ライブラリ登録: Guest
International Journal for Multiscale Computational Engineering

年間 6 号発行

ISSN 印刷: 1543-1649

ISSN オンライン: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Three-dimensional Bursting and Parallel Computing

巻 5, 発行 1, 2007, pp. 39-46
DOI: 10.1615/IntJMultCompEng.v5.i1.50
Get accessGet access

要約

This work presents a mathematical model and its parallel implementation via two parallel paradigms for the simulation of three-dimensional bursting phenomena. The mathematical model consists of four nonlinearly coupled partial differential equations and includes fast and slow subsystems. The differential equations have been discretized by means of a linearly implicit finite difference method in equally spaced grids. The resulting system of equations at each time level has been solved by means of an optimized preconditioned conjugate gradient method. The proposed mathematical model has been implemented via (i) a message passing paradigm based on the standard MPI and (ii) a shared address space paradigm based on SPMD OpenMP. The two implementations have been evaluated on three current parallel architectures, namely, a cluster of dual Xeon, a SGI Altix 3700 Bx2 system based on Itanium, and a Sun Fire E15K. It is shown that for the conditions reported here, the nonlinear dynamics of the three-dimensional bursting phenomena exhibits four different regimes, charachterized by asynchronous, synchronous, and then asynchronous oscillations before a quiescent state is reached. In addition, the fast system reaches steady state in much less time than the slow variables. It is also shown that both parallel pradigms lead to similar scalability on all considered platforms.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain