ライブラリ登録: Guest
Journal of Machine Learning for Modeling and Computing

年間 4 号発行

ISSN 印刷: 2689-3967

ISSN オンライン: 2689-3975

Indexed in

ASSESSMENT OF NEUROIMAGING DATA AND IDENTIFICATION OF ALZHEIMER'S DISEASE USING EXTREME LEARNING MACHINES

巻 4, 発行 1, 2023, pp. 77-93
DOI: 10.1615/JMachLearnModelComput.2023048413
Get accessDownload

要約

Alzheimer's disease (AD), one of the most common forms of dementia, is a cognitive disorder that is progressive in nature and causes a dynamic deterioration of the mental state of an individual. It severely damages the brain cells, neurotransmitters, and nerves, leading to irreparable damage to the brain, which is one of the major causes of dementia. Early identification, assessment, and timely diagnosis are of paramount importance to slow down the progression of the disease, which calls for the design and development of algorithms and technology-aided tools for accurate detection, diagnosis, and prediction of the severity of Alzheimer's disease. To provide a solution to this, we propose an extreme learning machine (ELM) algorithm that is trained on neuroimaging data from longitudinal MRI scans obtained from the OASIS database. We adopt an extensive feature engineering pipeline to choose the most significant features for early identification of the onset of dementia. We obtain an overall accuracy of 98.3%, sensitivity of 0.956, specificity of 0.962, and F1 score of 0.972. We also show that our proposed ELM algorithm outperforms several other contemporary classifiers based on a range of evaluation metrics. The paper also provides a feasibility analysis of the proposed model for real-time clinical deployment.

参考
  1. Aldhyani, T.H.H., Alshebami, A.S., and Alzahrani, M.Y., Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms, J. Healthcare Eng., vol. 2020, p. 4984967, 2020.

  2. Amoroso, N., Rocca, M., Bellotti, R., Fanizzi, A., Monaco, A., and Tangaro, S., Alzheimer's Disease Diagnosis Based on the Hippocampal UnifiedMulti-Atlas Network (HUMAN) Algorithm, Biomed. Eng. Online, vol. 17, no. 6, 2018. DOI: 10.1186/s12938-018-0439-y.

  3. Bartos, A., Gregus, D., Ibrahim, I., and Tintera, J., Brain Volumes and Their Ratios in Alzheimer's Disease on Magnetic Resonance Imaging Segmented Using Freesurfer 6.0, Psych. Res. Neuroimaging, vol. 287, pp. 70-74, 2019.

  4. Basheera, S. and Sai Ram, M.S., Convolution Neural Network-Based Alzheimer's Disease Classification Using Hybrid Enhanced Independent Component Analysis Based Segmented Gray Matter of T2 Weighted Magnetic Resonance Imaging with Clinical Valuation, Alzheimer's Dementia: Translat. Res. Clin. Intervent., vol. 5, pp. 974-986, 2019.

  5. Beg, M.F., Raamana, P.R., Barbieri, S., and Wang, L., Comparison of Four Shape Features for Detecting Hippocampal Shape Changes in Early Alzheimer's, Stat.MethodsMed. Res., vol. 22, no. 4, pp. 439-462, 2013.

  6. Cao, L., Li, L., Zheng, J., Fan, X., Yin, F., Shen, H., and Zhang, J., Multi-Task Neural Networks for Joint Hippocampus Segmentation and Clinical Score Regression,Multimedia Tools Appl., vol. 77, pp. 29669-29686, 2018.

  7. Chupin,M., Gerardin, E., Cuingnet, R., Boutet, C., Lemieux, L., Lehericy, S., Benali, H., Garnero, L., and Colliot, O., Fully Automatic Hippocampus Segmentation and Classification in Alzheimer's Disease and Mild Cognitive Impairment Applied on Data from ADNI, Hippocampus, vol. 19, no. 6, pp. 579-587, 2009.

  8. De Strooper, B. and Karran, E., The Cellular Phase of Alzheimer's Disease, Cell, vol. 164, no. 4, pp. 603-615, 2016. DOI: 10.1016/j.cell.2015.12.056.

  9. Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., and Collins, D.L., Unbiased Average Age-Appropriate Atlases for Pediatric Studies, Neuroimage, vol. 54, no. 1, pp. 313-327, 2011.

  10. Galvin, J.E., Prevention of Alzheimer's Disease: Lessons Learned and Applied, J. Am. Geriatr. Soc., vol. 65, no. 10, pp. 2128-2133, 2017. DOI: 10.1111/jgs.14997.

  11. Gerardin, E., Chetelat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H.S., Niethammer, M., et al., Multidimensional Classification of Hippocampal Shape Features Discriminates Alzheimer's Disease and Mild Cognitive Impairment from Normal Aging, Neuroimage, vol. 47, no. 4, pp. 1476-1486, 2009.

  12. Gorji, H.T. and Kaabouch, N., A Deep Learning Approach for Diagnosis of Mild Cognitive Impairment Based on MRI Images, Brain Sci., vol. 9, no. 9, pp. 217-231, 2019.

  13. Jenkinson,M., Bannister, P., Brady,M., and Smith, S., Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images, Neuroimage, vol. 17, no. 2, pp. 825-841, 2002. DOI: 10.1006/nimg.2002.1132.

  14. Karim, A., Jenny, B.P., and Karim, A., Classification of sMRI for Alzheimer's Disease Diagnosis with CNN: Single Siamese Networks with 2D+? Approach and Fusion on ADNI, Proc. of the 2017 ACM on Int. Conf. on Multimedia Retrieval, Bucharest, Romania, pp. 494-498, 2017.

  15. Korolev, S., Safiullin, A., Belyaev, M., and Dodonova, Y., Residual and Plain Convolutional Neural Networks for 3D Brain MRI Classification, 2017 IEEE 14th Int. Symp. on Biomedical Imaging (ISBI 2017), Melbourne, Australia, pp. 835-838, 2017.

  16. Leung, K.K., Barnes, J., Ridgway, G.R., Bartlett, J.W., Clarkson, M.J., Macdonald, K., Schuff, N., Fox, N.C., Ourselin, S., and Alzheimer's Disease Neuroimaging Initiative, Automated Cross-Sectional and Longitudinal Hippocampal Volume Measurement in Mild Cognitive Impairment and Alzheimer's Disease, Neuroimage, vol. 51, no. 4, pp. 1345-1359, 2010.

  17. Li, F., Liu, M., and Alzheimer's Disease Neuroimaging Initiative, Alzheimer's Disease Diagnosis Based on Multiple Cluster Dense ConvolutionalNetworks, Comput. Med. Imaging Graphics, vol. 70, pp. 101-110, 2018.

  18. Li, X., Xia, H., Zhou, Z., and Tong, L., 3D Textures Analysis of Hippocampus Based on MR Images in Patients with Alzheimer Disease andMild Cognitive Impairment, J. BeijingUniv. Technol., pp. 942-948, 2012.

  19. Lindberg, O.,Walterfang,M., Looi, J.C., Malykhin, N., Ostberg, P., Zandbelt, B., Styner, M., Paniagua, B., Velakoulis, D., and Orndahl, E., Hippocampal Shape Analysis in Alzheimer's Disease and Frontotemporal Lobar Degeneration Subtypes, J. Alzheimers Dis., vol. 30, no. 2, pp. 355-365, 2012.

  20. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A.W.M., van Ginneken, B., and Sanchez, C.I., A Survey on Deep Learning in Medical Image Analysis, Med. Image Anal., pp. 60-88, 2017.

  21. Liu, M., Li, F., Yan, H., Wang, K., and Ma, Y., A Multi-Model Deep Convolutional Neural Network for Automatic Hippocampus Segmentation and Classification in Alzheimer's Disease, Neuroimage, 2020.

  22. Marcus, D., Buckner, R., Csernansky, J., and Morris, J., Principal Investigators, OASIS-2: Longitudinal, P50 AG05681, P01 AG03991, P01 AG026276,R01 AG021910, P20MH071616,U24 RR021382, 2007.

  23. Ortiz, A., Munilla, J., Gorriz, J.M., and Ramirez, J., Ensembles of Deep Learning Architectures for the Early Diagnosis of Alzheimer's Disease, Int. J. Neural Syst., vol. 26, no. 7, 2016.

  24. Platero, C. and Tobar, M.C., A Fast Approach for Hippocampal Segmentation from T1-MRI for Predicting Progression in Alzheimer's Disease from Elderly Controls, J. Neurosci. Methods, vol. 270, pp. 61-75,2016.

  25. Qiu, S., Chang, G.H., Panagia, M., Gopal, D.M., Au, R., and Kolachalama, V.B., Fusion of Deep Learning Models of MRI Scans, Mini-Mental State Examination, and Logical Memory Test Enhances Diagnosis.

  26. Rathore, S., Habes, M., Iftikhar, M.A., Shacklett, A., and Davatzikos, C., A Review on Neuroimaging-Based Classification Studies and Associated Feature ExtractionMethods for Alzheimer's Disease and Its Prodromal Stages, Neuroimage, vol. 155, pp. 530-548, 2017. DOI: 10.1016/j.neuroimage.2017.03.057.

  27. Shen, K.K., Fripp, J.,Meriaudeau, F., Chetelat, G., Salvado,O., Bourgeat, P., and Alzheimer's Disease Neuroimaging Initiative, Detecting Global and Local Hippocampal Shape Changes in Alzheimer's Disease Using Statistical Shape Models, Neuroimage, vol. 59, no. 3, pp. 2155-2166, 2012.

  28. Suk, H.I., Lee, S.W., Shen, D., and Alzheimer's Disease Neuroimaging Initiative, Latent Feature Representation with Stacked Autoencoder for AD/MCI Diagnosis, Brain Struct. Funct., vol. 220, no. 2, pp. 841-859, 2015.

  29. Suma, K.V., Raghavan, D., and Ganesh, P., Deep Learning for Alzheimer's Disease Detection Using Multimodal MRI-PET Fusion, 2022 4th Int. Conf. on Circuits, Control, Communication and Computing (I4C), Bangalore, India, pp. 287-292, 2022a. DOI: 10.1109/I4C57141.2022.10057623.

  30. Suma, K.V., Selvi, S., Nanda, P., Shetty, M., Vikas, M., and Awasthi, K., Deep Learning Approach to Nailfold Capillaroscopy Based Diabetes Mellitus Detection, Int. J. Online Biomed. Eng., vol. 18, no. 6, pp. 95-109, 2022b.

  31. Veitch, D.P., Weiner, M.W., Aisen, P.S., Beckett, L.A., Cairns, N.J., Green, R.C., Harvey, D., Jack, C.R., Jr., Jagust, W., Morris, J.C., Petersen, R.C., Saykin, A.J., Shaw, L.M., Toga, A.W., and Trojanowski, J.Q., Alzheimer's Disease Neuroimaging Initiative. Understanding Disease Progression and Improving Alzheimer's Disease Clinical Trials: Recent Highlights from the Alzheimer's Disease Neuroimaging Initiative, Alzheimer's Dement., vol. 15, no. 1, pp. 106-152, 2019. DOI: 10.1016/j.jalz.2018.08.005.

  32. Vidoni, E.D., The Whole Brain Atlas, J. Neurol. Phys. Therapy, vol. 36, no. 2, p. 108, 2012. DOI: 10.1097/NPT.0b013e3182563795.

  33. Wang, J., Lu, S.,Wang, S.H., and Zhang, Y.D., A Review on Extreme LearningMachine, Multimedia Tools Appl., vol. 81, pp. 41611-41660, 2022. DOI: 10.1007/s11042-021-11007-7.

  34. Zarandi, M.H.F., Zarinbal, M., and Izadi, M., Systematic Image Processing for Diagnosing Brain Tumors: A Type-II Fuzzy Expert System Approach, Appl. Soft Comput., vol. 11, no. 1, pp. 285-294, 2011.

  35. Zhang, D., Wang, Y., Zhou, L., Yuan, H., and Shen, D., Multimodal Classification of Alzheimer's Disease and Mild Cognitive Impairment, Neuroimage, vol. 55, no. 3, pp. 856-867, 2011.

  36. Zhang, Y., Brady,M., and Smith, S., Segmentation of BrainMR Images through a HiddenMarkov Random Field Model and the Expectation-Maximization Algorithm, IEEE Trans. Med. Imaging, vol. 20, no. 1, pp. 45-57, 2001. DOI: 10.1109/42.906424.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain