ライブラリ登録: Guest
International Journal for Uncertainty Quantification

年間 6 号発行

ISSN 印刷: 2152-5080

ISSN オンライン: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

UNBIASED ESTIMATION OF THE VANILLA AND DETERMINISTIC ENSEMBLE KALMAN−BUCY FILTERS

巻 13, 発行 6, 2023, pp. 83-105
DOI: 10.1615/Int.J.UncertaintyQuantification.2023045369
Get accessGet access

要約

In this paper, we consider the development of unbiased estimators for the ensemble Kalman−Bucy filter (EnKBF). The EnKBF is a continuous-time filtering methodology, which can be viewed as a continuous-time analog of the famous discrete-time ensemble Kalman filter. Our unbiased estimators will be motivated from recent work (Rhee and Glynn, Oper. Res., 63:1026−1053, 2015) which introduces randomization as a means to produce unbiased and finite variance estimators. The randomization enters through both the level of discretization and through the number of samples at each level. Our unbiased estimator will be specific to models that are linear and Gaussian. This is due to the fact that the EnKBF itself is consistent, in the large particle limit N → ∞, with the Kalman−Bucy filter, which allows us one derive theoretical insights. Specifically, we introduce two unbiased EnKBF estimators that will be applied to two particular variants of the EnKBF, which are the deterministic and vanilla EnKBF. Numerical experiments are conducted on a linear Ornstein−Uhlenbeck process, which includes a high-dimensional example. Our unbiased estimators will be compared to the multilevel. We also provide a proof of the multilevel deterministic EnKBF, which provides a guideline for some of the unbiased methods.

参考
  1. Bain, A. and Crisan, D., Fundamentals of Stochastic Filtering, New York: Springer, 2009.

  2. Crisan, D. and Rozovskii, B., The Oxford Handbook of Nonlinear Filtering, Oxford: Oxford University Press, 2011.

  3. Jazwinski, A., Stochastic Processes and Filtering Theory, Mineola, NY: Dover Publications, 1970.

  4. Date, P. and Ponomareva, K., Linear and Nonlinear Filtering in Mathematical Finance: A Review, IMA J. Manag. Math., 22(3):195-211, 2010.

  5. Suleiman, D., Awajana, A., and Al Etaiwia,W., The Use of Hidden Markov Model in Natural ARABIC Language Processing: A Survey Author Links Open Overlay Panel, Procedia Comput. Sci., 113:240-247, 2017.

  6. Majda, A. and Wang, X., Non-Linear Dynamics and Statistical Theories for Basic Geophysical Flows, Cambridge, UK: Cambridge University Press, 2006.

  7. Oliver, D., Reynolds, A.C., and Liu, N., Inverse Theory for Petroleum Reservoir Characterization and History Matching, 1st ed., Cambridge, UK: Cambridge University Press, 2008.

  8. Chopin, N. and Papaspiliopoulos, O., An Introduction to Sequential Monte Carlo, Cham, Switzerland: Springer, 2020.

  9. Del Moral, P., Feynman-Kac Formulae, Berlin: Springer-Verlag, 2004.

  10. Evensen, G., Data Assimilation: The Ensemble Kalman Filter, Berlin: Springer, 2009.

  11. Evensen, G., Sequential Data Assimilation with a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics, J. Geophys. Res. Oceans, 99:10143-10162, 1994.

  12. Bucy, R.S., Nonlinear Filtering Theory, IEEE Trans. Autom. Control, 10:198, 1965.

  13. Bergemann, K. and Reich, S., An Ensemble Kalman-Bucy Filter for Continuous Data Assimilation, Meteorol. Zeitschrift, 21:213-219, 2012.

  14. Amezcua, J., Kalnay, E., Ide, K., and Reich, S., Ensemble Transform Kalman-Bucy Filters, Q. J. R. Meteorol. Soc., 140:995-1004, 2014.

  15. Istomin, E., Sidorenko, A., Stepanov, S., Petrov, Y., and Martyn, I., Application of Kalman-Bucy Filter for Vessel Traffic Control Systems in the Northern Sea Route, IOP Conf. Ser.: Mater. Sci. Eng., 817:012, 2020.

  16. Farias, V., Rocha, M., and Tavares, H., Application of the Kalman Filter in Functional Magnetic Resonance Image Data, Int. J. Innov. Educ. Res., 8:416-433, 2020.

  17. Rezaeyan, R., Farnoush, R., and Jamkhaneh, E.B., Application of the Kalman-Bucy Filter in the Stochastic Differential Equation for the Modeling of RL Circuit, Int. J. Nonlinear Anal. Appl., 2:35-41, 2011.

  18. Nusken, N., Reich, S., and Rozdeba, P.J., State and Parameter Estimation from Observed Signal Increments, Entropy, 21:505, 2019.

  19. Chen, N., Li, Y., and Liu, H., Conditional Gaussian Nonlinear System: A Fast Preconditioner and a Cheap Surrogate Model for Complex Nonlinear Systems, Chaos, 32:053122, 2022.

  20. Bishop, A.N. and Del Moral, P., On the Stability of Kalman-Bucy Diffusion Processes, SIAM J. Control Optim., 55(6):4015-4047, 2017.

  21. Del Moral, P. and Tugaut, J., On the Stability and the Uniform Propagation of Chaos Properties of Ensemble Kalman-Bucy Filters, Ann. Appl. Probab., 28:790-850, 2018.

  22. Del Moral, P., Kurtzmann, A., and Tugaut, J., On the Stability and the Uniform Propagation of Chaos of a Class of Extended Ensemble Kalman-Bucy Filter, SIAM J. Control Optim., 55(1):119-155, 2017.

  23. Chada, N.K., Jasra, A., and Yu, F., Multilevel Ensemble Kalman-Bucy Filters, SIAM/ASA J. Uncertain. Quantif., 10(2):584-618, 2022.

  24. Crisan, D., Del Moral, P., Jasra, A., and Ruzayqat, H., Log-Normalization Constant Estimation Using the Ensemble Kalman-Bucy Filter with Application to High-Dimensional Models, Adv. Appl. Probab., 54:1139-1163, 2022.

  25. Ruzayqat, H., Chada, N.K., and Jasra, A., Multilevel Estimation of Normalization Constants Using the Ensemble Kalman-Bucy Filter, Stat. Comput., 32:38, 2022.

  26. de Wiljes, J., Reich, S., and Stannat, W., Long-Time Stability and Accuracy of the Ensemble Kalman-Bucy Filter for Fully Observed Processes and Small Measurement Noise, SIAM J. Appl. Dyn. Syst., 17(2):1152-1181, 2018.

  27. de Wiljes, J. and Tong, X.T., Analysis of a Localized Nonlinear Ensemble Kalman Bucy Filter with Complete and Accurate Observations, Nonlinearity, 33(9):4752-4782, 2020.

  28. Glynn, P.W. and Rhee, C.H., Exact Estimation for Markov Chain Equilibrium Expectations, J. Appl. Probab., 51:377-389, 2014.

  29. Rhee, C.H. and Glynn, P., Unbiased Estimation with Square Root Convergence for SDE Models, Oper. Res., 63:1026-1043, 2015.

  30. Chada, N.K., Franks, J., Jasra, A., Law, K.J.H., and Vihola, M., Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions, SIAM/ASA J. Uncertain. Quantif., 9(2):763-787, 2021.

  31. Heng, J., Jasra, A., Law, K.J.H., and Tarakanov, A., On Unbiased Estimation for Discretized Models, SIAM/ASA J. Uncertain. Quantif., 11(2):616-645, 2023.

  32. Jasra, A., Law, K.J.H., and Yu, F., Unbiased Filtering of a Class of Partially Observed Diffusions, Adv. Appl. Probab., 54:661-687, 2022.

  33. Vihola, M., Unbiased Estimators and Multilevel Monte Carlo, Oper. Res., 66:448-462, 2018.

  34. Giles, M.B., Multilevel Monte Carlo Path Simulation, Oper. Res., 56:607-617, 2008.

  35. Giles, M.B., Multilevel Monte Carlo Methods, Acta Numer., 24:259-328, 2015.

  36. Hoel, H., Law, K.J.H., and Tempone, R., Multilevel Ensemble Kalman Filtering, SIAM J. Numer. Anal., 54(3):1813-1839, 2016.

  37. Jasra, A., Kamatani, K., Law, K.J.H., and Zhou, Y., Multilevel Particle Filters, SIAM J. Numer. Anal., 55(6):3068-3096, 2017.

  38. Surace, S.C., Kutschireiter, A., and Pfister, J.-P., How to Avoid the Curse of Dimensionality: Scalability of Particle Filters with and without Importance Weights, SIAM Rev., 61:79-91, 2019.

  39. Hendrich, S., Multilevel Monte Carlo Methods Large-Scale Scientific Computing, 3rd Int. Conf., LSSC 2001, Sozopol, Bulgaria, pp. 58-67, 2001.

  40. McLeish, D., A General Method for Debiasing a Monte Carlo Estimator, Monte Carlo Methods Appl., 17(4):301-315, 2011.

  41. Law, K.J.H., Tembine, H., and Tempone, R., Deterministic Mean-Field Ensemble Kalman Filtering, SIAM J. Sci. Comput., 38(3):A1251-A1279, 2016.

  42. Anderson, J.L., Exploring the Need for Localization in Ensemble Data Assimilation Using a Hierarchical Ensemble Filter, Phys. D, 230(1):99-111, 2007.

  43. Hamill, T.M., Whitaker, J.S., and Snyder, C., Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensemble Kalman Filter, Mon. Weather Rev., 129(11):2776-2790, 2001.

  44. Greybush, S.J., Kalnay, E., Miyoshi, T., Ide, K., and Hunt, B.R., Balance and Ensemble Kalman Filter Localization Techniques, Mon. Weather Rev., 139(2):511-522, 2010.

  45. Ott, E., Hunt, B.R., Szunyogh, I., Zimin, A.V., Kostelich,E.J., Corazza, M., Kalnay, E., Patil, D.J., and Yorke, J.A., A Local Ensemble Kalman Filter for Atmospheric Data Assimilation, Tellus A: Dyn. Meteorol. Oceanogr., 56(5):415-428, 2004.

  46. Szunyogh, I., Kostelich, E.J., Gyarmati, G., Kalnay, E., Hunt, B.R., Ott, E., Satterfield, E., and Yorke, J.A., A Local Ensemble Transform Kalman Filter Data Assimilation System for the NCEP Global Model, Tellus A: Dyn. Meteorol. Oceanogr., 60(1):113130, 2008.

  47. Chada, N.K., Stuart, A.M., and Tong, X.T., Tikhonov Regularization within Ensemble Kalman Inversion, SIAM J. Numer. Anal., 58(2):1263-1294, 2020.

  48. Iglesias, M.A., Law, K.J.H., and Stuart, A.M., Ensemble Kalman Methods for Inverse Problems, Inv. Probl., 29:045001, 2013.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain