ライブラリ登録: Guest
Journal of Machine Learning for Modeling and Computing

年間 4 号発行

ISSN 印刷: 2689-3967

ISSN オンライン: 2689-3975

Indexed in

MODELING UNKNOWN DYNAMICAL SYSTEMS WITH HIDDEN PARAMETERS

巻 3, 発行 3, 2022, pp. 79-95
DOI: 10.1615/JMachLearnModelComput.2022041026
Get accessDownload

要約

We present a data-driven numerical approach for modeling unknown dynamical systems with missing/hidden parameters. The method is based on training a deep neural network (DNN) model for the unknown system using its trajectory data. A key feature is that the unknown dynamical system contains system parameters that are completely hidden, in the sense that no information about the parameters is available through either the measurement trajectory data or our prior knowledge of the system. We demonstrate that by training a DNN using the trajectory data with sufficient time history, the resulting DNN model can accurately model the unknown dynamical system. For new initial conditions associated with new, and unknown, system parameters, the DNN model can produce accurate system predictions over longer time.

参考
  1. Brunton, S.L., Proctor, J.L., and Kutz, J.N., Discovering Governing Equations from Data by Sparse Identification of Nonlinear Dynamical Systems, Proc. Natl. Acad. Sci, USA, vol. 113, no. 15, pp. 3932-3937, 2016.

  2. Chen, Z. and Xiu, D., On Generalized Residual Network for Deep Learning of Unknown Dynamical Systems, J Comput. Phys., vol. 438, p. 110362, 2021.

  3. Fu, X., Chang, L.B., and Xiu, D., Learning Reduced Systems via Deep Neural Networks with Memory, J. Mach. Learn. Model. Comput., vol. 1, no. 2, pp. 97-118, 2020.

  4. He, K., Zhang, X., Ren, S., and Sun, J., Deep Residual Learning for Image Recognition, in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, pp. 770-778, 2016.

  5. Long, Z., Lu, Y., and Dong, B., PDE-Net 2.0: Learning PDEs from Data with a Numeric-Symbolic Hybrid Deep Network, arXiv: 1812.04426,2018a.

  6. Long, Z., Lu, Y., Ma, X., and Dong, B., PDE-Net: Learning PDEs from Data, in Proc. of the 35th Int. Conf. on Machine Learning, Stockholmsmassan, Stockholm, Sweden, pp. 3208-3216,2018b.

  7. Mangan, N.M., Kutz, J.N., Brunton, S.L., and Proctor, J.L., Model Selection for Dynamical Systems via Sparse Regression and Information Criteria, Proc. R. Soc. London, Ser. A: Math. Phys. Eng. Sci., vol. 473, no. 2204,2017.

  8. Mori, H., Transport, Collective Motion, and Brownian Motion, Prog;. Theor. Phys., vol. 33, no. 3, pp. 423-455,1965.

  9. Qin, T., Chen, Z., Jakeman, J., and Xiu, D., Data-Driven Learning of Nonautonomous Systems, SIAM J. Sci. Comput., vol. 43, no. 3, pp. A1607-A1624,2021a.

  10. Qin, T., Chen, Z., Jakeman, J., and Xiu, D., Deep Learning of Parameterized Equations with Applications to Uncertainty Quantification, Int. J. Uncertainty Quant., vol. 11, no. 2, pp. 63-82,2021b.

  11. Qin, T., Wu, K., and Xiu, D., Data Driven Governing Equations Approximation Using Deep Neural Networks, J. Comput. Phys, vol. 395, pp. 620-635,2019.

  12. Raissi, M., Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations, J. Mach. Learn. Res., vol. 19, no. 25, pp. 1-24,2018.

  13. Raissi, M., Perdikaris, P., and Kamiadakis, G.E., Machine Learning of Linear Differential Equations Using Gaussian Processes, J. Comput. Phys, vol. 348, pp. 683-693,2017a.

  14. Raissi, M., Perdikaris, P., and Kamiadakis, G.E., Physics Informed Deep Learning (Part I): DataDriven Solutions of Nonlinear Partial Differential Equations, arXiv: 1711.10561,2017b.

  15. Raissi, M., Perdikaris, P., and Kamiadakis, G.E., Physics Informed Deep Learning (Part II): DataDriven Discovery of Nonlinear Partial Differential Equations, arXiv: 1711.10566,2017c.

  16. Raissi, M., Perdikaris, P., and Kamiadakis, G.E., Multistep Neural Networks for Data-Driven Discovery of Nonlinear Dynamical Systems, arXiv: 1801.01236,2018.

  17. Rudy, S.H., Brunton, S.L., Proctor, J.L., and Kutz, J.N., Data-Driven Discovery of Partial Differential Equations, Sci. Adv., vol. 3, no. 4, p. e1602614,2017.

  18. Rudy, S.H., Kutz, J.N., and Brunton, S.L., Deep Learning of Dynamics and Signal-Noise Decomposition with Time-Stepping Constraints, J. Comput. Phys., vol. 396, pp. 483-506,2019.

  19. Schaeffer, H., Tran, G., and Ward, R., Extracting Sparse High-Dimensional Dynamics from Limited Data, SIAM J. Appl. Math., vol. 78, no. 6, pp. 3279-3295,2018.

  20. Sun, Y., Zhang, L., and Schaeffer, H., NEUPDE: Neural Network Based Ordinary and Partial Differential Equations for Modeling Time-Dependent Data, arXiv: 1908.03190,2019.

  21. Wu, K., Qin, T., and Xiu, D., Structure-Preserving Method for Reconstructing Unknown Hamiltonian Systems from Trajectory Data, arXiv: 1905.10396,2019.

  22. Wu, K. and Xiu, D., Numerical Aspects for Approximating Governing Equations Using Data, J. Comput. Phys., vol. 384, pp. 200-221,2019.

  23. Wu, K. and Xiu, D., Data-Driven Deep Learning of Partial Differential Equations in Modal Space, J. Comput. Phys, vol. 408, p. 109307,2020.

  24. Zwanzig,R., Nonlinear Generalized Langevin Equations, J. Stat. Phys, vol. 9, no. 3,pp. 215-220,1973.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain