ライブラリ登録: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

年間 4 号発行

ISSN 印刷: 1093-3611

ISSN オンライン: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

MODELING OF PULSED CAPILLARY DISCHARGE WAVEGUIDES USING A NON-LTE APPROACH

巻 11, 発行 4, 2007, pp. 585-592
DOI: 10.1615/HighTempMatProc.v11.i4.100
Get accessGet access

要約

Pulsed capillary discharge waveguides are arc plasmas that have important applications as waveguides for laser-wakefield acceleration and high-harmonic generation. Both processes have important future biomedical applications. In this contribution, two key aspects of the modeling procedure are discussed: non-local thermal equilibrium (non-LTE) and wall heating. A comparison of the results of the non-LTE mode with a local thermal equilibrium model reveals that the latter model is inadequate for describing the formation mechanism of the waveguide in the discharge, but is adequate for describing the plasma once a waveguide has formed. The simulation of wall heating is useful for predicting wall ablation, but the effect of the hotter wall on the central plasma properties is modest, with a 5% difference in density observed.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain