 197(43-44):3547-3559, 2008.

  8. Le Maitre, O. and Knio, O., Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics, Scientific Computation, Dordrecht, the Netherlands: Springer, 2010.

  9. Schick, M., Heuveline, V., and Le Maitre, O., A Newton-Galerkin Method for Fluid Flow Exhibiting Uncertain Periodic Dynamics, SIAM/ASA J. Uncertainty Quantif, 2(1):153-173, 2014.

  10. Croce, R., Griebel, M., and Schweitzer, M., Numerical Simulation of Bubble and Droplet-Deformation by a Level Set Approach with Surface Tension in Three Dimensions, Int. J. Numer. Methods Fluids, 62(9):963-993, 2009.

  11. Dornseifer, T., Griebel, M., and Neunhoeffer, T., Numerical Simulation in Fluid Dynamics, a Practical Introduction, Philadelphia: SIAM, 1998.

  12. Burkow, M. and Griebel, M., A Full Three Dimensional Numerical Simulation of the Sediment Transport and the Scouring at a Rectangular Obstacle, Comput. Fluids, 125:1-10,2016.

  13. Griebel, M. and Ruttgers, A., Multiscale Simulations of Three-Dimensional Viscoelastic Flows in a Square-Square Contraction, J. Non-Newtonian FluidMech., 205:41-63,2014.

  14. Zaspel, P. and Griebel, M., Solving Incompressible Two-Phase Flows on Multi-GPU Clusters, Comput. Fluids, 80:356-364, 2013.

  15. Krige, D., A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand, J. Chem. Metall. Mining Soc. S. Afr., 52(6):119-139, 1951.

  16. van Beers, W. and Kleijnen, J., Kriging Interpolation in Simulation: A Survey, in Proc. of the Winter Simulation Conference 20)04,1:113-121,2004.

  17. Rasmussen, C. and Williams, C., Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), Cambridge, MA: The MIT Press, 2005.

  18. Cialenco, I., Fasshauer, G., and Ye, Q., Approximation of Stochastic Partial Differential Equations by a Kernel-Based Collocation Method, Int. J. Comput. Math, 89(18):2543-2561, 2012.

  19. Fasshauer, G. and Ye, Q., A Kernel-Based Collocation Method for Elliptic Partial Differential Equations with Random Coefficients, in Monte Carlo and Quasi-Monte Carlo Methods 2012, J. Dick, F. Kuo, G. Peters, and I. Sloan, Eds., Springer Proceedings in Mathematics and Statistics, Berlin, Heidelberg: Springer, 65:331-347, 2013.

  20. Griebel, M. and Rieger, C., Reproducing Kernel Hilbert Spaces for Parametric Partial Differential Equations, SIAM/ASA J. Uncertainty Quantif., 5:111-137, 2017.

  21. Zaspel, P., Parallel RBF Kernel-Based Stochastic Collocation for Large-Scale Random PDEs, PhD, University of Bonn, Germany, 2015.

  22. Narcowich, F. and Ward, J., Scattered-Data Interpolation on R": Error Estimates for Radial Basis and Band-Limited Functions, SIAM J. Math. Anal., 36(1):284-300,2004.

  23. Wendland, H., Scattered Data Approximation, Cambridge, UK: Cambridge University Press, 2004.

  24. Sussman, M., Smereka, P., and Osher, S., A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, J Comput. Phys, 114:146-159,1994.

  25. Gross, S. andReusken, A., Numerical Methods for Two-Phase Incompressible Flows, Springer Series in Computational Mathematics, Vol. 40, Berlin, Heidelberg: Springer, 2011.

  26. Brackbill, J., Kothe, D., andZemach, C., A Continuum Method for Modeling Surface Tension, J. Comput. Phys., 100(2):335-354, 1992.

  27. Osher, S. and Sethian, J., Fronts Propagating with Curvature-Dependent Speed: Algorithms based on Hamilton-Jacobi Formulations, J. Comput. Phys., 79(1):12-49, 1988.

  28. Chorin, A., Numerical Solution of the Navier-Stokes Equations, Math. Comput., 22(104):745-762, 1968.

  29. Tikhonov, A. and Arsenin, V., Solutions of Ill-Posed Problems, Scripta Series in Mathematics, Silver Spring, MD: Winston, 1977.

  30. Hansen, P.C., The Truncated SVD as a Method for Regularization, BIT Numer. Math., 27(4):534-553, 1987.

  31. Caflisch, R., Monte Carlo and Quasi-Monte Carlo Methods, Acta Numer., 7:1-49,1998.

  32. Chi, H., Mascagni, M., and Warnock, T., On the Optimal Halton Sequence, Math. Comput. Simul., 70(1):9-21, 2005.

  33. Leobacher, G. and Pillichshammer, F., Introduction to Quasi-Monte Carlo Integration and Applications, Compact Textbooks in Mathematics, Cham, Switzerland: Springer, 2014.

  34. Wang, X. and Sloan, I.H., Low Discrepancy Sequences in High Dimensions: How Well are Their Projections Distributed?, J. Comput. Appl. Math, 213(2):366-386, 2008.

  35. Fasshauer, G., Meshfree Approximation Methods with MATLAB, Interdisciplinary Mathematical Sciences, World Scientific, 2007.

  36. Tuminaro, R., Phipps, E., Miller, C., andElman, H., Assessment of Collocation and Galerkin Approaches to Linear Diffusion Equations with Random Data, Int. J. Uncertainty Quantif., 1(1):19-33,2011.

  37. Davis, P. and Rabinowitz, P., Methods of Numerical Integration, Computer Science and Applied Mathematics, New York: Academic Press, 1984.

  38. Adams, B., Bauman, L., Bohnhoff, W., Dalbey, K., Ebeida, M., Eddy, J., Eldred, M., Hough, P., Hu, K., Jakeman, J., Swiler, L., and Vigil, D., DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.4 Theory Manual, Sandia National Lab, Sandia Tech. Rep. SAND2011-9106, 2009.

  39. Nobile, F., Tempone, R., and Webster, C., An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data, SIAMJ Numer. Anal., 46(5):2411-2442, 2008.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain