ライブラリ登録: Guest
Atomization and Sprays

年間 12 号発行

ISSN 印刷: 1044-5110

ISSN オンライン: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

MACROSCOPIC AND MICROSCOPIC CHARACTERISTICS OF GASOLINE AND BUTANOL SPRAY ATOMIZATION UNDER ELEVATED AMBIENT PRESSURES

巻 28, 発行 9, 2018, pp. 779-795
DOI: 10.1615/AtomizSpr.2018026194
Get accessGet access

要約

N-butanol has been recognized as a promising alternative fuel in gasoline engines and has outstanding advantages over low-carbon alcohols in terms of energy density and miscibility. In this work, the comparative investigation on the spray behaviors of gasoline and n-butanol was carried out using a commercial gasoline direct injection (GDI) injector. The tests were carried out in a high-pressure constant volume vessel with the injection pressures from 6.0 to 15.0 MPa and ambient pressures from 0.1 to 0.5 MPa. High speed imaging and Phase Doppler Particle Analyzer (PDPA) techniques were used to examine the spray penetration and the droplet atomization process. The results showed that gasoline had a longer penetration length than that of n-butanol in most test conditions mainly due to the longer injection delay caused by the relatively small density and viscosity of gasoline. The relatively poor atomization quality of n-butanol (larger Sauter Mean Diameter) might further contribute for its larger droplet mean velocity than gasoline because less energy was consumed for atomization. Both increasing injection pressure and decreasing ambient pressure could enhance spray atomization and increase droplet mean velocity. However, once the injection pressure was beyond a certain value, its effect on droplet mean velocity was neglectible. The global velocity distribution presented an asymmetric feature with the spray axis in the far field possibly due to the jet-to-jet interaction.

によって引用された
  1. Fan Yunchu, Duan Yaozong, Liu Wang, Han Dong, Effects of butanol blending on spray auto-ignition of gasoline surrogate fuels, Fuel, 260, 2020. Crossref

  2. Sun Zhe, Xu Qinglin, Cui Mingli, Nour Mohamed, Li Xuesong, Hung David L.S., Xu Min, Impact of flash boiling multiple injections timing on the combustion and thermal efficiency of a gasoline direct injection engine under lean-burn, Fuel, 304, 2021. Crossref

  3. Shafaee Mazyar, Elkaie Abbas, Hassani Mohammad Amin, Experimental investigation on fluid structure and full-cone spray characteristics of a jet-swirl atomizer using shadowgraph technique, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 236, 8, 2022. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain