ライブラリ登録: Guest
Atomization and Sprays

年間 12 号発行

ISSN 印刷: 1044-5110

ISSN オンライン: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

ON THE PREDICTION AND STRUCTURES OF WIDE-ANGLE FULL-CONE LIQUID SPRAYS

巻 11, 発行 4, 2001, pp. 453-470
DOI: 10.1615/AtomizSpr.v11.i4.90
Get accessGet access

要約

This article describes the modification, use, and validation of a three-dimensional computational fluid dynamics (CFD) code applied to model solid-cone sprays produced by pressure-swirl atomizers. The finite-volume code used is a three-dimensional, orthogonal, two-phase, Lagrangian-tracking, transient code. It contains submodels for the secondary breakup of droplets and for collisions. The effect of the chosen initial drop size distribution on the predicted fully developed spray characteristics is investigated. The optimum initial conditions are determined by making comparisons with published experimental data. It is found that to obtain a realistic model, a range of drop sizes needs to be introduced. This range can be represented by a truncated Rosin-Rammler distribution discretized into 20 size classes. Each initial distribution can be characterized by the maximum, minimum, and Rosin-Rammler mean diameters. Relations are developed for these diameters as a function of the operating parameters. This work demonstrates that, to model a solid-cone spray accurately, the microscopic processes occurring within it, such as secondary breakup, need to be accounted for.

によって引用された
  1. Walzel Peter, Zerstäuben von Flüssigkeiten mit Einstoff-Druckdüsen, in Handbuch Vakuumtechnik, 2019. Crossref

  2. Walzel Peter, L4.4 Zerstäuben von Flüssigkeiten mit Einstoff-Druckdüsen, in VDI-Wärmeatlas, 2019. Crossref

  3. Walzel Peter, Spraying and Atomizing of Liquids, in Ullmann's Encyclopedia of Industrial Chemistry, 2019. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain