ライブラリ登録: Guest
Journal of Flow Visualization and Image Processing

年間 4 号発行

ISSN 印刷: 1065-3090

ISSN オンライン: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

CONVOLUTIONAL NEURAL NETWORKS FOR PROBLEMS IN TRANSPORT PHENOMENA: A THEORETICAL MINIMUM

巻 30, 発行 3, 2023, pp. 1-38
DOI: 10.1615/JFlowVisImageProc.2022043908
Get accessGet access

要約

Convolutional neural network (CNN), a deep learning algorithm, has gained popularity in technological applications that rely on interpreting images (typically, an image is a 2D field of pixels). Transport phenomena is the science of studying different fields representing mass, momentum, or heat transfer. Some of the common fields are species concentration, fluid velocity, pressure, and temperature. Each of these fields can be expressed as an image(s). Consequently, CNNs can be leveraged to solve specific scientific problems in transport phenomena. Herein, we show that such problems can be grouped into three basic categories: (a) mapping a field to a descriptor (b) mapping a field to another field, and (c) mapping a descriptor to a field. After reviewing the representative transport phenomena literature for each of these categories, we illustrate the necessary steps for constructing appropriate CNN solutions using sessile liquid drops as an exemplar problem. If sufficient training data is available, CNNs can considerably speed up the solution of the corresponding problems. The present discussion is meant to be minimalistic such that readers can easily identify the transport phenomena problems where CNNs can be useful as well as construct and/or assess such solutions.

参考
  1. Abadi, A., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V, Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X., Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv:1603.04467, 2016a. DOI: 10.48550/arXiv.1603.04467.

  2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., and Isard, M., {TensorFlow}: A System for {Large-Scale} Machine Learning, 12th USENIXSymposium on Operating Systems Design and Implementation (OSDI16), Savannah, GA, pp. 265-283, 2016b.

  3. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., and Tan, R.S., A Deep Convolutional Neural Network Model to Classify Heartbeats, Comput. Biol. Med, vol. 89, pp. 389-96, 2017. DOI: 10.1016/j.compbiomed.2017.08.022.

  4. Ahmad, Z., Xie, T., Maheshwari, C., Grossman, J.C., and Viswanathan, V., Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes, ACS Cent. Sci., vol. 4, no. 8, pp. 996-1006, 2018. DOI: 10.1021/acscentsci.8b00229.

  5. Alexander, F., Almgren, A., Bell, J., Bhattacharjee, A., Chen, J., Colella, P., Daniel, D., DeSlippe, J., Diachin, L., Draeger, E., Dubey, A., Dunning, T., Evans, T., Foster, I., Francois, M., Germann, T., Gordon, M., Habib, S., Halappanavar, M., Hamilton, S., Hart, W., Huang, Z., Hungerford, A., Kasen, S., Kent, P., Kolev, T., Kothe, D.B., Kronfeld, A., Luo, Y., Mackenzie, P., McCallen, D., Messer, B., Mniszewski, S., Oehmen, C., Perazzo, A., Perez, D., Richards, D., Rider, W.J., Rieben, R., Roche, K., Siegel, A., Sprague, M., Steefel, C., Stevens, R., Syamlal, M., Taylor, M., Turner, J., Vay, J.-L., Voter, A.F., Windus, T.L., and Yelick, K., Exascale Applications: Skin in the Game, Philos. Trans. Roy. Soc. A, vol. 378, no. 2166, p. 20190056, 2020. DOI: 10.1098/rsta.2019.0056.

  6. Andreotti, B. and Snoeijer, J.H., Statics and Dynamics of Soft Wetting, Ann. Rev. FluidMech., vol. 52, no. 1, pp. 285-308, 2020. DOI: 10.1146/annurev-fluid-010719-060147.

  7. Bazai, H., Kargar, E., and Mehrabi, M., Using an Encoder-Decoder Convolutional Neural Network to Predict the Solid Holdup Patterns in a Pseudo-2D Fluidized Bed, Chem. Eng. Sci., vol. 246, p. 116886, 2021. DOI: 10.1016/j.ces.2021.116886.

  8. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, Hoboken, NJ: John Wiley & Sons, 2002.

  9. Bishop, C.M., Pattern Recognition and Machine Learning, Berlin: Springer, 2006.

  10. Brenner, M.P., Eldredge, J.D., and Freund, J.B., Perspective on Machine Learning for Advancing Fluid Mechanics, Phys. Rev. Fluids, vol. 4, no. 10, p. 100501, 2019. DOI: 10.1103/PhysRevFluids.4.100501.

  11. Brunton, S.L., Hemati, M.S., and Taira, K., Special Issue on Machine Learning and Data-Driven Methods in Fluid Dynamics, Theor. Comput. Fluid Dyn., vol. 34, no. 4, pp. 333-37, 2020a. DOI: 10.1007/ s00162-020-00542-y.

  12. Brunton, S.L., Noack, B.R., and Koumoutsakos, P., Machine Learning for Fluid Mechanics, Annu. Rev. FluidMech, vol. 52, no. 1, pp. 477-508, 2020b. DOI: 10.1146/annurev-fluid-010719-060214.

  13. Buzzicotti, M., Bonaccorso, F., di Leoni, P.C., and Biferale, L., Reconstruction of Turbulent Data with Deep Generative Models for Semantic Inpainting from TURB-Rot Database, Phys. Rev. Fluids, vol. 6, no. 5, p. 50503, 2021. DOI: 10.1103/PhysRevFluids.6.050503.

  14. Cai, S., Mao, Z., Wang, Z., Yin, M., and Karniadakis, G.E., Physics-Informed Neural Networks (PINNs) for Fluid Mechanics: A Review, Acta Mech. Sin., vol. 37, pp. 1727-1738, 2022. DOI: 10.1007/s10409-021-01148-1.

  15. Cai, S., Zhou, S., Xu, C., and Gao, Q., Dense Motion Estimation of Particle Images via a Convolutional Neural Network, Exp. Fluids, vol. 60, no. 4, p. 73, 2019. DOI: 10.1007/s00348-019-2717-2.

  16. Cheng, M., Fang, F., Pain, C.C., and Navon, I.M., Data-Driven Modelling of Nonlinear Spatio-Temporal Fluid Flows Using a Deep Convolutional Generative Adversarial Network, Comput. Methods Appl. Mech. Eng., vol. 365, p. 113000, 2020. DOI: 10.1016/j.cma.2020.113000.

  17. da Wang, Y., Chung, T., Armstrong, R.T., and Mostaghimi, P., ML-LBM: Predicting and Accelerating Steady State Flow Simulation in Porous Media with Convolutional Neural Networks, Transp. Porous Media, vol. 138, no. 1, pp. 49-75, 2021. DOI: 10.1007/s11242-021-01590-6.

  18. Dmitrii, K., Smith, J.A., Ayya, A., Qing, W., Brenner, M.P., and Hoyer, S., Machine Learning-Accelerated Computational Fluid Dynamics, Proc. Natl. Acad. Sci., vol. 118, no. 21, p. e2101784118, 2021. DOI: 10.1073/pnas.2101784118.

  19. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der Smagt, P., Cremers, D., and Brox, T., Flownet: Learning Optical Flow with Convolutional Networks, Proc. of IEEE Int. Conf. on Computer Vision, Santiago, Chile, pp. 2758-2766, 2015.

  20. Drygala, C., Winhart, B., di Mare, F., and Gottschalk, H., Generative Modeling of Turbulence, Phys. Fluids, vol. 34, no. 3, p. 035114, 2022. DOI: 10.1063/5.0082562.

  21. Dumoulin, V. and Visin, F., A Guide to Convolution Arithmetic for Deep Learning, arXiv:1603.07285, 2016. DOI: 10.48550/arXiv. 1603.07285.

  22. Duraisamy, K., Perspectives on Machine Learning-Augmented Reynolds-Averaged and Large Eddy Simulation Models of Turbulence, Phys. Rev. Fluids, vol. 6, no. 5, p. 50504, 2021. DOI: 10.1103/PhysRev-Fluids.6.050504.

  23. Ebner, M. and Wood, V., Tool for Tortuosity Estimation in Lithium Ion Battery Porous Electrodes, J. Electrochem. Soc., vol. 162, no. 2, pp. A3064-70, 2015. DOI: 10.1149/2.0111502jes.

  24. Edalatifar, M., Tavakoli, M.B., Ghalambaz, M., and Setoudeh, F., Using Deep Learning to Learn Physics of Conduction Heat Transfer, J. Therm. Anal. Calorim., vol. 146, no. 3, pp. 1435-52, 2021. DOI: 10.1007/s10973-020-09875-6.

  25. Eigen, D., Puhrsch, C., and Fergus, R., Depth Map Prediction from a Single Image Using a Multi-Scale Deep Network, Adv. Neural Inf. Process. Syst., vol. 27, 2014.

  26. Ferraro, M.E., Trembacki, B.L., Brunini, V.E., Noble, D.R., and Roberts, S.A., Electrode Mesoscale as a Collection of Particles: Coupled Electrochemical and Mechanical Analysis of NMC Cathodes, J. Electrochem. Soc., vol. 167, no. 1, p. 013543, 2020. DOI: 10.1149/1945-7111/ab632b.

  27. Fukami, K., Maulik, R., Ramachandra, N., Fukagata, K., and Taira, K., Global Field Reconstruction from Sparse Sensors with Voronoi Tessellation-Assisted Deep Learning, Nat. Mach. Intell., vol. 3, no. 11, pp. 945-51, 2021. DOI: 10.1038/s42256-021-00402-2.

  28. Fukami, K., Nakamura, T., and Fukagata, K., Convolutional Neural Network Based Hierarchical Autoencoder for Nonlinear Mode Decomposition of Fluid Field Data, Phys. Fluids, vol. 32, no. 9, p. 095110, 2020. DOI: 10.1063/5.0020721.

  29. Fukushima, K., Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position, Biol. Cybern., vol. 36, no. 4, pp. 193-202, 1980. DOI: 10.1007/BF00344251.

  30. Gao, H., Sun, L., and Wang, J.-X., Super-Resolution and Denoising of Fluid Flow Using Physics-Informed Convolutional Neural Networks without High-Resolution Labels, Phys. Fluids, vol. 33, no. 7, p. 073603, 2021. DOI: 10.1063/5.0054312.

  31. Garnier, P., Viquerat, J., Rabault, J., Larcher, A., Kuhnle, A., and Hachem, E., A Review on Deep Reinforcement Learning for Fluid Mechanics, Comput. Fluids, vol. 225, p. 104973, 2021. DOI: 10.1016/j. compfluid.2021.104973.

  32. Gayon-Lombardo, A., Mosser, L., Brandon, N.P., and Cooper, S.J., Pores for Thought: Generative Adver-sarial Networks for Stochastic Reconstruction of 3D Multi-Phase Electrode Microstructures with Periodic Boundaries, NPJComput. Mater., vol. 6, no. 1, p. 82, 2020. DOI: 10.1038/s41524-020-0340-7.

  33. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, Cambridge, MA: MIT Press, 2016.

  34. Gu, J., Wang, Z., Keun, J., Ma, L., Shahroudy, A.. Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., and Chen, T., Recent Advances in Convolutional Neural Networks, Pattern Recog., vol. 77, pp. 354-77, 2018. DOI: 10.1016/j.patcog.2017.10.013.

  35. Guastoni, L., Encinar, M.P., Schlatter, P., Azizpour, H., and Vinuesa, R., Prediction of Wall-Bounded Turbulence from Wall Quantities Using Convolutional Neural Networks, J. Phys. Conf. Ser., vol. 1522, no. 1, p. 012022, 2020. DOI: 10.1088/1742-6596/1522/1/012022.

  36. Guo, X., Li, W., and Iorio, F., Convolutional Neural Networks for Steady Flow Approximation, Proc. of 22nd ACMSIGKDD Int. Conf. Knowledge Discovery and Data Mining, New York, NY, pp. 481-90, 2016.

  37. Gupta, S., Girshick, R., Arbelaez, P., and Malik, J., Learning Rich Features from RGB-D Images for Object Detection and Segmentation, Computer Vision - ECCV2014, Zurich, pp. 345-60, 2014.

  38. Han, R., Wang, Y., Zhang, Y., and Chen, G., A Novel Spatial-Temporal Prediction Method for Unsteady Wake Flows Based on Hybrid Deep Neural Network, Phys. Fluids, vol. 31, no. 12, p. 127101, 2019. DOI: 10.1063/1.5127247.

  39. He, K., Zhang, X., Ren, S., and Sun, J., Deep Residual Learning for Image Recognition, Proc. of IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, pp. 770-78, 2016.

  40. Heenan, T.M.M., Tan, C., Hack, J., Brett, D.J.L., and Shearing, P.R., Developments in X-Ray Tomography Characterization for Electrochemical Devices,Mater. Today, vol. 31, pp. 69-85, 2019. DOI: 10.1016/j. mattod.2019.05.019.

  41. Hein, S., Danner, T., Westhoff, D., Prifling, B., Scurtu, R., Kremer, L., Hoffmann, A., Hilger, A., Osenberg, M., Manke, I., Wohlfahrt-Mehrens, M., Schmidt, V., and Latz, A., Influence of Conductive Additives and Binder on the Impedance of Lithium-Ion Battery Electrodes: Effect of Morphology, J. Electrochem. Soc., vol. 167, no. 1, p. 013546, 2020. DOI: 10.1149/1945-7111/ab6b1d.

  42. Hinton, G.E. and Salakhutdinov, R.R., Reducing the Dimensionality of Data with Neural Networks, Science, vol. 313, no. 5786, pp. 504-7, 2006. DOI: 10.1126/science.1127647.

  43. Houchins, G. and Viswanathan, V., An Accurate Machine-Learning Calculator for Optimization of Li-Ion Battery Cathodes, Chem. Phys., vol. 153, no. 5, p. 54124, 2020. DOI: 10.1063/5.0015872.

  44. Ioffe, S. and Szegedy, C., Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Int. Conf. Machine Learning, PMLR, Lille, France, pp. 448-56, 2015.

  45. Ishikawa, S., Liu, X., Noh, T.H., So, M., Park, K., Kimura, N., Inoue, G., and Tsuge, Y., Simulation to Estimate the Correlation of Porous Structure Properties of Secondary Batteries Determined through Machine Learning, J. Power Sources Adv., vol. 15, p. 100094, 2022. DOI: 10.1016/j.powera.2022.100094.

  46. Jin, K.H., McCann, M.T., Froustey, E., and Unser, M., Deep Convolutional Neural Network for Inverse Problems in Imaging, IEEE Trans. Image Processing, vol. 26, no. 9, pp. 4509-22, 2017. DOI: 10.1109/ TIP.2017.2713099.

  47. Kavehpour, P., Ovryn, B., and McKinley, G.H., Evaporatively-Driven Marangoni Instabilities of Volatile Liquid Films Spreading on Thermally Conductive Substrates, Colloids Surf. A. Physicochem. Eng. Asp., vol. 206, nos. 1-3, pp. 409-23, 2002. DOI: 10.1016/S0927-7757(02)00064-X.

  48. Kench, S. and Cooper, S.J., Generating Three-Dimensional Structures from a Two-Dimensional Slice with Generative Adversarial Network-Based Dimensionality Expansion, Nat. Mach. Intell., vol. 3, no. 4, pp. 299-305, 2021. DOI: 10.1038/s42256-021-00322-1.

  49. Khened, M., Kori, A., Rajkumar, H., Krishnamurthi, G., and Srinivasan, B., A Generalized Deep Learning Framework for Whole-Slide Image Segmentation and Analysis, Sci. Rep., vol. 11, no. 1, p. 11579, 2021. DOI: 10.1038/s41598-021-90444-8.

  50. Kingma, D.P. and Ba, J., Adam: A Method for Stochastic Optimization, arXiv:1412.6980, 2014. DOI: 10.48550/arXiv.1412.6980.

  51. Kreyszig, E., Advanced Engineering Mathematics, 10e, 2005.

  52. Krizhevsky, A., Nair, V., and Hinton, G., The CIFAR-10 Dataset, accessed January 31, 2022, from https://www.cs.toronto.edu/~kriz/cifar.html, 2009.

  53. Krizhevsky, A., Sutskever, I., and Hinton, G.E., Imagenet Classification with Deep Convolutional, Commun.ACS, vol. 60, pp. 84-90, 2017.

  54. Krygier, M.C., LaBonte, T., Martinez, C., Norris, C., Sharma, K., Collins, L.N., Mukherjee, P.P., and Roberts, S.A., Quantifying the Unknown Impact of Segmentation Uncertainty on Image-Based Simulations, Nat. Commun, vol. 12, no. 1, p. 5414, 2021. DOI: 10.1038/s41467-021-25493-8.

  55. Kutz, J.N., Deep Learning in Fluid Dynamics, J. FluidMech., vol. 814, pp. 1-4, 2017. DOI: DOI: 10.1017/jfm.2016.803.

  56. Lawrence, S., Giles, C.L., Tsoi, A.C., and Back, A.D., Face Recognition: A Convolutional Neural-Network Approach, IEEE Trans. Neural Netw., vol. 8, no. 1, pp. 98-113, 1997. DOI: 10.1109/72.554195.

  57. Leal, L.G., Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Cambridge, UK: Cambridge University Press, pp. 1-912, 2007.

  58. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., and Jackel, L.D., Back-propagation Applied to Handwritten Zip Code Recognition, Neural Comput., vol. 1, no. 4, pp. 541-51, 1989. DOI: 10.1162/neco.1989.1.4.541.

  59. LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-Based Learning Applied to Document Recognition, Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, 1998a. DOI: 10.1109/5.726791.

  60. LeCun, Y., Cortes, C., and Burges, C.J.C., The MNISTDatabase of Handwritten Digits, accessed January 31, 2022, from http://yann.lecun.com/exdb/mnist/, 1998b.

  61. Ledwon, D., Sage, A., Juszczyk, J., Rudzki, M., and Badura, P., Tomographic Reconstruction from Planar Thermal Imaging using Convolutional Neural Network, Sci. Rep., vol. 12, no. 1, p. 2347, 2022. DOI: 10.1038/s41598-022-06076-z.

  62. Li, Z., Liu, F., Yang, W., Peng, S., and Zhou, J., A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects, IEEE Trans. NeuralNetw, pp. 1-21, 2021. DOI: 10.1109/TNNLS.2021.3084827.

  63. Ling, J., Kurzawski, A., and Templeton, J., Reynolds Averaged Turbulence Modeling Using Deep Neural Networks with Embedded Invariance, J. FluidMech, vol. 807, pp. 155-66, 2016. DOI: 10.1017/jfm.2016.615.

  64. Liu, B., Tang, J., Huang, H., and Lu, X.-Y., Deep Learning Methods for Super-Resolution Reconstruction of Turbulent Flows, Phys. Fluids, vol. 32, no. 2, p. 025105, 2020a. DOI: 10.1063/1.5140772.

  65. Liu, T., Li, Y., Jing, Q., Xie, Y., and Zhang, D., Supervised Learning Method for the Physical Field Reconstruction in a Nanofluid Heat Transfer Problem, Int. J. Heat Mass Transf., vol. 165, p. 120684, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020b.120684.

  66. Lopez-Martin, M., le Clainche, S., and Carro, B., Model-Free Short-Term Fluid Dynamics Estimator with a Deep 3D-Convolutional Neural Network, Expert Syst. Appl., vol. 177, p. 114924, 2021. DOI: 10.1016/j.eswa.2021.114924.

  67. Marcato, A., Boccardo, G., and Marchisio, D., From Computational Fluid Dynamics to Structure Interpretation via Neural Networks: An Application to Flow and Transport in Porous Media, Ind. Eng. Chem. Res., 2022. DOI: 10.1021/acs.iecr.1c04760.

  68. Mendible, A., Koch, J., Lange, H., Brunton, S.L., and Kutz, J.N., Data-Driven Modeling of Rotating Detonation Waves, Phys. Rev. Fluids, vol. 6, no. 5, p. 50507, 2021. DOI: 10.1103/PhysRevFluids.6.050507.

  69. Mistry, A., Franco, A.A., Cooper, S.J., Roberts, S.A., and Viswanathan, V., How Machine Learning Will Revolutionize Electrochemical Sciences, ACS Energy Lett., vol. 6, no. 4, pp. 1422-1431, 2021a. DOI: 10.1021/acsenergylett.1c00194.

  70. Mistry, A. and Mukherjee, P.P., Deconstructing Electrode Pore Network to Learn Transport Distortion, Phys. Fluids, vol. 31, no. 12, p. 122005, 2019. DOI: 10.1063/1.5124099.

  71. Mistry, A. and Muralidhar, K., Spreading of a Pendant Liquid Drop underneath a Textured Substrate, Phys. Fluids, vol. 30, no. 4, 2018. DOI: 10.1063/1.5012921.

  72. Mistry, A. and Muralidhar, K., Spreading of Sessile and Pendant Drops on Partially Wetting Surfaces, in Drop Dynamics and Dropwise Condensation on Textured Surfaces, S. Khandekar and K. Muralidhar, Eds., Cham: Springer International Publishing, pp. 41-80, 2020.

  73. Mistry, A.N., Smith, K., and Mukherjee, P.P., Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes, ACS Appl. Mater. Interfaces, vol. 10, no. 7, pp. 6317-6326, 2018. DOI: 10.1021/acsami.7b17771.

  74. Mistry, A.N., Usseglio-Viretta, F.L.E., Colclasure, A.M., Smith, K., and Mukherjee, P.P., Fingerprinting Redox Heterogeneity in Electrodes during Extreme Fast Charging, J. Electrochem. Soc., vol. 167, no. 9, p. 090542, 2020. DOI: 10.1149/1945-7111/ab8fd7.

  75. Mistry, A., Verma, A., Sripad, S., Ciez, R., Sulzer, V., Brosa Planella, F., Timms, R., Zhang, Y., Kurchin, R., Dechent, P., Li, W., Greenbank, S., Ahmad, Z., Krishnamurthy, D., Fenton Jr., A.M., Tenny, K., Patel, P., Juarez-Robles, D., Gasper, P., Colclasure, A., Baskin, A., Scown, C.D., Subramanian, V.R., Khoo, E., Allu, S., Howey, D., DeCaluwe, S., Roberts, S., and Viswanathan, V., A Minimal Information Set to Enable Verifiable Theoretical Battery Research, ACS Energy Lett., vol. 6, no. 11, pp. 3831-3835, 2021b. DOI: 10.1021/acsenergylett.1c01710.

  76. Mohan, A.T., Lubbers, N., Livescu, D., and Chertkov, M., Embedding Hard Physical Constraints in Neural Network Coarse-Graining of 3D Turbulence, arXiv:2002.00021, 2020. DOI: 10.48550/ arXiv.2002.00021.

  77. Morimoto, M., Fukami, K., Zhang, K., Nair, A.G., and Fukagata, K., Convolutional Neural Networks for Fluid Flow Analysis: Toward Effective Metamodeling and Low Dimensionalization, Theor. Comput. FluidDyn., vol. 35, no. 5, pp. 633-658, 2021. DOI: 10.1007/s00162-021-00580-0.

  78. Muller, S., Sauter, C., Shunmugasundaram, R., Wenzler, N., de Andrade, V., Carlo, F. de, Konukoglu, E., and Wood, V., Deep Learning-Based Segmentation of Lithium-Ion Battery Microstructures Enhanced by Artificially Generated Electrodes, Nat. Commun., vol. 12, no. 1, p. 6205, 2021. DOI: 10.1038/ s41467-021-26480-9.

  79. Muralidhar, K. and Banerjee, J., Conduction and Radiation, Oxford, UK: Alpha Science International, 2010.

  80. Muralidhar, K. and Biswas, G., Advanced Engineering Fluid Mechanics, Oxford, UK: Alpha Science Int'l Ltd., 2005.

  81. Murphy, K.P., Machine Learning: A Probabilistic Perspective, Cambridge, MA: MIT Press, 2012.

  82. Nakamura, T., Fukami, K., Hasegawa, K., Nabae, Y., and Fukagata, K., Convolutional Neural Network and Long Short-Term Memory Based Reduced Order Surrogate for Minimal Turbulent Channel Flow, Phys. Fluids, vol. 33, no. 2, p. 025116, 2021. DOI: 10.1063/5.0039845.

  83. Ogoke, F., Meidani, K., Hashemi, A., and Farimani, A.B., Graph Convolutional Neural Networks for Body Force Prediction, arXiv:2012.02232, 2020. DOI: 10.48550/arXiv.2012.02232.

  84. O'Shea, K. and Nash, R., An Introduction to Convolutional Neural Networks, arXiv:1511.08458, 2015.

  85. DOI: 10.48550/arXiv. 1511.08458 Osher, S., Fedkiw, R., and Piechor, K., Level Set Methods and Dynamic Implicit Surfaces, Applied Mechanics Reviews, New York: Springer, 2004.

  86. Ozisik, M., Orlande, H., and Kassab, A., Inverse Heat Transfer: Fundamentals and Applications, Applied Mechanics Reviews, Boca Raton, FL: CRC Press, 2002.

  87. Patankar, S., Numerical Heat Transfer and Fluid Flow, London: Taylor & Francis, 1980.

  88. Pate, C.M., Hart, J.L., and Taheri, M.L., RapidEELS: Machine Learning for Denoising and Classification in Rapid Acquisition Electron Energy Loss Spectroscopy, Sci. Rep., vol. 11, no. 1, p. 19515, 2021. DOI: 10.1038/s41598-021-97668-8.

  89. Pawar, S. and San, O., Data Assimilation Empowered Neural Network Parametrizations for Subgrid Processes in Geophysical Flows, Phys. Rev. Fluids, vol. 6, no. 5, p. 50501, 2021. DOI: 10.1103/PhysRevFluids.6.050501.

  90. Pearl, J. and Mackenzie, D., The Book of Why: The New Science of Cause and Effect, New York: Basic Books, 2018.

  91. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V., Scikit-Learn: Machine Learning in Python, J. Mach. Learn. Res., vol. 12, pp. 2825-30, 2011.

  92. Peng, J.-Z., Chen, S., Aubry, N., Chen, Z.-H., and Wu, W.-T., Time-Variant Prediction of Flow over an Airfoil using Deep Neural Network, Phys. Fluids, vol. 32, no. 12, p. 123602, 2020. DOI: 10.1063/5.0022222.

  93. Pietsch, P. and Wood, V., X-Ray Tomography for Lithium Ion Battery Research: A Practical Guide, Ann. Rev. Mater. Res., vol. 47, no. 1, pp. 451-79, 2017. DOI: 10.1146/annurev-matsci-070616-123957.

  94. Pozrikidis, C., Fluid Dynamics: Theory, Computation, and Numerical Simulation, Berlin: Springer, 2016.

  95. Raissi, M., Perdikaris, P., and Karniadakis, G.E., Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations, J. Comput. Phys., vol. 378, pp. 686-707, 2019. DOI: 10.1016/j.jcp.2018.10.045.

  96. Raissi, M. and Karniadakis, G.E., Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations, J. Comput. Phys., vol. 357, pp. 125-41, 2018. DOI: 10.1016/j.jcp.2017.11.039.

  97. Rajabi, M.M., Hajizadeh Javaran, M.R., Bah, A., Frey, G., le Ber, F., Lehmann, F., and Fahs, M., Analyzing the Efficiency and Robustness of Deep Convolutional Neural Networks for Modeling Natural Convection in Heterogeneous Porous Media, Int. J. Heat Mass Transf., vol. 183, p. 122131, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122131.

  98. Ribeiro, M.D., Rehman, A., Ahmed, S., and Dengel, A., DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep Convolutional Neural Networks, arXiv:2004.08826, 2020. DOI: 10.48550/arXiv.2004.08826.

  99. Ruiter, R. de, Colinet, P., Brunet, P., Snoeijer, J.H., and Gelderblom, H., Contact Line Arrest in Solidifying Spreading Drops, Phys. Rev. Fluids, vol. 2, no. 4, p. 43602, 2017. DOI: 10.1103/PhysRevFluids.2. 043602.

  100. Shahane, S., Kumar, P., and Vanka, S.P., Sensitivity Analysis of Lift and Drag Coefficients for Flow over Elliptical Cylinders of Arbitrary Aspect Ratio and Angle of Attack Using Neural Network, arXiv:2012.10768, 2020. DOI: 10.48550/arXiv.2012.10768.

  101. Shearing, P.R., Brett, D.J.L., and Brandon, N.P., Towards Intelligent Engineering of SOFC Electrodes: A Review of Advanced Microstructural Characterisation Techniques, Int. Mater. Rev., vol. 55, no. 6, pp. 347-63, 2010. DOI: 10.1179/095066010X12777205875679.

  102. Siddani, B., Balachandar, S., and Fang, R., Rotational and Reflectional Equivariant Convolutional Neural Network for Data-Limited Applications: Multiphase Flow Demonstration, Phys. Fluids, vol. 33, no. 10, p. 103323, 2021. DOI: 10.1063/5.0066049.

  103. Simonyan, K. and Zisserman, A., Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv:1409.1556, 2015. DOI: 10.48550/arXiv.1409.1556.

  104. Srinivasan, B. and Krishnamurthi, G., Machine Learningfor Engineering and Science Applications - an NPTEL Course, accessed January 31, 2022, from https://onlinecourses.nptel.ac.in/noc19_cs82/preview, 2019.

  105. Su, Z., Decenciere, E., Nguyen, T.-T., El-Amiry, K., de Andrade, V., Franco, A.A., and Demortiere, A., Artificial Neural Network Approach for Multiphase Segmentation of Battery Electrode Nano-CT Images, NPJ Comput. Mater, vol. 8, no. 1, p. 30, 2022. DOI: 10.1038/s41524-022-00709-7.

  106. Suh, Y., Bostanabad, R., and Won, Y., Deep Learning Predicts Boiling Heat Transfer, Sci. Rep., vol. 11, no. 1, p. 5622, 2021. DOI: 10.1038/s41598-021-85150-4.

  107. Sun, L. and Wang, J.-X., Physics-Constrained Bayesian Neural Network for Fluid Flow Reconstruction with Sparse and Noisy Data, Theor. Appl. Mech. Lett., vol. 10, no. 3, pp. 161-69, 2020. DOI: 10.1016/j. taml.2020.01.031.

  108. Susskind, L., The Theoretical Minimum, accessed January 31, 2022, from https://theoreticalminimum.com/, 2022.

  109. Susskind, L. and Hrabovsky, G., The Theoretical Minimum: What You Need to Know to Start Doing Physics, New York: Basic Books, 2014.

  110. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A., Going Deeper with Convolutions, Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, pp. 1-9, 2015.

  111. Szymanski, N.J., Bartel, C.J., Zeng, Y., Tu, Q., and Ceder, G., Probabilistic Deep Learning Approach to Automate the Interpretation of Multi-Phase Diffraction Spectra, Chem. Mater., vol. 33, no. 11, pp. 4204-4215, 2021. DOI: 10.1021/acs.chemmater.1c01071.

  112. Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M., Deep End2End Voxel2Voxel Prediction, Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, pp. 17-24, 2016.

  113. Tryggvason, G., Scardovelli, R., and Zaleski, S., Direct Numerical Simulations of Gas-Liquid Multiphase Flows, Cambridge, UK: Cambridge University Press, 2011.

  114. Visin, F. and Dumoulin, V., Convolution Arithmetic, accessed January 31, 2022, from https://github.com/ vdumoulin/conv_arithmetic/blob/master/README.md, 2019.

  115. Wang, J., Zhang, N., Chen, J., Su, G., Yao, H., Ho, T.-Y., and Sun, L., Predicting the Fluid Behavior of Random Microfluidic Mixers Using Convolutional Neural Networks, Lab Chip, vol. 21, no. 2, pp. 296-309, 2021. DOI: 10.1039/D0LC01158D.

  116. Wu, P., Sun, J., Chang, X., Zhang, W., Arcucci, R., Guo, Y., and Pain, C.C., Data-Driven Reduced Order Model with Temporal Convolutional Neural Network, Comput. Methods in Appl. Mech. Eng., vol. 360, p. 112766, 2020. DOI: 10.1016/j.cma.2019.112766.

  117. Xu, L., Ren, J.S., Liu, C., and Jia, J., Deep Convolutional Neural Network for Image Deconvolution, Adv. Neural Inf. Process. Syst. , vol. 27, 2014.

  118. Xu, M., Song, S., Sun, X., and Zhang, W., A Convolutional Strategy on Unstructured Mesh for the Adjoint Vector Modeling, Phys. Fluids, vol. 33, no. 3, p. 036115, 2021. DOI: 10.1063/5.0044093.

  119. Ye, S., Zhang, Z., Song, X., Wang, Y., Chen, Y., and Huang, C., A Flow Feature Detection Method for Modeling Pressure Distribution around a Cylinder in Non-Uniform Flows by Using a Convolutional Neural Network, Sci. Rep., vol. 10, no. 1, p. 4459, 2020. DOI: 10.1038/s41598-020-61450-z.

  120. Yu, C., Bi, X., Fan, Y., Han, Y., and Kuai, Y., LightPIVNet: An Effective Convolutional Neural Network for Particle Image Velocimetry, IEEE Trans. Instrum. Meas., vol. 70, pp. 1-15, 2021. DOI: 10.1109/ TIM.2021.3082313.

  121. Zhang, K., Nguyen, T.-T., Su, Z., and Demortiere, A., Self-Supervised Image Quality Assessment for X-Ray Tomographic Images of Li-Ion Battery, Npj Comput. Mater., vol. 8, no. 1, p. 194, 2022. DOI: 10.1038/ s41524-022-00870-z.

  122. Zhu, F., Chen, J., and Han, Y., A Multiple Regression Convolutional Neural Network for Estimating Multi-Parameters Based on Overall Data in the Inverse Heat Transfer Problem, J. Therm. Sci. Eng., vol. 14, no. 5, 2021. DOI: 10.1115/1.4051841.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain