ライブラリ登録: Guest
Plasma Medicine

年間 4 号発行

ISSN 印刷: 1947-5764

ISSN オンライン: 1947-5772

SJR: 0.216 SNIP: 0.263 CiteScore™:: 1.4 H-Index: 24

Indexed in

Bacterial Inactivation in Liquids Using Multi-Gas Plasmas

巻 2, 発行 4, 2012, pp. 237-247
DOI: 10.1615/PlasmaMed.2014010792
Get accessDownload

要約

Using a multi-gas plasma jet, we generated plasmas of various gas species such as argon, oxygen, nitrogen, carbon dioxide, and air. Photometric measurements of colorforming reactions were used to identify singlet oxygen, OH radicals, hydrogen peroxide, NO radicals, nitrite, and nitrate, which are important sterilization agents that are generated in the liquid phase. Oxygen plasma generated the largest amount of singlet oxygen, OH radicals, and hydrogen peroxide. Air plasma generated NO radicals, nitrite, and nitrate. The pH of air plasma−treated water for 120 s dropped below 3.0. The air plasma sterilized Escherichia coli in distilled water after 120 s of treatment. In addition, when the initial pH was fixed below 3.6, E. coli was more effectively sterilized by oxygen plasma. Furthermore, dimethylsulfoxide, which is an OH radical scavenger, suppressed the sterilization effect of oxygen plasma.

によって引用された
  1. Iwai Takahiro, Okumura Kensuke, Kakegawa Ken, Miyahara Hidekazu, Okino Akitoshi, A pulse-synchronized microplasma atomic emission spectroscopy system for ultrasmall sample analysis, J. Anal. At. Spectrom., 29, 11, 2014. Crossref

  2. Takamatsu Toshihiro, Kawano Hiroaki, Miyahara Hidekazu, Azuma Takeshi, Okino Akitoshi, Atmospheric nonequilibrium mini-plasma jet created by a 3D printer, AIP Advances, 5, 7, 2015. Crossref

  3. Oshita Takaya, Kawano Hiroaki, Takamatsu Toshihiro, Miyahara Hidekazu, Okino Akitoshi, Temperature Controllable Atmospheric Plasma Source, IEEE Transactions on Plasma Science, 43, 6, 2015. Crossref

  4. Kramer Axel, Bekeschus Sander, Matthes Rutger, Bender Claudia, Stope Matthias B., Napp Matthias, Lademann Olaf, Lademann Jürgen, Weltmann Klaus-Dieter, Schauer Frieder, Cold Physical Plasmas in the Field of Hygiene-Relevance, Significance, and Future Applications, Plasma Processes and Polymers, 12, 12, 2015. Crossref

  5. Takamatsu Toshihiro, Kawano Hiroaki, Sasaki Yota, Uehara Kodai, Miyahara Hidekazu, Matsumura Yuriko, Iwasawa Atsuo, Azuma Takeshi, Okino Akitoshi, Imaging of the Staphylococcus aureus Inactivation Process Induced by a Multigas Plasma Jet, Current Microbiology, 73, 6, 2016. Crossref

  6. Kramer Axel, Matthes Rutger, Bekeschus Sander, Bender Claudia, Napp Matthias, Lademann Olaf, Lademann Jürgen, Weltmann Klaus Dieter, Aktueller und perspektivischer Einsatz kalter Plasmen aus hygienischer Indikation, in Plasmamedizin, 2016. Crossref

  7. Siciliano Ilenia, Spadaro Davide, Prelle Ambra, Vallauri Dario, Cavallero Maria, Garibaldi Angelo, Gullino Maria, Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins, Toxins, 8, 5, 2016. Crossref

  8. Chauvin Julie, Judée Florian, Yousfi Mohammed, Vicendo Patricia, Merbahi Nofel, Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet, Scientific Reports, 7, 1, 2017. Crossref

  9. Nomura Yudai, Takamatsu Toshihiro, Kawano Hiroaki, Miyahara Hidekazu, Okino Akitoshi, Yoshida Masaru, Azuma Takeshi, Investigation of blood coagulation effect of nonthermal multigas plasma jet in vitro and in vivo, Journal of Surgical Research, 219, 2017. Crossref

  10. Takamatsu Toshihiro, Uehara Kodai, Sasaki Yota, Hidekazu Miyahara, Matsumura Yuriko, Iwasawa Atsuo, Ito Norihiko, Kohno Masahiro, Azuma Takeshi, Okino Akitoshi, Yousfi Mohammed, Microbial Inactivation in the Liquid Phase Induced by Multigas Plasma Jet, PLOS ONE, 10, 7, 2015. Crossref

  11. Application of Plasma to Humans (Blood Coagulation and Regenerative Medicine), in Plasma Medical Science, 2019. Crossref

  12. Shirai Naoki, Matsuda Yutaka, Sasaki Koichi, Visualization of short-lived reactive species in liquid in contact with atmospheric-pressure plasma by chemiluminescence of luminol, Applied Physics Express, 11, 2, 2018. Crossref

  13. Khlyustova Anna, Labay Cédric, Machala Zdenko, Ginebra Maria-Pau, Canal Cristina, Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review, Frontiers of Chemical Science and Engineering, 13, 2, 2019. Crossref

  14. Miyamoto Kenji, Ikehara Yuzuru, A measurement method for determining the correlation between the amount of haemolysis and the electric current in low‐temperature plasma treatment, Plasma Processes and Polymers, 16, 5, 2019. Crossref

  15. NAMURA Yasuhiro, UCHIDA Yasuki, SATO Ryoichi, SHIMIZU Noriyoshi, MOTOYOSHI Mitsuru, TSUTSUMI Yusuke, HANAWA Takao, YONEYAMA Takayuki, Changes in surface properties of dental alloys with atmospheric plasma irradiation, Dental Materials Journal, 39, 3, 2020. Crossref

  16. Iwai Takahiro, Inoue Hiroki, Kakegawa Ken, Ohrui Yasuhiko, Nagoya Tomoki, Nagashima Hisayuki, Miyahara Hidekazu, Chiba Koichi, Seto Yasuo, Okino Akitoshi, Development of a High-Efficiency Decomposition Technology for Volatile Chemical Warfare Agent Sarin Using Dielectric Barrier Discharge, Plasma Chemistry and Plasma Processing, 40, 4, 2020. Crossref

  17. Li Z, Liu J, Lu X, A large atmospheric pressure nonequilibrium open space air plasma based on a rotating electrode, Plasma Sources Science and Technology, 29, 4, 2020. Crossref

  18. Rostas Arpad Mihai, Ledernez Loic, Dietel Lisa, Heidinger Lorenz, Bergmann Michael, Altenburger Markus, Bruch Richard, Urban Gerald, Schleicher Erik, Weber Stefan, Direct EPR detection of atomic nitrogen in an atmospheric nitrogen plasma jet, Physical Chemistry Chemical Physics, 22, 7, 2020. Crossref

  19. Zhao Yi‐Ming, Patange Apurva, Sun Da‐Wen, Tiwari Brijesh, Plasma‐activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry, Comprehensive Reviews in Food Science and Food Safety, 19, 6, 2020. Crossref

  20. Caba Bogdan, Gardikiotis Ioannis, Topala Ionut, Mihaila Ilarion, Mihai Cosmin Teodor, Luca Catalina, Pasca Sorin, Caba Ioana Cezara, Dimitriu Gabriel, Huzum Bogdan, Serban Ionela Lacramioara, Cold Atmospheric Plasma, Platelet-Rich Plasma, and Nitric Oxide Synthesis Inhibitor: Effects Investigation on an Experimental Model on Rats, Applied Sciences, 12, 2, 2022. Crossref

  21. Todorova Yovana, Benova Evgenia, Marinova Plamena, Yotinov Ivaylo, Bogdanov Todor, Topalova Yana, Non-Thermal Atmospheric Plasma for Microbial Decontamination and Removal of Hazardous Chemicals: An Overview in the Circular Economy Context with Data for Test Applications of Microwave Plasma Torch, Processes, 10, 3, 2022. Crossref

  22. Kurosawa Manabu, Takamatsu Toshihiro, Kawano Hiroaki, Hayashi Yuta, Miyahara Hidekazu, Ota Syosaku, Okino Akitoshi, Yoshida Masaru, Endoscopic Hemostasis in Porcine Gastrointestinal Tract Using CO2 Low-Temperature Plasma Jet, Journal of Surgical Research, 234, 2019. Crossref

  23. Rahman Mizanur, Hasan Md. Shariful, Islam Raihanul, Rana Rahmatuzzaman, Sayem ASM, Sad Md. Abdullah As, Matin Abdul, Raposo António, Zandonadi Renata Puppin, Han Heesup, Ariza-Montes Antonio, Vega-Muñoz Alejandro, Sunny Atiqur Rahman, Plasma-Activated Water for Food Safety and Quality: A Review of Recent Developments, International Journal of Environmental Research and Public Health, 19, 11, 2022. Crossref

  24. Yahaya A. G., Okuyama T., Kristof J., Blajan M. G., Shimizu K., The Physicochemical/Electrical Properties of Plasma Activated Medium by Dielectric Barrier Discharge Microplasma, in Research and Education: Traditions and Innovations, 422, 2022. Crossref

  25. Fallon Muireann, Conway James , Kennedy Sarah , Kumar Sharath , Daniels Stephen , Humphreys Hilary , The Effect of Cold Plasma Operating Parameters on the Production of Reactive Oxygen and Nitrogen Species and the Resulting Antibacterial and Antibiofilm Efficiency , Plasma Medicine, 12, 1, 2022. Crossref

  26. IWAI Takahiro, Development of Highly Sensitive Inorganic/Organic Analytical Systems for Ultrasmall Samples Using Atmospheric Pressure Plasmas, BUNSEKI KAGAKU, 71, 7.8, 2022. Crossref

1057 記事の閲覧数 10128 記事のダウンロード 記事の統計
1057 記事の閲覧数 10128 記事のダウンロード 26 Crossref 引用数 Google
Scholar
引用数

類似内容の記事:

Limiting Pseudomonas aeruginosa Biofilm Formation Using Cold Atmospheric Pressure Plasma Plasma Medicine, Vol.8, 2018, issue 3
George T. Williams, Robert D. Short, Amber E. Young, Sarah L. Allinson, Naing T. Thet, Andrew Toby A. Jenkins, Hollie Hathaway, Bethany Lee Patenall, Adam C. Sedgwick
Effects of Physical Plasma on Biotechnological Processes in Mycelia of the Cultivated Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) International Journal of Medicinal Mushrooms, Vol.18, 2016, issue 6
Christian Backer, Martina Wurster, Christian Schulze, Ulrike Lindequist, Doreen Musebeck, Thomas von Woedtke, Kevin Lindner, Beate Haertel
Antibacterial Activity of Copper-Loaded Plasma-Treated Natural Zeolites Plasma Medicine, Vol.8, 2018, issue 1
Arantxa Danielle S. Montallana, Czerr Eljohn V. Cruz, Magdaleno R. Vasquez, Jr.
Non-thermal Plasma Treatment of Flowing Water: A Solution to Reduce Water Usage and Soil Treatment Cost without Compromising Yield Plasma Medicine, Vol.6, 2016, issue 3-4
Gregory Fridman, J. Brar, A. Oubarri, Bela Peethambaran, Pietro Ranieri, Alexander A. Fridman, J. Jiang, Vandana Miller
Evaluation of Penetration Depth of Antimicrobial Effect by Cold Atmospheric Plasma Treatment In Vitro Plasma Medicine, Vol.12, 2022, issue 1
Caner Dikyol, Utku Kürşat Ercan
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain